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SI Methods 

To visualize the phylogenetic context of the proposed mechanism by which pigmentation patterns can 

function as visual signals in darkness, we mapped relevant ecological, morphological, and behavioral 

information to a published genus-level phylogeny of the Decabrachia (squids and cuttlefish) (1) (Figure 

S3). Reference (1) conducted phylogenetic inference using a partitioned maximum likelihood analysis of 

publicly available mitochondrial and nuclear marker sequences with 1000 bootstrap replicates under the 

GTR model of evolution with Gamma distribution (Vampyroteuthis as the outgroup). This phylogeny 

includes the largest taxonomic coverage and collection of marker sequences to date, is generally 

congruent with previous work (2-5), and supports major clades including the Ommastrephinae. Lower 

typical daytime depth distributions of genera included in the phylogeny were determined from published 

depth ranges (6, 7), of all species within each genus (if known), and categorized by the predominant 

mode within a genus: mesopelagic (200-1000 m) and deeper, or epipelagic (0-200). If species were 

evenly split between these categories, then the genus was assigned to the mesopelagic and epipelagic 

category. Possession of numerous, small subcutaneous photophores within each genus was determined 

from published morphological information (6, 7), and we compiled the relevant literature to ascertain the 

chromatic component repertoires (8-25). The number of chromatic components displayed by a genus was 

categorized as many (>10) or few (≤10) based on the average component repertoire of all species studied 

within a genus. 
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Figure S1. 
A) Illustrations of the 28 chromatic components performed by Dosidicus gigas (related to Figure 1-3). 
Inverse countershaded, pale ventral shield, and pale ventral stripe (bottom row) are drawn on squid with 
their ventral surface facing up. B) Examples of various postural and locomotor components analyzed in 
this study (related to Figure 2-3). See (Table 1) for component abbreviations. 
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Figure S2. 
A) Positive, negative, and random component associations of D. gigas (n=30) determined by a 
probabilistic co-occurrence model (related to Figure 1-2). Component abbreviations indicate the columns 
and rows representing their pairwise relationships with other components. Point color indicates 
component type, and box color represents co-occurrence category. B) Comparison of the average log-
transformed duration of variable chromatic components (flashing and flickering) between foraging status 
and conspecific abundance categories in D. gigas (n=30 each). Bars represent standard deviation of the 
mean. *Significant difference between means (ANOVA, Tukey HSD) (see Table S2). In this study, 
foraging and not foraging distinguish whether or not a squid attempted to capture prey. C) Principal 
component analyses and vectors of postural and locomotor components with 50% probability ellipses 
encircling conspecific abundance clusters (related to Figure 2). In both, each D. gigas (n=30) is 
represented by a single point colored by foraging status and shaped by conspecific abundance category. 
Red arrows and abbreviations represent the vectors, or relative contribution of different components to 
the behavioral trends among squid. D) Adjacency network heatmaps of chromatic, postural, and 
locomotor components displayed by foraging D. gigas (n=15) (related to Figure 2). Color denotes the 
number of occurrences that squid transitioned from components on the vertical axes to components on 
the horizontal axes, with prolonged single-component display included. See (Table 1) for component 
abbreviations. 
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Figure S3. 
Phylogenetic context of the proposed mechanism by which pigmentation patterns can function as visual 
signals under low-light conditions (related to Figure 3). Genus-level phylogeny of the Decabrachia (squids 
and cuttlefish) from reference (1) overlaid with relevant ecological, morphological, and behavioral 
information. Bootstrap support for each clade is color-coded with points, and four clades are shaded: 
subfamily Ommastrephinae (purple), Illicinae (light blue), and Todarodinae (green), and family Loliginidae 
(blue). Note that all genera in the Ommastrephinae have deep daytime depths and numerous 
subcutaneous photophores. 
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Table S1. 
Behavioral components recorded and analyzed in Dosidicus gigas (n=30), with descriptions and summary 
statistics from principal component analyses (PCAs) (related to Figure1, Figure 2, Figure S1, and Figure 
S2). Eigenvalues and variance terms of principal component one (PC1) and two (PC2) are included in 
parentheses in the component type headings. Postural, chromatic, and locomotor components are 
defined with the reference(s) for the original description indicated in the bottom row. Eigenvector scores 
from PCAs are listed for each component. 
  

Component Description

Postural PC1 (43.3%, 1.95) PC2 (23.5%, 1.06)
Dorsal arm arch Slight rais ing of first arm pair while all arms together and pointed ("Dorsal arm lift," †) 0.42 -0.52

Loose arm tips, keeled Arms bundled posteriorly and loose anteriorly, third arm aboral extensions (keels) laterally spread (�) -0.23 -0.5

Prey handling One or more arms inwardly curled while manipulating prey toward beak (�) -0.28 -0.19

Stiff arm tips, keeled Arms tightly bundled, third arm keels laterally spread (�) 0.74 0.02

Arm strike All arms splayed and suckers extended laterally while attempting to grasp prey ("Strike, arms only," �) * *

Strike glide Stiff arm tips, fins dorsally curled ("Fin curl," †; �) -0.36 -0.31

Tentacle strike Arm pairs I, II, and IV splayed; pair III guides extended tentacles toward prey during capture attempt (�) * *

Trailing tentacles, keeled Arms bundled and slightly loose anteriorly, third arm keels laterally spread, tentacles held extended beyond arm tips (�) -0.13 0.59

Chromatic PC1 (18.3%, 2.95) PC2 (12.4%, 2)
Bilaterally pale and dark Body half pale and half dark, laterally div ided (�) 0.12 -0.12

Countershaded Body darkest on dorsal surface, shading fades dorsoventrally to pale on ventral surface (�) -0.42 -0.08

Dark Entire body surface darkened, opposite of "Pale" ("All dark," †; �) 0.16 -0.17

Dark arm stripes Aboral arm surfaces dark, rest of arms pale (adapted from �) -0.27 -0.14

Dark arms Arms all dark (adapted from �) 0.02 0.08

Dark dorsal patch Dark oviform patch on dorsal mantle surface (⌀) 0.08 0

Dark eye circ le Dark rings encompassing eyes (⌀) 0.15 -0.04

Dark fin edges Dark outer fin margins terminating at posterior mantle (adapted from � and "Fin stripe," †) -0.19 -0.26

Dark fin patch Darkened patch on dorsal fin surface (⌀) ** **

Dark fins Darkened fin dorsal surface (†) 0.02 -0.34

Dark head Head all dark (adapted from �) -0.07 -0.06

Dark keels Darkened dorsal surface of third arm keels (†) -0.04 -0.09

Dark lateral stripes Dark horizontal stripe running anteroposteriorly along mantle midline (⌀) -0.04 -0.08

Dark mantle base Dark border of anterior mantle edge (⌀) -0.42 0.24

Inverse countershaded Body darkest on ventral surface, shading fades to pale on dorsal surface (�) 0.07 0.06

Mottle Irregular, dynamic dark patches covering entire body surface (�) 0.15 -0.09

Pale No chromatophores expanded along entire body surface ("Clear," †; �) 0.23 -0.01

Pale arm tips Arm tips without pigmentation (adapted from �) -0.05 -0.01

Pale eyes Pale rings encompassing eyes (⌀) 0.02 0.08

Pale fin edges Pale outer fin margins terminating at posterior mantle (⌀) -0.08 0.46

Pale fins Fins without pigment (adapted from �) -0.06 0.1

Pale keels Pale dorsal surface of third arm keels (⌀) -0.06 0.22

Pale lateral stripes Pale horizontal stripe running anteroposteriorly along mantle midline (�) -0.36 -0.15

Pale tentacles Tentacles without pigment (⌀) -0.24 -0.2

Pale ventral shield Pale, iridescent ventral posterior mantle (adapted from �) -0.2 -0.3

Pale ventral stripe Pale stripe running anteroposteriorly along ventral mantle surface (adapted from �) 0.08 0.05

Sandy Entire body uniform grainy coloration of mixed pale and dark (�) 0.15 0.28

Shaded eye Dark band between eyes (†) 0.33 -0.38

Locomotor PC1 (52.5%, 1.63) PC2 (19.6%, 0.61)

Back glide Slow tail-first locomotion from siphon jet pulses with fins extended laterally (�) -0.41 0.71

Back jet Fast tail-first locomotion from siphon jetting with fins wrapped around mantle (�) -0.45 -0.69

Back swim Tail-first locomotion from fin-flapping, sometimes with jetting (�) 0.43 -0.12

Forward glide Slow arms-first locomotion from siphon jet pulses with fins extended laterally (�) 0.52 0.1

Forward swim Arms-first locomotion from fin-flapping, sometimes with jetting (�) 0.42 -0.04

Eigenvectors

† Bell (2011); � Trueblood et al. (2015); ⌀ present study; *used to define foraging squid and thus excluded from analysis; **performed by fewer that 4 squid and thus excluded from analysis
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Table S2. 
ANOVA and Tukey HSD results from a comparison of variable chromatic behavior (flashing and flickering) 
duration between factors within ecological categories in Dosidicus gigas (see Figure S2B). Significant 
factors affecting duration, or significant differences between means within a comparison, are shaded in 
bold (n=30). 
  

Ecological 
category

Behavior Level DF MS F-value p-value Comparison Difference Lower 
95% CI

Upper 
95% CI

adjusted p-
value

foraging 
status

1 0.016 0.17 0.68 not foraging-
foraging

0.046 -0.18 0.27 0.68

residuals 28 0.093

foraging 
status

1 1.51 1.38 0.25 not foraging-
foraging

0.445 -0.33 1.23 0.25

residuals 28 1.01

conspecific 
abundance

2 0.13 1.44 0.25 few-many -0.22 -0.55 0.11 0.24

residuals 27 0.088 some-many -0.15 -0.48 0.18 0.5

some-few 0.069 -0.26 0.4 0.86

conspecific 
abundance

2 3.92 4.33 0.023 few-many -1.24 -2.3 -0.19 0.019

residuals 27 0.91 some-many -0.47 -1.53 0.58 0.51

some-few 0.77 -0.29 1.82 0.19

conspcific 
abundance

ANOVA results Tukey HSD results

foraging 
status

flashing

flickering

flashing

flickering
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Table S3. 
Regression statistics from linear mixed effects analyses relating the density of small or large photophores 
to different pigmentation changing regions of Dosidicus gigas (related to Figure 3). Each region was 
compared to the overall whole-body density of each photophore type (which is included in shaded grey 
boxes for reference). Thus there were two regressions comparing measurements of four squid at each 
body region. Regions highlighted in yellow indicate those where photophores were significantly more 
abundant per unit body area than the average whole body density (n=4). 
  

Photophore type Division Region Average (±1SD) photophores cm-1 DF t-value p-value
whole body whole body 4.17 (±0.81)

fins centers 3.75 (±2.1) 39 -0.12 0.91
fins fin edges 9.78 (±4.2) 39 1.59 0.12

mantle base 0 39 -1.18 0.24
mantle dorsal 2.26 (±0.51) 39 -0.54 0.59
mantle lateral stripes 5.07 (±2.1) 39 0.25 0.8
mantle ventral 0 39 -1.18 0.24
mantle ventral shield 0 39 -1.18 0.24
mantle ventral stripe 0 39 -1.18 0.24

arms and head arms 12.54 (±4.36) 39 2.37 0.022
arms and head dorsal head 35.11 (±13.41) 39 8.77 <0.0001
arms and head keels 17.92 (±10.17) 39 3.9 0.0004
arms and head tentacles 9.58 (±2.17) 39 1.53 0.13
arms and head ventral head 13.11 (±4.38) 39 2.53 0.015

whole body whole body 1.44 (±0.3)
fins centers 0 39 -2.4 0.021
fins fin edges 0 39 -2.4 0.021

mantle base 7.90 (±1.31) 39 10.76 <0.0001
mantle dorsal 0 39 -2.4 0.021
mantle lateral stripes 0 39 -2.4 0.021
mantle ventral shield 3.05 (±0.85) 39 2.68 0.011
mantle ventral 3.24 (±1.03) 39 3 0.0047
mantle ventral stripe 4.45 (±2.69) 39 5.013 <0.0001

arms and head arms 0 39 -2.4 0.021
arms and head dorsal head 0 39 -2.4 0.021
arms and head keels 0 39 -2.4 0.021
arms and head tentacles 0 39 -2.4 0.021
arms and head ventral head 0 39 -2.4 0.021

small

large
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Movie S1 (separate file). 

A group of Dosidicus gigas changing pigmentation patterning while feeding on lanternfish (Myctophidae) 
at depth (related to Figure 1, 2). This footage was captured on December 1, 2009 by the Monterey Bay 
Aquarium Research Institute (MBARI) ROV Ventana at 480 m depth in Monterey Canyon, CA (36.70319, 
-122.04322). Footage © MBARI. 
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Dataset S1 (separate file). 

The datasets generated and analyzed in this study. 
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