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SI 1: Hertzian-DMT model. We use a second (non-hysteretic) contact force model called the Hertzian-DMT model, where the9

viscoelastic contact forces are computed using the Hertzian spring-dashpot model and the adhesive force, using a constant10

adhesion Nc. Fig. S1 shows the variation of the normal elastic force Nel
ij (green), adhesive force Nad

ij (blue), and the total of the11

two N tot
ij (red) normalized by Nc with the normalized normal overlap (δ/δeq). Using this model, the dynamics of two identical12

(meff = m/2) contacting particles in the absence of any external forces is given by the following equation of a non-linear13

damped oscillator:14

m

2
d2δ

dt2
= −
√
δ
(
knδ + m

2 γn
dδ

dt

)
+Nc. [1]15

In the static limit, the left-hand side and the second term on the right-hand side in Eq. 1 are zero, and the balance between the16

adhesive force and the elastic force (Eq. 1) then yields an equilibrium overlap δeq = (Nc/kn)2/3. The quality factor of the17

oscillator is estimated after linearizing the equation around δeq as Q =
√

3k2/3
n /(γnm

1/2N
1/6
c ).18

SI 2: Hysteretic Hookean-DMT model. This model, where the particles experience the adhesive force only while detaching,19

is quite similar to a capillary bridge model but without any finite distance for the detachment. The model is sketched in20

Fig. S2. The initial loading of a contact continues along the path ABCDE on the green loading branch of slope kn before21

reaching a maximum overlap δmax. δmax is saved as a history variable before unloading happens along the path EF on the22

blue unloading/reloading branch of slope k′n. Reloading at this moment first occurs along the same branch following FE,23

until the previous maximum overlap (or load) is reached, and reloading then continues along the path EH on the loading24

branch; the value of δmax is updated when the next unloading occurs. Unloading otherwise continues along the path EFG25

before reaching a minimum overlap δmin = δmax −Nc/(k′n − kn). Unloading further leads to the red adhesive branch, where26

the grains experience the adhesion along with the repulsion. Unloading continues along the path GI. The value of δmin is27

also saved before reloading happens again on IJD path on the unloading/reloading branch (there are an infinite number of28

possible unloading/reloading branches based on the initial unloading point). Reloading then continues on the loading branch29

for δ > δmax, with δmax = δmin +Nc/(k′n − kn). Unloading along the adhesive branch continues again when δ < δmin. The30

contact is lost finally, and all the history is erased subsequently. The hysteretic force on the three branches is given as31

Nhys
ij =


−knδ, −k′n(δ − δeq) ≥ −knδ

−k′n(δ − δeq), −knδ > −k′n(δ − δeq) > −knδ +Nc

−knδ +Nc, −knδ +Nc ≥ −k′n(δ − δeq),
[2]32

where δeq = (1− kn/k
′
n)δmax on the way of unloading and δeq = (1− kn/k

′
n)δmin +Nc/k

′
n on the way of reloading. The model33

is significantly different from the two non-hysteretic models. Firstly, the minimum pull-off force is load-dependent and is34

less than Nc if unloading happens below a maximum overlap δmax = Nc/(k′n − kn) corresponding to point C. Secondly, the35

dissipation can not be quantified through Q only—the ratio k′n/kn also plays a role. Therefore, one needs to be cautious about36

the interpretation of the effects of inter-particle adhesion and material parameters on the flow profiles in an inhomogeneous37

system like an inclined plane.38

SI 3: Coarse-graining. The flow profiles are measured at steady-state in bins of cross-section 20 × 20 and height 1 and are39

averaged over five sets with each over a time window of 50. The stress tensor in a bin of volume V is computed from40

σ = 1
V

nc∑
c=1

Fijxij + 1
V

np∑
p=1

mp(cp − v)(cp − v), [3]41

where nc and np are the total numbers of inter-particle contacts and particles in the bin, and v is the mean velocity of the42

particles in the bin.43

SI 4: Finding a and b for estimating the ‘effective’ adhesion for the Hookean-JKR model. Fig. S3 shows a contour plot, which44

depicts the variation of the combined R2 (=R2
vs +R2

hc
) with a and b, obtained while fitting the power laws to the collapsed45

data in vs vs. Neff
c and hc vs. Neff

c plots. The maximum in R2 is noted for a = 1/2 and b = 1/4.46

SI 5: Collapses of the velocity, volume fraction, and r.m.s. velocity profiles for the Hookean-JKR model. Fig. S4 shows collapses47

of the velocity (vx(z)), volume fraction (φ(z)), and r.m.s. velocity (u(z)) profiles for nearly the same value of Neff
c in two48

different cases.49

SI 6: A scaling for the dynamic ‘effective’ adhesion for the Hertzian-DMT model. We follow the same approach for determining50

the dynamic ‘effective’ adhesion for the Hertzian-DMT model, as done for the Hookean-JKR model. We obtain a = 1/3 and51

b = 3/4 in this case, which yield52

Neff
c = Nc

[(
Nc

knd3/2

)1/3 1
Q3/4

]
. [4]53

We finally obtain two well-defined master curves vs(Neff
c ) and hc(Neff

c ) (Fig. S5) for all the simulations done for various (Nc,54

kn, Q) at 29◦.55

2 of 11 Sandip Mandal, Maxime Nicolas, and Olivier Pouliquen



0 1 2
δ/δeq

−1

0

1

2

N
el ij
,N

a
d

ij
,N

to
t

ij
/N

c

Fig. S1. The non-viscous normal contact forces in the Hertzian-DMT model: elastic Nel
ij (green), adhesive Nad

ij (blue), and the sum of the two Ntot
ij =Nel

ij +Nad
ij (red)

normalized by Nc as a function of the normalized normal overlap (δ/δeq ). See the text in SI 1 for δeq .
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Fig. S2. A sketch of the hysteretic contact model. The arrows show the directions of loading/unloading/reloading. See the text in SI 2.
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Fig. S3. Variation of the combined R2 with a and b. See Eq. 2 in the main text.
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Fig. S4. (A) Velocity (vx(z)), (B) volume fraction (φ(z)), and (C) r.m.s. velocity (u(z)) profiles for a similar value of Neff
c but different Nc, kn, and Q.
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Fig. S5. Evidence of the ‘dynamic’ effective adhesive force for the Hertzian-DMT model. (A) Variation of the free surface velocity (vs/(gd)1/2) and (B) the thickness of the
plug (hc/d) with the dynamic ‘effective’ adhesive force Neff

c at θ = 29◦ for different Nc/(mg) ∈ (25, 100), kn/(mg/d3/2) ∈ (106, 107), and Q ∈ (9.5, 22.0).
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SI 7: Evidence of the sensitivity of the bulk cohesion to the material parameters for the hysteretic Hookean-DMT model. The56

simulations are carried out at a fixed inclination angle θ = 22◦ using the hysteretic Hookean-DMT model. The simulation57

methodology is the same as in the main text, except that the flow is restricted in the xz plane (2D simulations), just for the58

sake of reducing the computational cost. Fig. S6 shows the effect of the inter-particle adhesion Nc and stiffness kn on the steady59

velocity profile. The same behavior of the velocity profile is noticed with increasing Nc and kn as using the non-hysteretic60

models. The effect of the dissipation through the quality factor Q on the velocity profile is not so obvious, as mentioned above,61

hence, is not shown.62

SI 8: The fitting of the rheological data using the empirical function proposed by Berger et al. (Ref. 27). Berger et al. showed63

that the effective friction µ comprises two parts: (i) a purely frictional part, which is a function of the inertial number I and64

(ii) a purely cohesive part, which is a function of both I and the cohesion number C. They proposed an empirical function to65

describe their observations. The function in our case reads as66

µ(Ceff , I) = µ(0, I) + 1.31Ceff

1− β ln
(
1− I/(1 + αCeff )1/2

) , [5]67

where µ(0, I) = µs + (µm − µs)/(1 + I0/I) with µs, µm, and I0 be the fitting parameters, and β and α are also the fitting68

parameters. Fig. S7 shows the µ(I) data (symbols) for different values of Ceff (the data for Ceff > 0.09 have a few points,69

hence, are not considered) along with the fits (solid lines) of Eq. 5, taking µs = 0.37, µm = 0.76, I0 = 0.34, β = 4.0, and70

α = 0.1. Note that µs = 0.36, µm = 0.75, and I0 = 0.37 for the cohesionless case (Ceff = 0) are slightly different. The equation71

captures the variation of µ with I and Ceff well for high I. However, it fails to capture the invariant behavior of µ(I) at low I72

for high Ceff .73

SI 9: Binary collision between cohesive grains. We consider a collision between two cohesive grains with a relative impact74

velocity vinit. The time evolution of the interpenetration δ for the Hookean-JKR model is given by the following dimensionless75

equation:76

d2δ̃

dt̃2
= −

(
2δ̃ + 1

Q

dδ̃

dt̃

)
+ 2
√
δ̃, [6]77

where δ̃ = δ/δeq and t̃ = t
√
kn/m. The above equation for the Hertzian-DMT model reads as78

d2δ̃

dt̃2
= −δ̃1/2

(
2δ̃ +

√
3
Q

dδ̃

dt̃

)
+ 2, [7]79

where δ̃ = δ/δeq and t̃ = t
√
kn/m (Nc/kn)1/6. In both cases, one can show from the above equations that the two grains will80

be glued together (δ̃ > 0) after impact if the relative impact velocity ṽinit is less than a critical value ṽc, i.e., ṽinit < ṽc. In the81

above two equations, Q is the only parameter, hence, ṽc is a function of Q only. In the dimensional form, vc = δeq

√
kn/mF1(Q)82

for the Hookean-JKR model and vc = δeq

√
kn/m (Nc/kn)1/6 F2(Q) for the Hertzian-DMT model. The critical relative kinetic83

energy is Ec = 1/2mv2
c . Ec for both the models can be given as84

Ec = NcδeqG(Q), [8]85

where G(Q) is a decreasing function of the quality factor, which depends on the chosen model.86

SI 10: Planar shear flow simulations. We study the plane shear flow of cohesive grains using a normal stress imposed shear cell87

in the absence of gravity. The geometry comprises two rough walls composed of randomly glued grains. The top wall is moved88

with a constant velocity U in the x-direction under an imposed vertical stress σext
zz , while the bottom one is kept static. The89

inter-particle contact forces are computed using the Hookean-JKR model. The top wall movement is governed by the equations90

of motion based on the balance between the cumulative vertical force Fzz, exerted on the wall by the flowing particles and the91

external force F ext
zz = σext

zz A, where A = 20d× 20d is the cross-sectional area of the wall. The shear rate is varied by changing92

U . The results are obtained at steady state (reached when F ext
zz = Fzz) over a strain window of 4 and are made dimensionless93

using d as the length scale, (m/σext
zz d)1/2 as the time scale, and σext

zz d
2 as the force scale. Two different sets of parameters (Nc,94

kn, Q) yielding the same Ceff are considered. The computations of Neff
c , Ceff , I, µ, and φ are the same as described in the95

main text. Fig. S8 shows the variation of µ and φ with I for the two sets; each cluster of points corresponds to a different shear96

rate at a given U . The combined data for the same Ceff from the inclined plane is also included for comparison. The data of97

µ and φ for the two sets collapse well on each other over the considered range of inertial number. Moreover, the data obtained98

in the shear cell match reasonably well (the difference is less than 5%) with that in the inclined plane. These results again99

validate our model.100
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Fig. S6. Effects of particle properties on the flow for the hysteretic Hookean-DMT model. Steady velocity profiles (vx(z)) at θ = 22◦ for various (A) inter-particle adhesion
(Nc) keeping kn/(mg/d) = 2× 105 and Q = 0.94 fixed and (B) particle stiffness (kn) keeping Nc/(mg) = 100 and Q = 0.94 fixed. k′n = 2kn in both cases.
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Fig. S7. Fitting of µ(I, Ceff ) using the empirical function (Eq. 5). The symbols are the data, and the solid lines, the fits.
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Fig. S8. Comparison of the rheological data of plane shear and inclined plane flows. Variation of (A) the effective friction (µ) and (B) the volume fraction (φ) with the inertial
number (I) for the same value of ‘effective’ cohesion number (Ceff = 0.06), resulting from different (Nc, kn, Q).
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