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Web Appendix A

Let ni denote the size of each cluster i = 1, · · · , I at every time-point j = 1, · · · , T . Let σ2
i = σ2

e/ni. The design

matrix Z ∈ RIT×(T+1) takes the form

Z =


Z1

...

ZI

 , where Zi =

1T IT−1

0ᵀ
T−1

Xi


where 1T and 0T are vectors of 1’s and 0’s of length T , respectively, IT is the T × T identity matrix, and Xi =

(Xi1, · · · , XiT )ᵀ denotes the treatment status of cluster i at each time j, j = 1, ..., T . Let V ∈ RIT×IT be the variance

matrix of the cluster-level mean responses given by 1
ni

∑ni
k=1 Yijk. V is block-diagonal, V = diag(V1, · · · ,VI), with

each block

Vi = σ2
i IT + τ21T1

ᵀ
T

Therefore, block-matrix multiplication produces

ZᵀV−1Z =

I∑
i=1

Zᵀ
iV
−1
i Zi

By Woodbury’s formula,

V−1
i =

1

σ2
i (σ2

i + Tτ2)
{(σ2

i + Tτ2)IT − τ21T1ᵀ
T }

And so

Zᵀ
iV
−1
i Zi =

1

σ2
i (σ2

i + Tτ2)
{(σ2

i + Tτ2)Zᵀ
iZi − τ

2(Zᵀ
i 1)(1ᵀZi)}

=
1

σ2
i (σ2

i + Tτ2)

(σ2
i + Tτ2)


T 1ᵀ

T−1 1ᵀ
TXi

1T−1 IT−1 Xi,−T

1ᵀ
TXi Xᵀ

i,−T Xᵀ
iXi

− τ2


T 2 T1ᵀ
T−1 T1ᵀ

TXi

T1T−1 1T−11
ᵀ
T−1 (1ᵀ

TXi)1T−1

T1ᵀ
TXi (1ᵀ

TXi)1
ᵀ
T−1 Xᵀ

i 1T1
ᵀ
TXi




=
1

σ2
i (σ2

i + Tτ2)


Tσ2

i σ2
i 1

ᵀ
T−1 σ2

i 1
ᵀ
TXi

σ2
i 1T−1 (σ2

i + Tτ2)IT−1 − τ21T−11
ᵀ
T−1 (σ2

i + Tτ2)Xi,−T − τ2(1ᵀ
TXi)1T−1

σ2
i 1

ᵀ
TXi (σ2

i + Tτ2)Xᵀ
i,−T − τ

2(1ᵀ
TXi)1

ᵀ
T−1 (σ2

i + Tτ2)Xᵀ
iXi − τ2Xᵀ

i 1T1
ᵀ
TXi


and so

ZᵀV−1Z =


Tf f1ᵀ

T−1 y

f1T−1 (f + gT )IT−1 − g1T−11
ᵀ
T−1

∑I
i=1

Xi,−T

σ2
i
− τ2h1T−1

y
∑I
i=1

X
ᵀ
i,−T

σ2
i
− τ2h1ᵀ

T−1 `− z


where

f =

I∑
i=1

1

σ2
i + Tτ2

, g =

I∑
i=1

τ2

σ2
i (σ2

i + Tτ2)
, ` =

I∑
i=1

T∑
j=1

Xij
σ2
i

,

z =

I∑
i=1

τ2

σ2
i (σ2

i + Tτ2)

(
T∑
j=1

Xij

)2

, y =

I∑
i=1

T∑
j=1

Xij
σ2
i + Tτ2

, h =

I∑
i=1

T∑
j=1

Xij
σ2
i (σ2

i + Tτ2)

Note the identities

f + gT =

I∑
i=1

1

σ2
i

, ` = y + Tτ2h

which we shall freely use in the rest of the proof.
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The variance of the treatment effect, Var(θ̂), is the (T + 1), (T + 1) component of (ZᵀV−1Z)−1. Let

A11 =

 Tf f1ᵀ
T−1

f1T−1 (f + gT )IT−1 − g1T−11
ᵀ
T−1


A21 = Aᵀ

12 =

[
y

∑I
i=1

X
ᵀ
i,−T

σ2
i
− τ2h1ᵀ

T−1

]
A22 = `− z

Then,

[(ZᵀV−1Z)−1](T+1),(T+1) = (A22 −A21A
−1
11 A12)−1

The first task is to compute the components of A−1
11 , which can be computed through block-matrix inversion as

[A−1
11 ]11 =

{
(Tf)− f1ᵀ

T−1[(f + gT )IT−1 − g1T−11
ᵀ
T−1]−1f1T−1

}−1

=

{
(Tf)− f1ᵀ

T−1

(f + g)IT−1 + g1T−11
ᵀ
T−1

(f + g)(f + gT )
f1T−1

}−1

=

{
(Tf)− f2(f + g)(T − 1) + f2g(T − 1)2

(f + g)(f + gT )

}−1

=
f + g

f(f + gT )

[A−1
11 ]21 = [A−1

11 ]ᵀ12 = −
{

(f + g)IT−1 + g1T−11
ᵀ
T−1

(f + g)(f + gT )

}
(f1T−1)

{
f + g

f(f + gT )

}
= − 1T−1

f + gT

[A−1
11 ]22 =

{
(f + g)IT−1 + g1T−11

ᵀ
T−1

(f + g)(f + gT )

}
+

1T−1

f + gT
(f1ᵀ

T−1)

{
(f + g)IT−1 + g1T−11

ᵀ
T−1

(f + g)(f + gT )

}
=

1

f + gT
(IT−1 + 1T−11

ᵀ
T−1)

And so

A21A
−1
11 A12 =

[
y

∑I
i=1

X
ᵀ
i,−T

σ2
i
− τ2h1ᵀ

T−1

]
1

f + gT

 f+g
f

−1ᵀ
T−1

−1ᵀ
T−1 IT−1 + 1T−11

ᵀ
T−1


 y∑I

i=1

Xi,−T

σ2
i
− τ2h1T−1


=

1

f + gT

(
f + g

f
y2 − 2yη + ζ

)
where

η
def
= 1ᵀ

T−1

(
I∑
i=1

Xi,−T

σ2
i

− τ2h1T−1

)

=

I∑
i=1

T−1∑
j=1

Xij
σ2
i

−
I∑
i=1

T∑
j=1

τ2(T − 1)Xij
σ2
i (σ2

i + Tτ2)

= y + τ2h−
I∑
i=1

XiT
σ2
i

and

ζ
def
=

(
I∑
i=1

Xᵀ
i,−T

σ2
i

− τ2h1ᵀ
T−1

)
(IT−1 + 1T−11

ᵀ
T−1)

(
I∑
i=1

Xi,−T

σ2
i

− τ2h1T−1

)

=

(
I∑
i=1

Xᵀ
i,−T

σ2
i

− `− y
T

1ᵀ
T−1

)
(IT−1 + 1T−11

ᵀ
T−1)

(
I∑
i=1

Xi,−T

σ2
i

− `− y
T

1T−1

)

=

(
I∑
i=1

Xᵀ
i,−T

σ2
i

− `

T
1ᵀ
T−1

)
(IT−1 + 1T−11

ᵀ
T−1)

(
I∑
i=1

Xi,−T

σ2
i

− `

T
1T−1

)
+ 2

y

T
1ᵀ
T−1(IT−1 + 1T−11

ᵀ
T−1)

(
I∑
i=1

Xi,−T

σ2
i

− `

T
1T−1

)
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+
y

T
1ᵀ
T−1(IT−1 + 1T−11

ᵀ
T−1)

y

T
1T−1

=

(
w − `2

T

)
+ 2y

(
y

T
+ τ2h−

I∑
i=1

XiT
σ2
i

)
+
y2

T
(T − 1)

where

w =

T∑
j=1

(
I∑
i=1

Xij
σ2
i

)2

and so

A21A
−1
11 A12 =

1

f + gT

{
f + g

f
y2 − 2y

(
y + τ2h−

I∑
i=1

XiT
σ2
i

)
+

(
w − `2

T

)
+ 2y

(
y

T
+ τ2h−

I∑
i=1

XiT
σ2
i

)
+
y2

T
(T − 1)

}

=
y2

fT
+

1

f + gT

(
w − `2

T

)
Finally,

[(ZᵀV−1Z)−1](T+1),(T+1) =

{
`− z − y2

fT
− 1

f + gT

(
w − `2

T

)}−1

=
fT (f + gT )

fT (f + gT )(`− z)− (f + gT )y2 − f(Tw − `2)

Web Appendix B

When ni = n, then σ2
i = σ2

e/n = σ2 and we can express

f =
I

σ2 + τ2T
, g =

τ2I

σ2(σ2 + τ2T )
, ` =

U

σ2

w =
W

(σ2)2
, z =

τ2V

σ2(σ2 + τ2T )
, y =

U

σ2 + τ2T

where U , V and W are defined as in equation 8 of Hussey and Hughes (2007). Straightforward algebra yields

Var(θ̂) =
fT (f + gT )

fT (f + gT )(`− z)− (f + gT )y2 − f(Tw − `2)

=
Iσ2(σ2 + τ2T )

σ2(IU −W ) + τ2(ITU − IV − TW + U2)

which is the expression from equation 8 of Hussey and Hughes (2007).

Web Appendix C

Let v = (v1, · · · , vI) denote a permutation of n = (n1, · · · , nI). It’s understood that `, w, y, z are functions of v, but

the dependency is omitted for simplicity. The denominator of the treatment effect variance

D(v) = fT (f + gT )(`− z)− (f + gT )y2 − f(Tw − `2)

can be re-expressed in matrix notation as:

D(v) = fT (f + gT ){Bᵀ(Pα)− (B2)ᵀ(Pβ)} − (f + gT )(Pγ)ᵀBBᵀ(Pγ)− f(Pα)ᵀ(TXXᵀ −BBᵀ)(Pα)

where

X is the treatment status matrix
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Bᵀ =

(
T∑
j=1

X1j ,

T∑
j=1

X2j , ...,

T∑
j=1

XIj

)
= (X1·, X2·, ..., XI·)

(B2)ᵀ =

( T∑
j=1

X1j

)2

,

(
T∑
j=1

X2j

)2

, ...,

(
T∑
j=1

XIj

)2
 = (X2

1·, X
2
2·, ..., X

2
I·)

αᵀ =

(
1

σ2
1

,
1

σ2
2

, ...,
1

σ2
I

)
βᵀ =

(
τ2

σ2
1(σ2

1 + τ2T )
,

τ2

σ2
2(σ2

2 + τ2T )
, · · · , τ2

σ2
I (σ2

I + τ2T )

)
γᵀ =

(
1

σ2
1 + τ2T

,
1

σ2
2 + τ2T

, · · · , 1

σ2
I + τ2T

)
where permutation matrix P ∈ {0, 1}I×I satisfies

I∑
i=1

Pij = 1 ∀j,
I∑
j=1

Pij = 1 ∀i

Note that the components of α,β,γ are ordered the same as n, and v = Pn uniquely. Therefore, we may proceed

with optimization over permutation matrices P and express the objective as D(P). In order to feed the objective into

an optimization package, we need to reformulate the problem into a mixed-integer quadratic programming (MIQP)

problem, which requires decision variables in a vector, while our current form is a matrix. Therefore, we vectorize P.

To determine the vectorization, we expand the matrix operations:

Bᵀ(Pα)− (B2)ᵀ(Pβ) =

I∑
t=1

I∑
j=1

PtjXt·αj −
I∑
t=1

I∑
j=1

PtjX
2
t·βj =

I∑
t=1

I∑
j=1

Ptj(Xt·αj −X2
t·βj)

(Pγ)ᵀBBᵀ(Pγ) =

I∑
i=1

I∑
j=1

γi(P
ᵀBBᵀP)ijγj =

I∑
i=1

I∑
j=1

I∑
s=1

I∑
t=1

γiγj(BBᵀ)stPsiPtj

(Pα)ᵀ(TXXᵀ −BBᵀ)(Pα) =

I∑
i=1

I∑
j=1

αi(P
ᵀ(TXXᵀ −BBᵀ)P)ijαj

=

I∑
i=1

I∑
j=1

I∑
s=1

I∑
t=1

αiαj(TXXᵀ −BBᵀ)stPsiPtj

The matrix M and vector D is the collection of the coefficients corresponding to the quadratic and linear sums,

respectively, which can be simplified into

M(s−1)I+i,(t−1)I+j = −(f + gT )

(
T∑
k=1

Xsk

)(
T∑
k=1

Xtk

)
1

(σ2
i + τ2T )(σ2

j + τ2T )

− f

{
T

T∑
k=1

XskXtk −

(
T∑
k=1

Xsk

)(
T∑
k=1

Xtk

)}
1

σ2
i σ

2
j

and

D(t−1)I+j = fT (f + gT )


(

T∑
k=1

Xtk

)
1

σ2
j

−

(
T∑
k=1

Xtk

)2

τ2

σ2
j (σ2

j + τ2T )


This results in a MIQP problem taking the form:

minimize/maximize: RTMR + DTR

subject to:

I∑
i=1

R(s−1)I+i = 1 ∀s = 1, · · · , I,

I∑
s=1

R(s−1)I+i = 1 ∀i = 1, · · · , I
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R(s−1)I+i ∈ {0, 1}

where R is a vector of length I2 decision variables.

More generally, to implement the algorithm for an imbalanced SW-CRT design, where an unequal number of

clusters are randomized at each step, we formally define the allocation matrix

∆X =

[
X2 −X1 X3 −X2 · · · XT −XT−1

]
and the grouping function G : RI → S2 × · · · × ST as

G(v) = (v[∆X2], · · · ,v[∆XT ])

where v[∆Xi] is the unordered set of elements within v that correspond to unit entries within ∆Xi. For example,

consider an imbalanced SW-CRT design with I = 6 clusters and T = 5 time-points, where one cluster is randomized

to treatment initiation at step 1, two clusters are randomized at step 2, one cluster is randomized at step 3, and two

clusters are randomized at step 4. The treatment status matrix is

X =



0 1 1 1 1

0 0 1 1 1

0 0 1 1 1

0 0 0 1 1

0 0 0 0 1

0 0 0 0 1


and the corresponding allocation matrix is

∆X =



1 0 0 0

0 1 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 0 0 1


Consider n = (10, 15, 20, 40, 45, 50) with maximizing solution

R = (0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

So that, an optimal order of clusters is v∗ = (50, 20, 10, 40, 15, 45). Applying the grouping function, we see

G(v∗) = ({50}, {20, 10}, {40}, {15, 45})

where the order within {} does not matter since those clusters are allocated to initiate treatment at the same time-

point. Note that there are a total of four permutations of this solution, which will attain the same maximum power.

To improve performance of the optimization software, extra constraints can be added. In general, suppose q2, q3, · · · , qT

clusters, with q2+q3+ · · ·+qT = I, are randomized to initiate the intervention at time-points 2, 3, · · · , T , respectively.

Then the order of the randomization at the same time-point is irrelevant. Additional constraints can be specified as

follows

subject to:

I∑
i=1

i(R(s−1)I+i −RsI+i) 6 0 ∀s ∈ {I, · · · , I} \ {q2, q2 + q3, · · · , q2 + · · ·+ qT }



7

These constraints effectively tell the optimization software to find the solution in increasing index order i for ni

for time-points where more than one cluster is allocated to initiate the intervention. For the above example with

n = (n1, n2, n3, n4, n5, n6) = (10, 15, 20, 40, 45, 50), the maximizing solution with these additional constraints will be

R = (0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0)

So that, the optimal order of clusters found by the optimization software is v∗ = (50, 10, 20, 40, 15, 45) since we

observe

G(v∗) = ({n6}, {n1, n3}, {n4}, {n2, n5}) = ({50}, {10, 20}, {40}, {15, 45})

has increasing indices in ni within each {}.

Web Appendix D

Let’s consider a balanced SW-CRT design with treatment status matrix X, q clusters randomized at each step, b

baseline time-points and t time-points after each step, so the total number of time-points T = I
q
t+ b. Note that

P(Xi(b+pt+1) = 1) = · · · = P(Xi(b+(p+1)t) = 1)
def
= λp

for all i, b, t, p. Indeed, for any cluster i, its treatment status at times {b+ pt+ 1, · · · , b+ (p+ 1)t} remain the same;

treatment status of a cluster can only change at each step, not at different time-points associated with the same step.

That is, Xi(b+pt+1) = · · · = Xi(b+(p+1)t). We observe the recursive relation

λp = P(Xi(b+(p+1)t) = 1|Xi(b+pt) = 1)P(Xi(b+pt) = 1) + P(Xi(b+(p+1)t) = 1|Xi(b+pt) = 0)P(Xi(b+pt) = 0)

= 1 · λp−1 +
q

I − pq (1− λp−1)

with initial condition λ−1 = 0, since no cluster is randomized to treatment initiation before time b + 1. Through

techniques from difference equations (or simply by inspection), we see that

λp =
(p+ 1)q

I

solves the recurrence relation. In general, for j = 1, · · · , T ,

P(Xij = 1) =
d j−b

t
eq

I

where d·e is the ceiling function. Now let’s derive the joint distribution of (Xij , Xlm). Assume without loss of generality

that j < m. Then,

P(Xij = Xlm = 1) = P(Xij = 1)P(Xlm = 1|Xij = 1) =
d j−b

t
eq

I

dm−b
t
eq − 1

I − 1

If j > m, the variables would change places, hence in general,

P(Xij = Xlm = 1) =
(d j−b

t
e ∧ dm−b

t
e)q

I

(d j−b
t
e ∨ dm−b

t
e)q − 1

I − 1

where a ∧ b = min(a, b) and a ∨ b = max(a, b).

When there is one baseline time-point and one time-point after each step (i.e. b = t = 1), these equations simplify,

P(Xij = 1) =
(j − 1)q

I
, P(Xij = Xlm = 1) =

{(j − 1) ∧ (m− 1)}q
I

{(j − 1) ∨ (m− 1)}q − 1

I − 1
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Now we may begin computing expectations. Starting with E(`),

E(`) = E
( I∑
i=1

T∑
j=1

Xij
σ2
i

)
=

I∑
i=1

I/q−1∑
p=−1

1

σ2
i

tE(Xi(b+(p+1)t))

=

I∑
i=1

I/q−1∑
p=−1

1

σ2
i

t(p+ 1)
q

I
=

I∑
i=1

1

σ2
i

t
q

I

I
q

(
I
q

+ 1
)

2

=

I∑
i=1

T − b+ t

2σ2
i

=
T − b+ t

2
(f + gT )

Next for E(z):

E(z) = E


I∑
i=1

τ2

σ2
i (σ2

i + Tτ2)

(
T∑
j=1

Xij

)2


=

I∑
i=1

τ2

σ2
i (σ2

i + Tτ2)
E

(
T∑
j=1

Xij

)2

Expanding the expectation,

E

(
T∑
j=1

Xij

)2

=

{
T∑
j=1

E(X2
ij)

}
+

{
2
∑
k<l

E(XikXil)

}
=
T − b+ t

2
+ 2

T∑
k=1

d k−b
t
eq

I
(T − k)

=
T − b+ t

2
+ 2

I/q−1∑
p=−1

(p+ 1)
q

I

(
Tt− tb− t(t+ 1)

2
− pt2

)
=
T − b+ t

2
+ (T − b)(T − b+ t)− (t+ 1)(T − b+ t)

2
− (2T − 2b− 2t)(T − b+ t)

3

=
(T − b+ t)(2T − 2b+ t)

6

And therefore

E(z) =
(T − b+ t)(2T − 2b+ t)

6

I∑
i=1

τ2

σ2
i (σ2

i + Tτ2)
=
g(T − b+ t)(2T − 2b+ t)

6

so,

E(`− z) =
T − b+ t

2

(
f +

g

3
(T + 2b− t)

)
Let s1 =

I∑
i=1

1
(σ2

i +Tτ
2)2

. Then for E(y2):

E(y2) = E

{( I∑
i=1

T∑
j=1

Xij
σ2
i + Tτ2

)2}
=

(T − b+ t)(2T − 2b+ t)

6
s1 +

∑
i6=i′

∑
j,j′ E(XijXi′j′)

(σ2
i + Tτ2)(σ2

i′ + Tτ2)

We may compute ∑
j<j′

E(XijXi′j′) =

T∑
j=1

(d j−b
t
e)q

I

T∑
j′=j+1

(d j
′−b
t
e)q − 1

I − 1

For the innermost sum, we can break the summation range into portions corresponding to (1) Xi′j′ randomized at

the same time point as Xij , for which there are b +
⌈
j−b
t

⌉
t − j instances, and (2) Xi′j′ randomized to a time-point

subsequent to Xij , for which there are t instances. Therefore,

∑
j<j′

E(XijXi′j′) =

T∑
j=1

(d j−b
t
e)q

I


(
b+

⌈ j − b
t

⌉
t− j

) d j−b
t
eq − 1

I − 1
+

I/q−1∑
p′=d j−b

t
e

(p′ + 1)q − 1

I − 1
t
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=

I/q−1∑
p=−1

(p+ 1)q

I

(p+ 1)q − 1

I − 1

{
t(t− 1)

2

}
+

I/q−1∑
p=−1

I/q−1∑
p′=p+1

(p+ 1)q

I

(p′ + 1)q − 1

I − 1
t2

=
(t− 1)(T − b+ t)(2I + q − 3)

12(I − 1)
+

(T − b+ t)(T − b− t)(3I + 2q − 4)

24(I − 1)

and
T∑
j=1

E(XijXi′j) =

I/q−1∑
p=−1

(p+ 1)q

I

(p+ 1)q − 1

I − 1
t =

(T − b+ t)(2I + q − 3)

6(I − 1)

so,∑
j,j′

E(XijXi′j′) =
(T − b+ t)(2I + q − 3)

6(I − 1)
+ 2

{
(t− 1)(T − b+ t)(2I + q − 3)

12(I − 1)
+

(T − b+ t)(T − b− t)(3I + 2q − 4)

24(I − 1)

}

=
T − b+ t

12(I − 1)
{(T − b)(3I − 4) + It− 2t+ 2qT − 2qb}

=
T − b+ t

12(I − 1)
{(T − b)(3I − 4) + t(3I − 2)}

Finally,

E(y2) =
(T − b+ t)(2T − 2b+ t)

6
s1 +

T − b+ t

12(I − 1)
{(T − b)(3I − 4) + t(3I − 2)}(f2 − s1)

=

{
(T − b+ t)(T − b− t)I

12(I − 1)

}
s1 +

[
(T − b+ t){3I(T − b+ t)− 2(2T − 2b+ t)}

12(I − 1)

]
f2

Next,

E(w) =

T∑
j=1

{
I∑
i=1

E(X2
ij)

σ4
i

+ 2
∑
i<i′

E(XijXi′j)

σ2
i σ

2
i′

}
=
T − b+ t

2

I∑
i=1

1

σ4
i

+
(T − b+ t)(2I + q − 3)

6(I − 1)
2
∑
i<i′

1

σ2
i σ

2
i′

=
1

σ4
e

{
T − b+ t

2

(
I∑
i=1

n2
i

)
+

(T − b+ t)(2I + q − 3)

6(I − 1)

(
2
∑
i<i′

nini′

)}
and

E(`2) =
(T − b+ t)(2T − 2b+ t)

6

I∑
i=1

1

σ4
i

+
(T − b+ t){3I(T − b+ t)− 2(2T − 2b+ t)}

12(I − 1)
2
∑
i<i′

1

σ2
i σ

2
i′

=
1

σ4
e

[
(T − b+ t)(2T − 2b+ t)

6

(
I∑
i=1

n2
i

)
+

(T − b+ t){3I(T − b+ t)− 2(2T − 2b+ t)}
12(I − 1)

(
2
∑
i<i′

nini′

)]
with the derivation above following similar steps in the computation of E(y2). Hence,

E(Tw − `2) =
T − b+ t

σ4
e

{
Y1

(
I∑
i=1

n2
i

)
+ Y2

(
2
∑
i<i′

nini′

)}
where

Y1 =
T + 2b− t

6
and Y2 =

IT + 2qT − 2T + 3Ib− 4b− 3tI + 2t

12(I − 1)

Let NSW =
I∑
i=1

ni denote the number of participants sampled at each time-point and let κ denote the sample

coefficient of variation (CV) for cluster sizes ni, so we have:

κ2 =

1
I−1

I∑
i=1

(
ni − NSW

I

)2
N2

SW
I2

⇐⇒
I∑
i=1

n2
i =

N2
SW

I

(
I − 1

I
κ2 + 1

)
we may substitute to yield

E(Tw − `2) =
T − b+ t

σ4
e

[
N2
SW

I

(
I − 1

I
κ2 + 1

)
Y1 +

{
N2
SW −

N2
SW

I

(
I − 1

I
κ2 + 1

)}
Y2

]
=

(T − b+ t)N2
SW

σ4
e

{
(I − 1)(Y1 − Y2)

I2
κ2 + Y2 +

Y1 − Y2

I

}



10 Biometrics, Web Appendix

=
(T − b+ t)(f + gT )2

12(T − b)

{
(T + b)(T − b− t)

I
κ2 + T 2 + 2bT − tT − 3b2 + 3bt

}
These expectations simplify when b = t = 1,

E(`− z) =
T

2

{
f +

g

3
(T + 1)

}
, E(y2) =

T

12(I − 1)

[
s1I(T − 2) + f2{3IT − 2(2T − 1)}

]
,

E(Tw − `2) =
T (T + 1)(f + gT )2

12(T − 1)

{
(T − 2)

I
κ2 + T

}

Web Appendix E

In order to obtain a variance formula similar to equation 8 in Hussey and Hughes (2007) that accounts for cluster

size variation, we approximated f and s1 by their first order Taylor expansion about the mean cluster size:

f =

I∑
i=1

1

σ2
i + Tτ2

=

I∑
i=1

ni
σ2
e + niTτ2

≈
I∑
i=1

{ n

σ2
e + (n)Tτ2

+
σ2
e(ni − n)

(σ2
e + (n)Tτ2)2

}
=

I
σ2
e
n

+ Tτ2

s1 =

I∑
i=1

1

(σ2
i + Tτ2)2

=

I∑
i=1

n2
i

(σ2
e + niTτ2)2

≈
I∑
i=1

{ n2

(σ2
e + nTτ2)2

+
2nσ2

e(ni − n)

(σ2
e + nTτ2)3

}
=

I(σ2
e
n

+ Tτ2
)2

where n is the mean cluster size. Note that this approximation is exact if ni = n for all i; that is, cluster sizes do not

change. Substituting these approximations,

E(`− z) ≈ U

σ2
− τ2V

σ2(σ2 + τ2T )
and E(y2) ≈

(
U

σ2 + τ2T

)2

where

U =
I(T − b+ t)

2
and V =

I(T − b+ t)(2T − 2b+ t)

6

We retain

E(Tw − `2) =
(T − b+ t)N2

SW

12(T − b)σ4
e

{
(T + b)(T − b− t)

I
κ2 + T 2 + 2bT − tT − 3b2 + 3bt

}
to account for cluster size variation.

EP {Var(θ̂|P )} ≈ fT (f + gT )

fT (f + gT )E(`− z)− (f + gT )E(y2)− fE(Tw − `2)

≈ ITσ2(σ2 + Tτ2)

σ2(ITU − U2 − I2C) + Tτ2(ITU − IV − I2C)

where

C =
(T − b+ t)

12(T − b)

{
(T + b)(T − b− t)

I
κ2 + T 2 + 2bT − tT − 3b2 + 3bt

}

These expressions simplify when b = t = 1,

C =
T (T + 1)

12(T − 1)

{
(T − 2)

I
κ2 + T

}
, U =

IT

2
, V =

IT (2T − 1)

6
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Web Appendix F

Substituting, U = I(T − b+ t)/2 and V = I(T − b+ t)(2T − 2b+ t)/6 into the approximation from Appendix E,

EP {Var(θ̂|P )} ≈ ITσ2(σ2 + Tτ2)

σ2
[
IT I(T−b+t)

2
−
{
I(T−b+t)

2

}2

− I2C
]

+ Tτ2
{
IT I(T−b+t)

2
− I I(T−b+t)(2T−2b+t)

6
− I2C

}
=

12(T − b)Tσ2(σ2 + Tτ2)

I(T − b+ t)(T − b− t){σ2(2T − T+b
I
κ2) + Tτ2(T + b− T+b

I
κ2)}

Let

ρ =
τ2

σ2
e + τ2

, σ2
t = σ2

e + τ2, n =
NSW
I

=⇒ τ2 = ρσ2
t , σ

2
e = σ2

t (1− ρ), σ2 =
σ2
e

n
=
σ2
t (1− ρ)

n

And so

EP {Var(θ̂|P )} ≈
12T (T − b)σ

2
t (1−ρ)
n

{σ2
t (1−ρ)
n

+ Tρσ2
t

}
I(T − b+ t)(T − b− t)

{σ2
t (1−ρ)
n

(2T − T+b
I
κ2) + Tρσ2

t (T + b− T+b
I
κ2)
}

=
12T (T − b)σ2

t (1− ρ){1 + (Tn− 1)ρ}
In(T − b+ t)(T − b− t)[T{2(1− ρ) + (T + b)nρ} − T+b

I
κ2{1 + (Tn− 1)ρ}]

In an individually randomized trial with total sample size TNSW = nIT and two equally sized treatment groups of

size nIT/2, the Z-statistic under the alternative θA is θA√
2σ2

t /(nIT/2)
= θA√

4σ2
t /(nIT )

with the variance of the treatment

effect 4σ2
t /(nIT ). Therefore, the design effect for a cross-sectional SW-CRT with unequal cluster sizes is:

EP {Var(θ̂|P )}
4σ2

t /(nIT )
≈ 3T (T − b)(1− ρ){1 + (Tn− 1)ρ}

(T − b+ t)(T − b− t)
[
2(1− ρ) + (T + b)nρ− T+b

IT
κ2{1 + (Tn− 1)ρ}

]
This design effect simplifies when b = t = 1,

DEw,κ =
3(T − 1)(1− ρ){1 + (Tn− 1)ρ}

(T − 2)
[
2(1− ρ) + (T + 1)nρ− T+1

IT
κ2{1 + (Tn− 1)ρ}

]

Web Appendix G

When κ = 0, the design effect is

3T (T − b)(1− ρ){1 + (Tn− 1)ρ}
(T − b+ t)(T − b− t){2(1− ρ) + (T + b)nρ}

The design effect provided in Woertman et al. (2013) is

1 + ρ(Ktn+ bn− 1)

1 + ρ( 1
2
Ktn+ bn− 1)

3(1− ρ)

2t
(
K − 1

K

)
where K = (T − b)/t is the number of steps. Indeed,

T

 1 + ρ(Ktn+ bn− 1)

1 + ρ( 1
2
Ktn+ bn− 1)

3(1− ρ)

2t
(
K − 1

K

)
 =

T{1 + ρ(nT − 1)}3(1− ρ)

[1 + ρ{n
2

(T + b)− 1}]2t
(
T−b
t
− t

T−b

)
=

3T (T − b)(1− ρ){1 + (Tn− 1)ρ}
{2(1− ρ) + nρ(T + b)}{(T − b)(T − b)− t2}

=
3T (T − b)(1− ρ){1 + (Tn− 1)ρ}

(T − b+ t)(T − b− t){2(1− ρ) + (T + b)nρ}
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Web Appendix H

RE ≈
3T (T−b)(1−ρ){1+(Tn−1)ρ}

(T−b+t)(T−b−t){2(1−ρ)+(T+b)nρ}
3T (T−b)(1−ρ){1+(Tn−1)ρ}

(T−b+t)(T−b−t)[2(1−ρ)+(T+b)nρ−T+b
IT

κ2{1+(Tn−1)ρ}]

=
2(1− ρ) + (T + b)nρ− T+b

IT
κ2{1 + (Tn− 1)ρ}

2(1− ρ) + (T + b)nρ

= 1− (T + b)κ2{1 + (Tn− 1)ρ}
IT{2(1− ρ) + (T + b)nρ}

= 1− κ2

I

(
1− (T − b)(1− ρ)

T [2 + {(T + b)n− 2}ρ]

)

When b = t = 1 this simplifies to

RE ≈ 1− κ2

I

(
1− (T − 1)(1− ρ)

T [2 + {(T + 1)n− 2}ρ]

)

Web Appendix I

The power is

1− β ≈ Φ

 θA√
EP [Var(θ̂|P )]

− z1−α/2


=⇒ θ2A

(z1−β + z1−α/2)2
≈ EP {Var(θ̂|P )} ≈ 12T (T − b)σ2

t (1− ρ){1 + (Tn− 1)ρ}
In(T − b+ t)(T − b− t)[T{2(1− ρ) + (T + b)nρ} − T+b

I
κ2{1 + (Tn− 1)ρ}]

Solving for NSW
def
= In yields

NSW =
3(T − b)(1− ρ){1 + (Tn− 1)ρ}

(T − b+ t)(T − b− t){2(1− ρ) + (T + b)nρ}
4σ2

t (z1−β + z1−α/2)2

θ2A
+
n(T + b){1 + (Tn− 1)ρ}κ2

T{2(1− ρ) + (T + b)nρ}

=
3(T − b)(1− ρ){1 + (Tn− 1)ρ}

(T − b+ t)(T − b− t){2(1− ρ) + (T + b)nρ}
4σ2

t (z1−β + z1−α/2)2

θ2A
+ nκ2

[
1− (T − b)(1− ρ)

T{2(1− ρ) + (T + b)nρ}

]

TNSW = T

(
3(T − b)(1− ρ){1 + (Tn− 1)ρ}

(T − b+ t)(T − b− t){2(1− ρ) + (T + b)nρ}
4σ2

t (z1−β + z1−α/2)2

θ2A
+ nκ2

[
1− (T − b)(1− ρ)

T{2(1− ρ) + (T + b)nρ}

])

When b = t = 1 this simplifies to

TNSW = T (DEwNind + CF )

• Nind = 4(σ2
e + τ2)(z1−β + z1−α/2)2/θ2A is the total sample size required for an individually randomized trial with

an anticipated treatment effect of θA

• DEw = [3(T − 1)(1 − ρ){1 + (Tn − 1)ρ}]/(T (T − 2)[2 + {(T + 1)n − 2}ρ]) is the Woertman et al. (2013) design

effect
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• CF = nκ2
(
1 − AT

)
is the correction factor for cluster size variation with an attenuation term (AT ) defined as

AT = (T − 1)(1− ρ)/(T [2 + {(T + 1)n− 2}ρ])

Web Appendix J

An R function to calculate the variance using the formula in equation 1 as well as the resulting power using a Wald

test is given below.

power_ord <- function(n,tau_sq,sigma_e_sq,I,T,X_ij,effect_size,alpha)

{

N_sw <- sum(n)

f_plus_gT <- N_sw/sigma_e_sq

f <- sum(n/(sigma_e_sq+(n*T*tau_sq)))

numerator <- f*T*f_plus_gT

l <- sum(t(n) %*% X_ij)/sigma_e_sq

z <- (tau_sq/sigma_e_sq)*sum(rowSums(X_ij)^2*n^2*(1/(sigma_e_sq+n*T*tau_sq)))

l_z <- l-z

y <- sum(rowSums(X_ij)*n*(1/(sigma_e_sq+n*T*tau_sq)))

y_sq <- y^2

w <- sum((t(n)%*%X_ij)^2)/sigma_e_sq^2

Tw_lsq <- T*w - l^2

denominator_ord <- numerator*l_z - f_plus_gT*y_sq - f*Tw_lsq

var_ord <- numerator/denominator_ord

power_ord <- pnorm(effect_size/sqrt(var_ord) - qnorm(1 - alpha/2))

return(c(var_ord,power_ord))

}

X.ij <- matrix(c(0,rep(1,4),rep(0,2),rep(1,3),rep(0,3),rep(1,2),rep(0,4),1),byrow=TRUE,nrow=4,ncol=5)

power_ord(c(10,15,45,50),0.05,0.95,4,5,X.ij,0.4,0.05)

[1] 0.02338494 0.74401069

Example code utilizing Gurobi in R is given below.

library(slam)

library(gurobi)

I <- 4

T <- 5

X.ij <- matrix(c(0,rep(1,4),rep(0,2),rep(1,3),rep(0,3),rep(1,2),rep(0,4),1),byrow=TRUE,nrow=4,ncol=5)

tau_sq <- 0.05

sigma_e_sq <- 0.95



14 Biometrics, Web Appendix

n <- c(10,15,45,50)

N_sw <- sum(n)

f <- sum(n/(sigma_e_sq+(n*T*tau_sq)))

f_plus_gT <- N_sw/sigma_e_sq

alpha <- n/sigma_e_sq

beta <- n^2*(tau_sq/(sigma_e_sq*(sigma_e_sq+n*tau_sq*T)))

gamma <- n/(sigma_e_sq+n*tau_sq*T)

X_term1 <- T*X.ij%*%t(X.ij) - rowSums(X.ij)%*%t(rowSums(X.ij))

X_term2 <- rowSums(X.ij)%*%t(rowSums(X.ij))

X_term3 <- rowSums(X.ij)

X_term4 <- rowSums(X.ij)^2

R_1 <- matrix(NA,nrow=I^2,ncol=I^2)

R_2 <- matrix(NA,nrow=I^2,ncol=I^2)

D_1 <- rep(NA,I^2)

D_2 <- rep(NA,I^2)

j <- -(I-1)

for (i in 1:I){

j <- j+I

R_1[j:(j+I-1),] <- cbind(X_term1[i,1]*alpha%*%t(alpha),X_term1[i,2]*alpha%*%t(alpha),

X_term1[i,3]*alpha%*%t(alpha),X_term1[i,4]*alpha%*%t(alpha))

R_2[j:(j+I-1),] <- cbind(X_term2[i,1]*gamma%*%t(gamma),X_term2[i,2]*gamma%*%t(gamma),

X_term2[i,3]*gamma%*%t(gamma),X_term2[i,4]*gamma%*%t(gamma))

D_1[j:(j+I-1)] <- X_term3[i]*alpha

D_2[j:(j+I-1)] <- X_term4[i]*beta

}

M <- -(f_plus_gT)*R_2 -f*R_1

D <- f*T*f_plus_gT*(D_1-D_2)

model <- list()

model$A <- matrix(c(rep(1,I),rep(0,(I-1)*I),

rep(0,I),rep(1,I),rep(0,(I-2)*I),

rep(0,2*I),rep(1,I),rep(0,I),

rep(0,3*I),rep(1,I),

rep(c(1,rep(0,I-1)),4),

rep(c(0,1,rep(0,I-2)),4),

rep(c(0,0,1,rep(0,I-3)),4),

rep(c(0,0,0,1),4)

), nrow=2*I, ncol=I^2, byrow=T)
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model$Q <- M

model$obj <- D

model$modelsense <- ’min’

model$rhs <- rep(1,2*I)

model$sense <- rep(’=’,2*I)

model$vtype <- ’B’

params <- list()

params$OutputFlag <- 0

# Sequence that will give minimum power

min_power <- gurobi(model,params)

which_order <- which(min_power$x %in% 1) %% I

which_order[which_order==0] <- I

n[which_order]

[1] 10 45 50 15

# Sequence that will give maximum power

model$modelsense <- ’max’

max_power <- gurobi(model,params)

which_order <- which(max_power$x %in% 1) %% I

which_order[which_order==0] <- I

n[which_order]

[1] 45 15 10 50

An R function to calculate the variance using the formula in equation 2 as well as the resulting power using a Wald

test is given below. For equation 2, set b = t = 1. For an extension when b 6= 1 or t 6= 1, see Web Appendix D.

power_q <- function(n,tau_sq,sigma_e_sq,I,q,b,t,effect_size,alpha)

{

T <- (I/q)*t + b

N_sw <- sum(n)

f_plus_gT <- N_sw/sigma_e_sq

f <- sum(n/(sigma_e_sq+(n*T*tau_sq)))

numerator <- f*T*f_plus_gT

g <- sum((tau_sq*n^2)/(sigma_e_sq*(sigma_e_sq+T*tau_sq*n)))

E_l_z <- ((T-b+t)/2)*(f+g*((T+2*b-t)/3))

s1 <- sum((n/(sigma_e_sq+n*T*tau_sq))^2)

E_y_sq <- ((T-b+t)/(12*(I-1)))*(I*(T-b-t)*s1+f^2*(3*I*(T-b+t)-2*(2*T-2*b+t)))

CV_sq <- var(n)/(mean(n)^2)

CV_term <- (T+b)*(T-b-t)/I
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E_Tw_lsq <- ((T-b+t)*f_plus_gT^2/(12*(T-b)))*(CV_sq*CV_term+T^2+2*b*T-t*T-3*b^2+3*b*t)

var_q <- numerator/((numerator*E_l_z) - (f_plus_gT*E_y_sq) - (f*E_Tw_lsq))

power_q <- pnorm(effect_size/sqrt(var_q) - qnorm(1 - alpha/2))

return(c(var_q,power_q))

}

power_q(c(10,15,45,50),0.05,0.95,4,1,1,1,0.4,0.05)

[1] 0.02210032 0.76752113

An R function to calculate the variance using the formula in equation 3 as well as the resulting power using a Wald

test is given below. For equation 3, set b = t = 1. For an extension when b 6= 1 or t 6= 1, see Web Appendix E.

power_app_q <- function(n_avg,CV,tau_sq,sigma_e_sq,I,q,b,t,effect_size,alpha)

{

T <- (I/q)*t + b

f_plus_gT <- (I*n_avg)/sigma_e_sq

numerator_CV <- I*T*(sigma_e_sq/n_avg)*(sigma_e_sq/n_avg + (tau_sq*T))

U <- (I*(T-b+t))/2

V <- (I*(T-b+t)*(2*T-2*b+t))/6

CV_term <- (T+b)*(T-b-t)/I

C <- ((T-b+t)/(12*(T-b)))*((CV^2)*CV_term+T^2+2*b*T-t*T-3*b^2+3*b*t)

denominator_CV <- (sigma_e_sq/n_avg)*(I*T*U-U^2-I^2*C) + tau_sq*T*(I*T*U-I*V-I^2*C)

var_app_q <- numerator_CV/denominator_CV

power_app_q <- pnorm(effect_size/sqrt(var_app_q) - qnorm(1 - alpha/2))

return(c(var_app_q,power_app_q))

}

power_app_q(30,0.6804138,0.05,0.95,4,1,1,1,0.4,0.05)

[1] 0.02200885 0.76922380

An R function to calculate the sample size using the formula in equation 6 is given below. For equation 6, set b = t = 1.

For an extension when b 6= 1 or t 6= 1, see Web Appendix I.

N_sw <- function(power,effect_size,alpha,n_avg,CV,sigma_t_sq,rho,T,b,t)

{

N_ind <- 4*sigma_t_sq*(qnorm(power) + qnorm(1-alpha/2))^2/effect_size^2

DE_w <- (3*(T-b)*(1-rho)*(1+(T*n_avg-1)*rho))/((T-b+t)*(T-b-t)*(2*(1-rho)+(T+b)*n_avg*rho))

CF <- n_avg*(CV^2)*(1-((T-b)*(1-rho))/(T*(2*(1-rho)+(T+b)*n_avg*rho)))

N_sw <- DE_w*N_ind + CF

T_N_sw <- T*N_sw

I <- N_sw/n_avg

clusters_per_step <- I/((T-b)/t)
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return(c(T_N_sw,N_sw,I,clusters_per_step))

}

N_sw(0.8,0.267,0.05,100,1.4,1,0.05,3,1,1)

[1] 2399.249599 799.749866 7.997499 3.998749

This software code is also available as a zip-file in a web supplement.

Web Appendix K

For the generalized model described in Hooper et al. (2016) and Li et al. (2018), the variance matrix of the cluster-level

mean responses is V∗ ∈ RIT×IT , which is block-diagonal, V∗ = diag(V∗1 , · · · ,V∗I ), with each block

V∗i = (σ2
i + δ2)IT + τ21T1

ᵀ
T

Therefore,

Zᵀ(V∗)−1Z =


Tf∗ f∗1ᵀ

T−1 y∗

f∗1T−1 (f∗ + g∗T )IT−1 − g∗1T−11
ᵀ
T−1

∑I
i=1

Xi,−T

σ2
i +δ

2 − τ2h∗1T−1

y∗
∑I
i=1

X
ᵀ
i,−T

σ2
i +δ

2 − τ2h∗1ᵀ
T−1 `∗ − z∗


where

f∗ =

I∑
i=1

1

σ2
i + Tτ2 + δ2

, g∗ =

I∑
i=1

τ2

(σ2
i + δ2)(σ2

i + Tτ2 + δ2)
, `∗ =

I∑
i=1

T∑
j=1

Xij
(σ2
i + δ2)

,

z∗ =

I∑
i=1

τ2

(σ2
i + δ2)(σ2

i + Tτ2 + δ2)

(
T∑
j=1

Xij

)2

, y∗ =

I∑
i=1

T∑
j=1

Xij
σ2
i + Tτ2 + δ2

, h∗ =

I∑
i=1

T∑
j=1

Xij
(σ2
i + δ2)(σ2

i + Tτ2 + δ2)

Noting the identity f∗ + g∗T =
∑I
i=1

1
σ2
i +δ

2 and defining w∗ =
∑T
j=1

(∑I
i=1

Xij

σ2
i +δ

2

)2
, we have the following

generalization of equation 1:

Var∗(θ̂|P = p) = [(Zᵀ(V∗)−1Z)−1](T+1),(T+1) =
f∗T (f∗ + g∗T )

f∗T (f∗ + g∗T )(`∗ − z∗)− (f∗ + g∗T )(y∗)2 − f∗{Tw∗ − (`∗)2}

To find the upper and lower bounds for the power across all possible randomizations, the maximum and minimum

of the generalized denominator D∗(v) = f∗T (f∗ + g∗T ) (`∗ − z∗) − (f∗ + g∗T ) (y∗)2 − f∗
{
Tw∗ − (`∗)2

}
is sought.

This results in the following MIQP problem:

minimize/maximize: RTM∗R + (D∗)TR

subject to:

I∑
i=1

R(s−1)I+i = 1 ∀s = 1, · · · , I

I∑
s=1

R(s−1)I+i = 1 ∀i = 1, · · · , I

R(s−1)I+i ∈ {0, 1}

where



18 Biometrics, Web Appendix

• R is a vector of length I2 decision variables

• M∗ is an I2 × I2 matrix with elements

M∗(s−1)I+i,(t−1)I+j = −(f∗ + g∗T )

(
T∑
k=1

Xsk

)(
T∑
k=1

Xtk

)
1

(σ2
i + τ2T + δ2)(σ2

j + τ2T + δ2)

− f∗
{
T

T∑
k=1

XskXtk −

(
T∑
k=1

Xsk

)(
T∑
k=1

Xtk

)}
1

(σ2
i + δ2)(σ2

j + δ2)

for s, t, i, j = 1, · · · , I

• D∗ is a vector of length I2 with elements

D∗(t−1)I+j = f∗T (f∗ + g∗T )


(

T∑
k=1

Xtk

)
1

σ2
j + δ2

−

(
T∑
k=1

Xtk

)2

τ2

(σ2
j + δ2)(σ2

j + τ2T + δ2)


for t, j = 1, · · · I

We calculate E (`∗ − z∗), E
{

(y∗)2
}

and E
{
Tw∗ − (`∗)2

}
as:

E(`∗ − z∗) =
T − b+ t

2

{
f∗ +

g∗

3
(T + 2b− t)

}
Defining s∗1 =

I∑
i=1

1
(σ2

i +Tτ
2+δ2)2

.

E
{

(y∗)2
}

=
T − b+ t

12(I − 1)

[
(T − b− t)Is∗1 + {3I(T − b+ t)− 2(2T − 2b+ t)}(f∗)2

]
E
{
Tw∗ − (`∗)2

}
= (T − b+ t)

[
Y1

{
I∑
i=1

1

(σ2
i + δ2)2

}
+ Y2

{
2
∑
i<i′

1

(σ2
i + δ2)(σ2

i′ + δ2)

}]
where

Y1 =
T + 2b− t

6
and Y2 =

IT + 2qT − 2T + 3Ib− 4b− 3tI + 2t

12(I − 1)

These expectations simplify when b = t = 1,

E(`∗ − z∗) =
T

2

{
f∗ +

g∗

3
(T + 1)

}
E
{

(y∗)2
}

=
T

12(I − 1)

[
(T − 2)Is∗1 + {3IT − 2(2T − 1)}(f∗)2

]
E
{
Tw∗ − (`∗)2

}
= T

[
Y1

{
I∑
i=1

1

(σ2
i + δ2)2

}
+ Y2

{
2
∑
i<i′

1

(σ2
i + δ2)(σ2

i′ + δ2)

}]
where

Y1 =
T + 1

6
and Y2 =

IT + 2qT − 2T − 2

12(I − 1)

Web Appendix L

Simulation Study Design

We conducted three main simulations studies to evaluate the performance of the proposed
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methods. Firstly, the method to determine the power for each randomization order was

evaluated. Secondly, the expected power across all randomization orders was evaluated in

detail under four study design scenarios with varying degrees of cluster size variation. Thirdly,

a method that simply plugs-in the harmonic mean cluster size was assessed.

To firstly evaluate the impact of the order of randomization for particular known cluster

sizes, we considered a design with 6 clusters (I = 6) with one cluster randomized to the

intervention at each step (q = 1), and a continuous outcome. The cluster sizes were 4, 11,

18, 21, 22 and 104, resulting in an arithmetic mean cluster size of 30 and a CV of κ = 1.23.

The effect size (θA) was set so that the power calculated using a fixed cluster size of 30 by

equation 8 of Hussey and Hughes (2007) was 80%. Then, the power was calculated for each of

the 6! = 720 possible randomization sequences of the varying cluster sizes using the variance

formula in equation 1. The method described in Section 2.3 was used to determine upper and

lower bounds for the power across all randomization sequences. Furthermore, for this design,

the expected power accounting for cluster size variation when all cluster sizes are known was

calculated using the variance formula in equation 2. Additionally, the approximate expected

power when only a cluster size arithmetic mean and CV (κ) is known prior to randomization

using equation 3 was calculated. To simulate the empirical power, for each randomization

sequence the data were generated using the model given in Section 2.1. For convenience,

both µ and βj for j = 1, .., T − 1 were set at zero. The total variance σ2
t = σ2

e + τ 2 was

fixed at 1, so that the between-cluster and within-cluster variances could then be written as

τ 2 = ρ and σ2
e = 1 − ρ, respectively. The intra-cluster correlation, ρ, was set at 0.05. Data

were analyzed by the same linear mixed effect model using the “lmer” function from the

“lme4” R package. A two-tailed Wald test for the treatment effect was generated, and the

empirical power calculated by the proportion of simulated results from 3,500 replications for

each randomization sequence with a p-value < 0.05. This evaluation method was repeated



20 Biometrics, Web Appendix

for two more scenarios; firstly using the same design and model in Section 2.1, but with

cluster sizes of 4, 11, 18, 21, 62 and 64, resulting in an arithmetic mean cluster size of 30

and a CV of κ = 0.87, and secondly using the same design with cluster sizes of 4, 11, 18, 21,

22 and 104, but using the generalized model in Section 2.7 with σ2
e = 0.95, τ 2 = 0.04 and

δ2 = 0.01.

To secondly conduct a detailed evaluation of the variance formulas in equation 2 and 3 to

estimate the expected power under cluster size variation, we considered four different design

scenarios:

(1) A continuous outcome with 4 clusters (I = 4) with 1 cluster randomized at each step

(q = 1).

(2) A continuous outcome with 6 clusters (I = 6) with 1 cluster randomized at each step

(q = 1).

(3) A continuous outcome with 12 clusters (I = 12) with 3 clusters randomized at each step

(q = 3), with b = 2 baseline time-points and t = 3 time-points between each step.

(4) A count outcome with 6 clusters (I = 6) with 1 cluster randomized at each step (q = 1).

For each simulation scenario, the total number of participants contributing data (NSW ) at

each time-point was kept fixed, so that the arithmetic mean cluster size was 30. For example,

for the design with 4 clusters, there were NSW = 120 participants contributing data at each

time-point. Under cluster size variation, the number of participants contributing data from

each cluster, i.e. ni for i = 1, ..., I at every time-point was determined by the following

procedure. Firstly, the total number of participants contributing data at each time-point

(NSW ) was randomly split into two groups, with one group containing on average 50%, 60%,

70%, 80% or 90% of the participants, then either:

(1) within each group, participants were randomly assigned to one of I/2 clusters with equal

chance,
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(2) all the participants from the smaller group were assigned to one cluster, and participants

in the larger group were randomly assigned to the remaining I − 1 clusters with equal

chance, or

(3) all the participants from the larger group were assigned to one cluster, and participants

in the smaller group were randomly assigned to the remaining I − 1 clusters with equal

chance.

This procedure created cluster size imbalance so that the CV of cluster size variation (κ)

ranged from 0 to a maximum of 3.5. The effect size (θA) was set so that the power calculated

based on a fixed cluster size of 30 would be 80%. Then the expected power accounting for

cluster size variation assuming all cluster sizes are known and with only knowledge of the

cluster size arithmetic mean and CV (κ) were calculated using the variance formulas in

equation 2 and 3, respectively. To simulate the empirical power, the variable size clusters

were placed in a random order with an equal number of clusters (denoted by q) randomized

to initiate the intervention at each step, and then data were simulated using the model given

in Section 2.1. All 3,500 simulation replications used the same random order. Both µ and βj

for j = 1, .., T − 1 were set at zero. For continuous outcomes, the total variance σ2
t = σ2

e + τ 2

was fixed at 1 and ρ at 0.05. Data were analyzed by the same linear mixed effect model. For

simulations involving count outcomes, σ2 = (1 + eθA)
/

2 and τ 2 = (ρσ2)
/

(1 − ρ). αi were

drawn from independent N(0, τ 2) and exp(αi + XijθA) calculated. Count data were then

derived from a Poisson distribution with rate exp(αi + XijθA). Data were analyzed using

the generalized linear mixed effects model with log link, implemented in the R function

“glmer”. A two-tailed Wald test for the treatment effect was generated, and the empirical

power calculated by the proportion of simulated results from 3,500 replications with p-value

< 0.05. A Monte Carlo estimate of the error around the empirical power was computed for

two cases (first: I=4, q=1, t=1, b=1, n=30, CV=0.73; second: I=12, q=3, t=3, b=2, n=30,
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CV=0.69) for continuous outcomes. Using 3,500 simulations resulted in a Monte Carlo error

of 6 0.75%. Simulations were repeated using the generalized model in Section 2.7 for a design

with a continuous outcome and 6 clusters (I = 6) with one randomized at each step (q = 1).

To lastly address the question of whether the power calculation can simply be based on

the harmonic mean with no further adjustment we produced some representative examples

of cluster sizes that held the harmonic mean fixed at 30, but varied the arithmetic mean

and CV. We used the design with a continuous outcome, 6 clusters (I = 6) with one cluster

randomized at each step (q = 1), and an effect size (θA) so that plugging-in the harmonic

mean of 30 gave 80% power.

Additional Simulation Study Results

Supplementary figure S1 evaluated clusters of size 4, 11, 18, 21, 62 and 64, under the model

in Section 2.1.

[Figure 1 about here.]

Supplementary figures S2 and S3 confirm the accuracy of the formulas for the generalization

specified in Section 2.7. Supplementary figure S2 is for clusters of size 4, 11, 18, 21, 22 and

104.

[Figure 2 about here.]

[Figure 3 about here.]

Performance of the Algorithm to Optimize the Treatment Effect Variance Over

All Possible Randomization Sequences

For a design with 8 (I = 8) or 10 (I = 10) clusters where one cluster is randomized at each

step (q = 1), there would be 40, 320 or 3, 628, 800 possible orders of randomization, respec-

tively. On a personal computer for a representative example with an arithmetic mean cluster

sizes of 30 and a cluster size CV of around 0.5, to find the order that would give the maximum
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power took 0.34 and 1.65 seconds for I = 8 and I = 10, respectively. To find the order for that

would give the minimum power took 2.60 and 283.50 seconds for I = 8 and I = 10, respec-

tively. For the scenario with 12 clusters with 3 randomized at each step (I = 12, q = 3), there

would be 19, 958, 400 possible randomizations. For this example, we found that providing

Gurobi with extra constraints, which are given in Web Appendix C, improved performance.

These constraints inform the software package that the order of randomization within a step

is irrelevant. For example, if three clusters of sizes 18, 20 and 25 are randomized to initiate

the intervention at the first step, the constraint informs the software that it does not matter

if their order is ({18, 20, 25}, {18, 25, 20}, {20, 18, 25}, {20, 25, 18}, {25, 18, 20}, {25, 20, 18}),

since all combinations will result in the same power. With these constraints it took 0.01

seconds to identify the order that resulted in maximum power and 44.91 seconds to identify

the order that resulted in minimum power. Even without the addition of these constraints

Gurobi was able to identify the order that resulted in maximum power in 0.52 seconds, and

find a heuristic solution for the minimum power within 5 seconds (which for this example

was the optimum once the extra constraints were added).
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Figure S1. Power for all possible randomizations with upper and lower bounds indicated
for a SW-CRT with 6 clusters of mean size (n) 30 and CV (κ) of 0.87. i) fixed cluster size:
uses the variance formula in equation 8 of Hussey and Hughes (2007), ii) varying cluster
sizes known: uses the variance formula in equation 2, iii) varying cluster size (CV): uses
the variance formula in equation 3, iv) randomization order: uses the variance formula in
equation 1, v) bounds: uses the method described in Section 2.3, vi) empirical: the empirically
simulated power from 3,500 simulations.
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Figure S2. Power for all possible randomizations with upper and lower bound indicated for
a SW-CRT with 6 clusters of mean size (n) 30, CV (κ) of 1.23 and σ2

e = 0.95, τ 2 = 0.04, δ2 =
0.01. i) fixed cluster size: uses the variance formula in Li et al. (2018), ii) varying cluster
sizes known, iii) randomization order and iv) bounds: use the formulas in Web Appendix K,
v) empirical: the empirically simulated power from 3,500 simulations.
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Figure S3. Estimated power as the cluster size coefficient of variation (κ) increases for a
SW-CRT with 6 clusters of mean size (n) 30 and σ2

e = 0.95, τ 2 = 0.04, δ2 = 0.01. i) fixed
cluster size: uses the variance formula in Li et al. (2018), ii) varying cluster sizes known: uses
the variance formula in Web Appendix K, iii) empirical: the empirically simulated power
from 3,500 simulations.


