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III. TRANSCRIPTIONAL REGULATORY NETWORK OF E. COLI

To define the transcriptional regulatory network (TRN) we use the transcription factor-

gene target bi-partite network of Escherichia coli K-12 obtained from the RegulonDB data

source (http://regulondb.ccg.unam.mx). RegulonDB manually curates all transcriptional

regulations from literature searches [11]. We download all transcriptional regulatory inter-

actions catalogued in RegulonDB version 9.0 from http://regulondb.ccg.unam.mx/menu/

download/datasets/files/network_tf_gene.txt, last accessed September 15, 2018.

The database downloaded from RegulonDB is composed of a bipartite transcription factor

- gene target network. In this bi-partite dataset, a directed link between a source transcrip-

tion factor (TF) and a target gene means that the TF binds to the DNA sequence at the

binding site of the target gene to regulate its rate of transcription. In E. coli, each gene

expresses a single TF (this is not the case in eukaryotic genes that contains introns and

splicing of protein-coding RNA can produce many proteins from a single gene). Therefore, a

gene-gene regulatory network can be constructed from the bipartite transcription factor-gene

target network by associating each TF to the gene that expresses the TF. Then, a directed

link in the TRN from gene i ! gene j implies that gene i encodes for a TF that controls

the rate of transcription of gene j. Thus, a directed link encodes the combined processes of

transcription, translation and TF binding to a target gene. We denote genes in bacteria in

italics, e.g., gadX and its protein as GadX. Thus, we say that gene i sends a genetic ’message’

to gene j and the ’messenger’ is the TF. The history of all messages passing in the network

defines the information flow in the network. A TF can either be an activator, repressor or

can have a dual function. For the purpose of calculating isomorphisms between input trees,

the dual interactions are treated as distinct interactions. Thus, these three interactions are

treated as three di↵erent types.

For the purpose of building the TRN it is important to distinguish the gene’s products

between genes encoding for TFs and the rest of the genes encoding for the rest of the proteins

(enzymes, kinases, transport proteins, etc). A TF is a regulatory protein that regulates a

gene by binding, and therefore will always have an out-going link in the network. There

are other regulatory proteins (like kinases, histones, coactivators, etc) that regulate gene

expression but they do not have a DNA-binding domain and they regulate gene expression

without binding. In our TRN, genes that encode for a protein that is not a TF do not have
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out-going links in the network. They only have in-going links and therefore are dangling

ends in the network. In E. coli most of these proteins are enzymes that catalyze biochemical

reactions in the metabolic network. Other proteins are involved in transport and signaling

processes (kinase) in the cell.

TF are also activated by e↵ector molecules (metabolites) that bind non-covalently to an

allosteric site of the TF to alter the conformation of the TF to activate it or deactivated by

controlling the binding/unbinding of the TF to DNA. E↵ectors can also produce covalent

activation of the TF like for instance during phosphorylation mediated by kinases in the two

component TFs.

We treat these e↵ector activities as external parameters, determined by the growth con-

ditions in the surrounding system (the cell in its changing environment) or by the metabolic

network, which is considered external to the TRN. These external perturbations are consid-

ered as the external growth conditions when we analyze the co-expression profiles in Section

I I. In the present study, the metabolic network is considered external to the TRN, so we do

not consider feedback loops from the TRN to the metabolic network and back to the TRN

mediated by e↵ector metabolites. This extended network is treated in a follow up.

In E. coli, genes are also grouped by operons. An operon is a set of contiguous genes

that are transcribed as a single unit from the same mRNA molecule and the same promoter

site upstream of all genes and a terminator downstream [11]. An operon can contain genes

encoding for TF or non-TF proteins, and more than two TFs can be part of the operon.

Since the operons are transcribed by the same RNA molecule, then we group these genes

into a single node in the network. This is certainly the case when the operon has a single

promoter transcribing the full operon. However, there is some ambiguity in the construction

of the network using the definition of operon in RegulonDB when there are promoters in

the middle of the operon and these promoters transcribe more than one TF in the operon,

forming di↵erent transcription units. For instance, the operon in the gad system, gadAXW

which is important in the pH strongly connected component in Fig. 2b. This operon

expressed two TFs, GadX and GadW, and one enzyme GadA. Here, each gene has its own

promoter and terminator and thus are di↵erent nodes in the network. Moreover, each TF

is regulated by di↵erent TFs as well as each TF regulates di↵erent genes. As seen in Fig.

2b, for instance, GadX binds to hns but not GadW. Also, GadW is regulated by ydeO but

ydeO does not regulate gadX. Thus, putting together these two genes in the same operon
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gadAXW would miss all these links. Thus, when two TF with di↵erent promoters are part

of the operon, we consider the TF as di↵erent genes. On the other hand, the non-TF

genes in operons are always put together with other genes in the operon. For instance, the

gadAXW operon from RegulonDB is considered as two nodes: gadW and gadAX. To simplify

notation, when there is an operon that contains one TF and several non-TF proteins, then

for simplicity, we call this operon by the name of the TF. For instance, gadAX is simply

called gadX or the operon rbsDACBKR is called rbsR and therefore the TF rsbR represents

the entire operon rbsDACBKR. Finally, when all the genes in the operon are non-TF, then

we call the operon with all the genes names, as for instance, lsrACDBFG-tam.

In the RegulonDB database there are a total of 4690 genes. Out of these genes, Regulon

DB provides a bipartite network consisting of 1843 genes with interactions from or to other

genes, the remaining genes are not considered in the analysis. There are 192 genes that

encode for TFs. We cluster the genes into 313 operons as explained above. Full names of

operons and genes appear in SI Table VI. After grouping the genes into operons, the network

is reduced to 879 nodes. There are 1835 directed edges with an average in-degree (or out-

degree) of 2.1. In this network we find 91 di↵erent fibers that encompass 416 di↵erent nodes.

We find that 28 nodes are involved in 7 strongly connected components of size larger than

one node, and the rest are single node connected components.

IV. SYMMETRY FIBRATIONS

Below we provide formal definitions of the main concepts using in the paper: (a) input

trees and isomorphisms, (b) from fibrations ! surjective minimal graph fibrations called

here symmetry fibrations, (c) fibers and minimal bases, and (d) minimal balance coloring

algorithm. We start with a review of the literature (not exhaustive).

The literature on fibrations and groupoids crosses the fields of mathematics, computer

science and dynamical systems theory. The notion of fibration was first introduced by

Grothendieck as fibrations between categories in algebraic geometry [12]. The original pa-

per of Grothendieck has been published as a part of the Séminaire N. Bourbaki in 1958

and can be found at http://www.numdam.org/article/SB_1958-1960__5__299_0.pdf.

A mathematical account of Grothendieck fibrations in the context of category theory ap-

pears in https://ncatlab.org/nlab/show/Grothendieck+fibration. For a review of
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FIG. 5: Group symmetries and fibrations with their input tree. a, Example of a network

with a symmetry group. The automorphism shown maps the network into another network leaving

invariant the connectivity of every nodes in the network [4, 14, 17, 18]. b, A network without

automorphisms but with a fibration. The addition of a single out-link from 3 ! 7 breaks the whole

group symmetry. However, since fibrations are defined according only to the input tree, then the

network still have a symmetry, a fibration arising from the fact that the input trees of nodes 2 and

3 are isomorphic, as well as between the input trees of nodes 4 and 5 as shown in (c). There are

no more isomorphisms as shown by the rest of the input trees. Therefore, nodes 2 and 3 form a

fiber. Nodes 4 and 5 also form another fiber, yet independently of the other fiber. The fibration is

a morphism that maps the network into a base which is formed by collapsing the isomorphic nodes

into one, i.e., collapsing node 2 and 3 together, and node 4 and 5 together. The resulting base is

also called a quotient graph.

the history of fibrations from Grothendieck to modern studies, see the blog of Vigna at

http://vigna.di.unimi.it/fibrations/. The formulation of Grothendieck is highly ab-

stract and di↵ers from our present work which refers to the notion of surjective mini-

mal graph fibration which is a fibration between graphs. The work of Boldi & Vigna
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[13] and DeVille & Lerman [15] on graph fibrations are the closest to our formulation,

see http://vigna.di.unimi.it/ftp/papers/FibrationsOfGraphs.pdf. Graph fibra-

tions have been applied in computer science to understand PageRank [35], and the state

of synchrony of processors in computing distributed systems [36, 37], where fibrations are

the key concept in the computation of identical states in distributed system. The relation

between surjective minimal graph fibrations and synchronous subspaces is elaborated in

DeVille & Lerman [15] and Nijholt, Rink & Sanders [16]. It should be noted that all these

works on fibrations pertain to a highly abstract mathematical level which, in turn, provides

the concept of fibration with a quite broad applicability. For a more accessible reading

on fibrations within the particular context application to biological networks, the reader is

recommended to follow our paper and supplementary sections.

In parallel, the work of Golubitsky and Stewart [14, 20] and others in dynamical sys-

tems theory consider the equivalent formalism of symmetry groupoids, equitable partition

of balanced colored nodes and its relation with synchronization [21–23]. A review of the

groupoid formalism and its application to synchronization in dynamical systems appears

in [14]. DeVille and Lerman [15] also discuss the relation between graph fibrations and the

groupoid formalism.

Synchronization arises also as a consequence of permutation symmetries in the network,

called automorphisms [4], which form symmetry groups and are di↵erent from symmetry

fibrations and symmetry groupoids. There is a large literature in the dynamical system

community dealing with cluster synchronization from automorphisms, since synchronization

is an ubiquitous phenomenon across all sciences [21–23]. Reviews can be found in the work of

Golubitsky and Stewart [14, 20] to recent work in [17–19] and references therein. Symmetry

groups are the cornerstone of physical phenomena appearing in all physical systems [5].

Below, to elaborate on the definition of symmetry fibrations, we first compare fibrations

to automorphisms which form symmetry groups [4, 14, 17–19] using the example networks of

Figs. 5a and 5b. An automorphism is a transformation that preserves the full connectivity of

the network. That is, an automorphism preserves not only the inputs but also the outputs

of each node in the network, and therefore, it presents more stringent conditions on the

connectivity than symmetry fibrations which preserve only the input trees. For example,
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the network of Fig. 5a is invariant under the automorphism defined by the permutation:

� =

0

BBB@

1 2 3 4 5 6

# # # # # #

1 3 2 5 4 6

1

CCCA
, (6)

because the nodes are connected exactly to the same nodes before and after the application

of the permutation �, which is a global mirror symmetry.

Next, consider the slightly modified network depicted in Fig. 5b left, which di↵ers from

the network in Fig. 5a by one extra out-going link from node 3 to 7. In this network, the

permutation of nodes 2 $ 3 and 4 $ 5, Eq. (6), is not an automorphism anymore, because

it does not preserve the in and out connectivities of all nodes, e.g., node 3 is connected with

7 but loses this connection after the permutation (Fig. 5b right). It is interesting to see how

fragile group symmetries are: if we connect just one extra node to the network as shown

in Fig. 5b, the symmetry (i.e. the network automorphism group) is broken. This occurs

because automorphisms require very strict arrangements of nodes and links to preserve,

rigidly, the global structure of the network. Fibration symmetries, with their emphasis in

the preservation of the input trees only, is less restrictive. This might explain why fibration

symmetries emerged in living systems as opposed to the more restrictive automorphisms

which describe all aspects of matter, from elementary particles to atoms, molecules and

phases of matter.

This example raises the following question: are there extra symmetries in the network

shown in Fig. 5b beyond its automorphisms? The answer to this question is, indeed, yes:

there are extra symmetries in the network of Fig. 5b, the fibration symmetries [12, 13],

which do not form a group [4] but groupoids [14]. A groupoid is a set of transformations

satisfying the axioms of invertibility, identity and associativity but not the composition law

(closure) [14], while in a group, transformations satisfy the four axioms. For this reason,

groupoids are fundamentally di↵erent algebraic structures compared with traditional group

symmetries.

A. Input tree

Roughly speaking, symmetry fibrations take into account only the input trees of the

nodes, but not the output-trees (this is not true though when the input and output trees

36



are connected). Thus, node 3 in Fig. 5b is connected to node 7 via an out-going link, and

this link destroys the symmetry group, but node 3 is still symmetric with 2 via a symmetry

fibration, since the input trees of nodes 2 and 3 are isomorphic, even though node 3 is

connected with 7. This is because the connection 3 ! 7 is an out-going link of node 3 and,

therefore, is not part of its input tree. Simply put, symmetry fibrations preserve input trees

only, while automorphisms preserve both input and output-trees, since they preserve the

full connectivity of the network, and thus, they represent more stringent symmetries than

fibrations. We formalize this idea next after introducing some definitions.

The basic ingredient to define a new symmetry beyond automorphisms is the input tree,

which contains the full information received by a given node through the totality of all the

possible paths ending in that node and starting from every other node in the network. Thus,

for every node i in the network G there is a corresponding input tree, called Ti, which is

defined as a tree with a selected node ri, called the root, and such that every other node is

a path Pj!i of G starting from j and ending in i [16]. A link from node Pj!i to node Pk!i

exists if Pj!i = ej!kPk!i =, where ej!k is an edge of G.

The concept of input tree has appeared in the literature as the universal total space in

traditional categorical or topological terminology [12], the universal total graph from [13], the

view in the theory of distributed systems, or the unfolding of a nondeterministic automaton

in concurrency theory [13].

For example, let us construct the input tree T2 of node 2 in the network on the left of

Fig. 5b. The root is the node r2 at the uppermost level of the tree. Every other node of the

input tree of node 2 is a path Pj!2 ending in 2. There are two paths of length 1: P (1)
3!2 and

P (1)
4!2; three paths of length 2: P (2)

2!2, P
(2)
5!2, and P (2)

6!2; and so on. Since P (2)
2!2 = e2!3P (1)

3!2,

we put a link in the input tree from P (2)
2!2 to P (1)

3!2 because P (2)
2!2 = e2!3P (1)

3!2. We then

add all other links in the input tree using the same criterion. The resulting input tree T2 is

shown in Fig. 5c, together with the input trees of all other nodes in the network in Fig. 5b.

To simplify, we label each node of Ti using the starting point of the corresponding path

Pj!i. For example, in T2 nodes P (1)
3!2 and P (1)

4!2 are labeled 3 and 4 respectively, and the

length of the path is equal to the depth of the node in the input tree.

Thus, in practice, we arrive at the following way to construct the input tree: we start

with the node at the root, lets say node 2. We label every node Pj!2 in the input tree by

37



node j where the path starts. The first layer of the input tree consists of all the nodes that

are at a distance one from the root. In this case, nodes 3 and 4. Thus we add two links to

2 from 3 and 4 in the input tree.

The second layer of the input tree is obtained applying the same procedure to each node

in the first layer, 3 and 4. For instance, node 3 receives a link from 2 and 5. Therefore

the second layer of the input tree contains nodes 2 and 5 connected to node 3. We repeat

the procedure with the other node in layer 2: node 4. Node 4 receives a link only from

node 6, and node 6 from no one. So, we add a link from 6 to 4 and this path does not

propagate further. The third layer of the input tree is obtained iteratively applying the

same procedure, and so on.

We note that the input trees of nodes 1, 2, 3 and 7 are infinite since the network contains

a cycle (or loop) between nodes 2 � 3. For instance, T1 is infinite because there are paths

crossing the loop infinite times. On the other hand, the input trees of nodes 4, 5 and 6 are

finite since they do not cross the loop.

B. Isomorphic input trees

The input tree Ti at node i can be interpreted as the collection of all possible ‘histories’

starting at some node and ending in node i. As shown in Section IC, if two input trees

Ti and Tj are isomorphic, then the corresponding nodes i and j in network G have the

same dynamical state [15, 16]. This equivalence is understood in terms of a local in-

isomorphism that maps nodes to nodes and links to links, so it formalizes the fact that the

dynamical interactions represented by a directed link from gene to gene could be in principle

di↵erent across genes, as long as the links are the same (or similar, in case that the produced

synchronization is approximate) inside the fiber.

An isomorphism between Ti and Tj is defined as a bijective map ⌧ : Ti ! Tj, which maps

one-to-one the nodes and edges of Ti to nodes and edges of Tj.

A minimal condition for the existence of an isomorphism between the input trees is that

the two input trees have the same number of nodes (we could also add a condition of the

same degree sequence). Thus, it is clear that there could be no isomorphism between the

input trees of nodes 2 and 4, since the former contains an infinite number of nodes and the

later just two. Thus, a minimal condition for an isomorphism to exist is that it should be a
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mapping between two input trees with the same number of nodes, since the mapping needs to

be bijective, i.e., with an inverse. By inspection it is then clear that there is an isomorphism

between the input trees of nodes 4 and 5. This isomorphism is the map ⌧4!5 : T4 ! T5, and

it is written as a transformation following the notation:

⌧4!5 =

0

BBB@

4 : 6

# #

5 : 6

1

CCCA
, (isomorphism between input trees of nodes 4 and 5). (7)

which maps the root of T4 to the root of T5 as ⌧4!5(4) = 5, and node 6 2 T4 to node 6 2 T5

as ⌧4!5(6) = 6. The notation starts with the root of the tree and then we write nodes in

each level from top to bottom starting from left to right in each level. In this particular

example the links are of the same type, so there is no need to specify the mapping between

links in the isomorphism, but in general the local equivalence require that nodes are map to

nodes and also links are mapped to the same type of link by the isomorphism.

The map in Eq. (7) is one of the simplest isomorphism since the input tree contains only

one level. In this particular case, to see that nodes T4 and T5 are isomorphic, it is thus

enough to see that both nodes 4 and 5 connect to one and the same node, which is node

6 in this case. That is, both input trees of nodes 4 and 5 are isomorphic because they are

made up of just two nodes and one edge, and this isomorphism implies that 4 and 5 receive

the same information. This is the simplest form of an isomorphism between input trees. In

this case, we say that node 4 and 5 have the same input-set, which is an input tree of only

one level, that is the set of incoming links. The input-set is used in the groupoid formalism

in Ref. [14].

Next, we consider the input trees of nodes 2 and 3. By visual inspection, both input

trees have the same ‘shape’. However, these trees are infinite in the number of levels. How

do we decide if two input trees are isomorphic when they have an infinite number of levels?

Remarkably, to determine if two input trees are isomorphic, it su�ces to check that they

are isomorphic up to the N � 1 level, thanks to a theorem by Norris [26], where N is the

total number of nodes in the network G. This is an important result that allows us to avoid

to check an infinite number of equivalences. Since G has |NG| = 7, we use six levels in the

input trees to determine that there is an isomorphism between T2 and T3 which corresponds
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to the following map:

⌧2!3 =

0

BBB@

2 : 3 4 2 5 6 3 4 6 . . .

# # # # # # # # # #

3 : 2 5 3 4 6 2 5 6 . . .

1

CCCA
, (isomorphism between input trees of 2 and 3).

(8)

There are no other isomorphism between the other input trees. Notice that T7 is not iso-

morphic to T3 and T2 by just one link to the root.

The existence of an isomorphism ⌧ from the input tree of node i to the input tree of node

j implies the synchronization of xi and xj [15]. In the groupoid formalism of Golubitsky

and Stewart, it is said that two nodes are synchronized if their input-set are synchronized,

too [14]. Analogous work in dynamical systems shows that automorphisms in networks lead

to synchronized nodes in orbits, see [17–20] and references therein. The orbit of a given

node is obtained by applying all automorphisms of a network to the node and the nodes

in the orbit are synchronous. The synchronized orbits obtained from automorphisms are

analogous to the synchronized fibers obtained from symmetry fibrations. In general, every

orbit is also a fiber, but the opposite is not true, since a fiber is not necessarily an orbit.

In our analysis of the E. coli network, we find some automorphisms. Some of the star

fibers with n = 0 are also orbits of the networks since they are invariant under permutation

symmetries of the symmetric group of order n, Sn. But this is only when the genes in

the star have no out-going links. As shown in the example of Fig. 5, an out-going link in

any of the star genes, will destroy the automorphism, but not the fiber. For this reason,

automorphisms are somehow more prevalent in undirected networks. For instance, we have

found that automorphisms describe the symmetries of the gap junction connectome of C.

elegans, which is composed all of undirected links [34]. In the case of directed biological

networks treated here, while automorphisms could be of use to discover some synchronized

nodes, the majority of synchronization is due to symmetry fibrations, which are not described

by automorphisms.
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C. From fibrations to symmetry fibrations via isomorphic input trees and minimal

bases

A fibration is any morphism from a network G = (NG, EG) to a base G = (NG, EG):

 : G ! B [12]. If a network G = (NG, EG) has at least one pair of isomorphic input trees,

then there exists a network B = (NB, EB), called the base of G, such that G can be ‘fibered’

over B by the graph fibration. The base B is defined as follows:

• a node I 2 NB is a representative of the set of nodes {i 2 NG} whose input trees are

isomorphic;

• an edge eI!J where I, J 2 EB is defined as eI!J =
P

i2I ei!j, where ei!j 2 EG.

Having defined the base network B, we say that G is fibered over B if there exists a surjective

morphism  : G ! B, called surjective graph fibration [13], that maps nodes and edges of

G to nodes and edges of B as:  (i) = I for all i 2 NG, and  (ei!j) = eI!J . A surjective

morphism is a map between two sets (the domain and codomain) where each element of the

codomain (in this case B) is mapped to, at least, by one element of the domain (in this case

G). The set of nodes i 2 NG that are mapped to the same node I 2 NB, and denoted by

 
�1(I), is called the fiber of G over node I. We notice that all input trees of nodes which

belong to the same fiber are pairwise isomorphic.

In general a surjective graph fibration  can map nodes with isomorphic input trees to

di↵erent bases, thus, the number of fibers is not minimal.

A surjective graph fibration that maps all genes with isomorphic input trees to a single

common node in B is called a surjective minimal graph fibration in the sense of [13]. Such a

minimal fibration will generate then the minimal bases of the network and will produce the

largest collapse of nodes in fibers. In this work we only deal with surjective minimal graph

fibrations and we call them symmetry fibrations for short.

In practice, a symmetry fibration maps G to the minimal base B (analogous to the

quotient), that consists of the following steps: (i) consider all the nodes in a fiber (which

have isomorphic input trees) and choose one as the representative I, (ii) collapse the nodes

in the fiber into one single node in B and call it by the name of the representative node I,

(iii) for every link of a node j in G directed to the node I in G, add a link in B from j to

I. If the node j belongs to the fiber, then the corresponding link in B is an autoregulation
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loop in B, (iv) repeat for every fiber in G. When fibers belong to disjoint components of

the network, then they are considered as distinct fibers.

V. ALGORITHM TO FIND FIBERS WITH MINIMAL BALANCE COLORING

The algorithm to partition the network into fibers is based on the ’minimal balanced

coloring’ algorithm developed by Cardon & Crochemore in Ref. [24]. Here we follow a version

developed by Kamei & Cock [25] to construct a minimal balanced coloring of a network,

namely a coloring that employs the least possible number of colors, which is associated

with minimal graph fibrations. The algorithm’s runtime scales as O(|EG| log2 |NG|), which

implies that it is essentially linear with the network size, specially for sparse networks, and

can be applied to very large networks.

The theory of balance coloring is explained in Ref. [14]. A balance coloring creates a

partition of nodes of G into disjoint sets (corresponding to synchronous fibers) such that each

node in one set receives the same number of colors from nodes within other sets [14, 20]. A

coloring of G with this property is the balanced coloring and represents an equitable partition

of the network, see [14, 20]. The sets identified by a minimal balanced coloring partitions

the network with minimal colors and corresponds to the fibers of G identified by minimal

graph fibrations  [13–15].

Thus, we color nodes such that synchronous nodes in a fiber receive the same colors from

their synchronous nodes. As example, the genes baeR and spy (Fig. 1a) have the same color

and are in the same fiber since they receive the same colors from their neighbors: both baeR

and spy receive one red color via the activator link from one red node (baeR from itself and

spy from baeR) and one green activator link each from the green node cpxR.

The algorithm constructs a coloring of the nodes that is balanced. A coloring is balanced

if two identically colored nodes are connected to identically colored nodes via their inbound

links. Each balanced colored cluster is a fiber in the network. The fibers also corresponds to

the orbits in a network when the symmetries are automorphisms rather than isomorphisms

in the input trees. The flow of the algorithm is exemplified with the example network of

Fig. 6.

• Step 1 - We start by assigning the same color to all nodes. In Fig. 6a all nodes are

initially colored in blue. In addition, we assign to each link the same color of the
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FIG. 6: Algorithm to find the fibers of a network through a minimal balanced coloring.

The goal of the algorithm is to find a minimal balanced coloring of the network, so that two nodes

have the same color only if they are connected to the same number of identically colored nodes via

inbound links. The colors represent the fibers in the network.

node from where it emanates. To update the coloring (or, equivalently, to generate a

new partition) of nodes, we construct the table shown in the right panel of Fig. 6a, as

explained next. In the top row of this table we put the network nodes colored with

their current color. In the leftmost column we put each type of colored link. In this

initial stage of the algorithm we only have a blue link for all the nodes. Then, we

fill the entries of the table with the number of colored links of this blue type that are

received by the corresponding node. For example, node 1 receives two 2 blue links as

well as nodes 2 and 3. Nodes 4, 5 and 7 receive one blue link each, and node 6 nothing.

The structure of this table determines the new coloring as explained in the next step.

43



• Step 2 - Using the table in Fig. 6a we update the coloring of nodes as follows. We

assign the same color to all nodes that receive the same number of colored links of each

type. Specifically, nodes 1, 2 and 3 receive two blue links, so we assign them the same

(blue) color. Analogously, nodes 4, 5 and 7 receive one blue link, so we assign them

the same color, but di↵erent from blue. We assign them a purple color. Similarly, we

assign another color to node 6 (green). We then obtain the colored network in the

left of Fig. 6b. Applying the counting of receiving coloring links to this network, we

obtain the new coloring table shown in Fig. 6b, where each link has the color of the

node from where it emanates. Thus, we update the table to generate the new coloring,

as shown in the right panel of Fig. 6b.

• Step 3 - Using the same criterion as in Step 2, we update the coloring of nodes,

comprising now five di↵erent colors, and then we generate the new table, as shown

in Fig. 6c. At this point the algorithm stops, because we do not need to introduce

more colors, since each color is balanced. Each color corresponds to a fiber, and each

node in each colored fiber receives the same colors from other fibers or from nodes in

the same fiber. Therefore, the coloring shown in the network of Fig. 6c is the minimal

balanced coloring of the network, and the colors indicate the fibers in the network.

As far as only minimal fibrations are considered, the algorithm will return always the same

fibers containing the same nodes, for any initial condition and realization. Below we provide

the pseudo-code to clarify the algorithm. More detailed instructions and methodology for

obtaining fiber building blocks will be given in a follow-up paper. We start by assigning all

nodes to the same fiber and then continue to refine the partition basing on the input set of

the node until no further refinement can be obtained.

44



Algorithm 1 Finding fibers following Kamei & Cock Ref. [25]
Input: Graph G = {NG, EG}, where NG are vertices and EG are edges of the analyzed

network

| NG | - number of vertices, NG = {v1 . . . v|NG|}

Output: C = {ci}, where ci - color of node i and i = 1 · · · | V |

Notation: Ii = {I1i . . . INi }, where N = current number of colors

1: N0 = 1

2: for i = 1 · · · | NG | do

3: ci = 1

4: end for

5: j = 0

6: repeat

7: for i = 1 · · · | NG |, k = 1...Nj do

8: Iki = number of nodes of color k in the input set of vi

9: end for

10: H = set of all unique {Ii}

11: // assign each unique vector a color and color the graph accordingly

12: for i = 1 · · · | NG | do

13: ci = index of Ii in H, e.g. if two nodes have the same Ii and Ij ! ci = cj

14: end for

15: j = j + 1

16: Nj = | H |

17: until Nj 6= Nj�1

18: return {ci}
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VI. STRONGLY CONNECTED COMPONENT

In a directed network, the strongly connected component is composed of nodes that are

reachable from every other node in the component. That is, there is a directed path from

every node to any other node in the strongly connected component. A weakly connected

component is obtained when we ignore the directionality of the links. Strongly connected

components are relevant to genetic fibers since they contain loops that control the state of

the genes. We find four types of strongly connected components. Single-gene components

composed of autoregulator loops like cpxR and fadR in Figs. 1a and 1e. The other type

of components are those in Fig. 2a and Fig. 2b and also a five-gene connected component

shown in SI Fig. 7. We note that most of the fibers regulated by these components do

not belong to the connected component. This is because they receive information but do

not send information back to the connected component. These fibers are characterized by

integer fiber numbers. When the fiber receives and sends back information, that is, when

the fiber belongs to the strongly connected component, then it becomes a Fibonacci fiber.

The largest strongly connected component in the E. coli network controls the pH system

shown in Fig. 2b.

VII. STATISTICS OF FIBERS IN THE TRN OF E. COLI

A. Fibers statistics in E. coli

SI Table I shows the counts in the E. coli network of each building block. For instance

the most abundant building blocks are the following:

|n = 0, ` = 1i: 45

|n = 1, ` = 0i: 13

|n = 0, ` = 2i: 13

|n = 1, ` = 1i: 8

The list is completed with the fractal building blocks of Fibonacci sequences which are

less numerous but more complex in their structure:

|'2 = 1.6180.., ` = 2i: 1
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FIG. 7: A five-gene connected component of soxR, soxS, fnr, fur, and arcA with its regulated

fibers.
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|'3 = 1.4655.., ` = 1i: 1

|'4 = 1.3802..., ` = 1i: 1

Structure type Amount in E-coli

|n = 0, l = 1i 45

|n = 0, l = 2i 13

|n = 0, l = 3i 3

|n = 1, l = 0i 13

|n = 1, l = 1i 8

|n = 1, l = 2i 3

|n = 2, l = 0i 1

|n = 2, l = 1i 1

|'d = 1.3802.., l = 1i 1

|'d = 1.4655.., l = 1i 1

|'d = 1.6180.., l = 2i 1

Composite Fiber 1

Total number of building blocks 91

TABLE I: Building block statistics. We show the count of every building block defined by the fiber

numbers.

B. Full list of fibers in E. coli

SI Table VI shows the complete list of the 91 fibers building blocks found in the genetic

network of E. coli. We list the genes in the fiber plus their external regulators. If a gene

or operon is not in this list, for instance lacZYA, it means that the gene or operon is not

in a fiber. Supplementary File 1 shows the plot of the circuit of every fiber and the fiber

building block.

The first column in SI Table VI is the ID of the fiber. This ID refers to the plot of the

fiber building block in Supplementary File 1. The second column lists the genes in the fiber,

the third column lists the external regulators. The last column specifies the fiber number
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associated with each fiber as |n, `i or |'d, `i.

VIII. DATASETS OF BIOLOGICAL AND NON-BIOLOGICAL NETWORKS

To investigate the applicability of fibrations in a broader context, we performed an ex-

tensive analysis of di↵erent complex networks from diverse domains in systems science.

Full details of each network analyzed can be accessed at https://docs.google.com/

spreadsheets/d/1-RG5vR_EGNPqQcnJU8q3ky1OpWi3OjTh5Uo-Xa0PjOc. The codes to re-

produce this analysis are at github.com/makselab and the full datasets appear at

kcorelab.org. See also tables below with information about the networks.

We first show the symmetry fibrations in biological networks and species. See Section

IH. We characterize biological networks spanning from:

• Biological networks: transcriptional regulatory networks, metabolic net-

works, cellular processes networks and pathways, disease networks, neural

networks.

We study the following species:

• Species: A. thaliana, E. coli, B. subtilis, S. enterica (salmonella), M. tuber-

culosis, D. melanogaster, S. cerevisiae (yeast), M. musculus (mouse), and

H. sapiens (human).

We then study non-biological networks in Section IH:

• Social Networks: online social networks, Facebook, Twitter, Wikipedia,

Youtube, email networks, communication networks, citation networks, col-

laboration networks, bloggers

• Internet: routers, autonomous systems, web graphs, hyperlinks, peer-to-

peer

• Infrastructure Networks: power grid, airport, roads, flights

• Economic Networks

• Software Networks: Linux, jdk

• Ecosystems
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Network Domain Total No. of nodes Total No. of edges No. of networks

Biological 287390 4211856 289

Economic 1752 108639 5

Ecosystems 1879 5378 14

Infrastructure 24511 82534 16

Internet 244634 835565 27

Social 104909 1261009 15

Software 43391 503645 3

TABLE II: Features of the networks across domains. We report the total numbers for each domain

summed over all the networks in the domain.

Species Total No. of nodes Total No. of edges No. networks

Yeast 55932 1392926 11

Arabidopsis Thaliana 790 1431 1

Bacillus subtilis 5602 11417 3

Drosophila 39549 321734 5

Escherichia coli 879 1835 1

Human 72587 1198712 248

Micobacterium Tuberculosis 1624 3212 1

Mouse 64709 987424 7

Salmonella 8293 15589 6

TABLE III: Number of networks per species.
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Arabidopsis Bacillus Caenorhabditis Cat Drosophila Escherichia Human Micobacterium Mouse Rat Salmonella Yeast

Thaliana subtilis elegans coli Tuberculosis

TF 1 2 2 0 4 1 4 1 4 0 2 11

Neuron 0 0 0 1 1 0 0 0 3 3 0 0

Metabolic 0 0 0 0 0 0 48 0 0 0 2 0

Disease 0 0 0 0 0 0 66 0 0 0 0 0

Kinase 0 0 0 0 0 0 2 0 0 0 0 0

Pathway 0 0 0 0 0 0 127 0 0 0 0 0

Protein 0 1 0 0 0 0 1 0 0 0 2 0

TABLE IV: Table with the count of networks per type of biological network and species. These

networks are used to calculate the distributions of fiber across species and biological types in Figs.

4a, b, and c. For each type of biological network in Fig. 4a, b, we calculate the count over the

total number of networks as indicates at the end of each row for each biological type. The same

occurs with the number of networks at the end of each column for each species. Figure 4c shows

the counts over all the network shown in the last row/column.
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Network Subdomain Total No. of nodes Total No. of edges No. of networks

Autonomous systems graphs 141842 481415 14

Bitcoin 9664 59777 2

Collaboration networks 50260 504897 4

Disease 4309 15254 66

Facebook 4039 88234 1

Youtube subscriptions 13723 76765 1

Internet peer-to-peer networks 31978 110154 4

Jazz 198 5484 1

Linux 30837 213954 1

Metabolic 4273 33829 50

Networks with ground-truth communities 1005 25571 1

Neural networks 3694 129812 8

Cellular processes and Pathways 9825 54712 127

Plant-Pollinator 1631 2719 11

Plant-Seed-Disperser 65 165 2

Power grid 4941 6594 1

Sentiment 99 278 2

Transcriptional regulatory 260258 3908769 32

TABLE V: Subtypes of networks belonging to the di↵erent domains.
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Id Fiber Regulators Fiber Number

1 aaeR, ampDE, azuC, comR, cyaA, narQ, sohB, speC,

spf, trxA, yaeP-rof, yaeQ-arfB-nlpE, yjeF-tsaE-amiB-mutL-

miaA-hfq-hflXKC

crp |n = 0, l = 1i

2 aaeXAB, agp, cpdB, cstA, glgS, glpR, grpE, hofMNOP,

ivbL-ilvBN-uhpABC, lacI, mcaS, mhpR, nadC, ompA,

ppdD-hofBC, preTA, raiA, rmf, rpsF-priB-rpsR-rplI, sfsA-

dksA-gluQ, sxy, ubiG, ychH, yeiP, yeiW, yfiP-patZ, yibN-

grxC-secB-gpsA, ykgR

crp |n = 0, l = 1i

3 accA, accD, fabI, fadR, yceD-rpmF-plsX-fabHDG-acpP-

fabF

|n = 1, l = 0i

4 accB, iclR fadR |n = 1, l = 1i

5 ackA-pta, dcuC arcA, fnr |n = 0, l = 2i

6 acrZ, inaA, nfo, nfsB marA, rob,

soxS

|n = 0, l = 3i

7 add, dsbG, gor, grxA, hemH, oxyS, trxC crp, oxyR,

rbsR

|n = 0, l = 1i�|n =

1, l = 1i

8 adeD, adiY, chiA, gspAB, hchA, hdfR, mdtJI, rcsB, yjjP hns |'d = 1.4655.., l = 1i

9 agaR, agaS-kbaY-agaBCDI |n = 1, l = 0i

10 alaA-yfbR, avtA, leuE, livJ, livKHMGF, lysU, sdaA lrp |n = 0, l = 1i

11 alaE, kbl-tdh, yojI lrp |n = 0, l = 1i

12 alaWX, argU, argW, argX-hisR-leuT-proM, aspV, flxA,

glyU, leuQPV, leuX, lptD-surA-pdxA-rsmA-apaGH, lysT-

valT-lysW, metT-leuW-glnUW-metU-glnVX, pheU, pheV,

proK, proL, queA, serT, serX, thrU-tyrU-glyT-thrT-tufB,

thrW, trmA, tyrTV-tpr, valUXY-lysV

fis |n = 0, l = 1i

13 aldB, hupB crp, fis |n = 0, l = 2i

14 allA, allS, gcl-hyi-glxR-ybbW-allB-ybbY-glxK allR |n = 0, l = 1i

15 alsR, rpiB |n = 1, l = 0i

16 amiA-hemF, cmk-rpsA-ihfB, uspB IHF |n = 0, l = 1i
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17 amn, mipA, phnCDE 1E 2FGHIJKLMNOP, phoA-psiF,

phoB, phoE, phoH, ydfH, yegH, yhjC, ytfK

|n = 1, l = 0i

18 ampC, dacC bolA |n = 0, l = 1i

19 araE-ygeA, araFGH araC, crp |n = 0, l = 2i

20 arcZ, ydeA arcA |n = 0, l = 1i

21 argA, argCBH, argE, argF, argI, argR, artJ, artPIQM, lysO |n = 1, l = 0i

22 argO, lysP argP, lrp |n = 0, l = 2i

23 aroF-tyrA, tyrB tyrR |n = 0, l = 1i

24 aroH, trpLEDCBA, trpR |n = 1, l = 0i

25 asnB, clpPX-lon, glsA-ybaT, uspE gadX |n = 0, l = 1i

26 aspA-dcuA, dcuR crp, fnr,

narL

|n = 0, l = 3i

27 bacA, cpxPQ, cpxR, ftnB, ldtC, ldtD, ppiD, sbmA-yaiW,

slt, srkA-dsbA, xerD-dsbC-recJ-prfB-lysS, yccA, yebE,

yidQ, yqaE-kbp, yqjA-mzrA

|n = 1, l = 0i

28 baeR, spy cpxR |n = 1, l = 1i

29 bcsABZC, fnrS, pdeF, pepT, pitA, ravA-viaA, tar-tap-

cheRBYZ, upp-uraA, xdhABC, ydeJ, ytiCD-idlP-iraD

fnr |n = 0, l = 1i

30 bdcA, dkgB, grxD, mepH, mhpT, pgpC-tadA, rfe-wzzE-

wecBC-r↵GHC-wecE-wzxE-r↵T-wzyE-r↵M, rybB, tehAB,

tsgA, ydbD, yeaE

nsrR |n = 0, l = 1i

31 betI, betT arcA, cra |n = 1, l = 2i

32 bioA, bioBFCD birA |n = 0, l = 1i

33 bluF, ydeI rcdA |n = 0, l = 1i

34 borD, envY-ompT, mgrB, mgrR, mgtLA, mgtS, pagP, rstA,

ybjG

phoP |n = 0, l = 1i

35 cbpAM, gltX, gyrB, msrA fis |n = 0, l = 1i

36 cdaR, garD, gudPXD |n = 1, l = 0i
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37 cho, dinB-yafNOP, dinD, ding-ybib, dinQ, ftsK, hokE, insK,

lexA, polB, ptrA-recBD, recAX, recN, recQ, rpsU-dnaG-

rpoD, ruvAB, symE, tisB, umuDC, uvrB, uvrD, uvrY, ybfE,

ybgA-phr, ydjM, yebG

|n = 1, l = 0i

38 cirA, entCEBAH, fepA-entD, fiu crp, fur |n = 0, l = 2i

39 copA, cueO cueR |n = 0, l = 1i

40 cra, pitB, sbcDC phoB |n = 0, l = 1i

41 crl 1, exbBD, fepDGC, fhuACDB, fhuE, gpmA, metJ, nohA-

ydfN-tfaQ, ryhB, ygaC, yhhY, yjjZ

fur |n = 0, l = 1i

42 cusCFBA, cusR, yedX hprR, phoB |n = 1, l = 2i

43 cvpA-purF-ubiX, glrR-glnB, hflD-purB, lolB-ispE-prs,

purC, purEK, purL, speAB

purR |n = 0, l = 1i

44 cysDNC, cysK, tcyP, yciW, ygeH, yoaC cysB |n = 0, l = 1i

45 cytR, nagC, nagE, ycdZ crp |n = 1, l = 1i

46 dapB, lysC argP |n = 0, l = 1i

47 ddpXABCDF, patA, potFGHI, yeaGH, yhdWXYZ ntrC |n = 0, l = 1i

48 decR, mlaFEDCB, yncE marA |n = 0, l = 1i

49 dgcC, iraP, nlpA, wrbA-yccJ, yccT csgD |n = 0, l = 1i

50 dicB-ydfDE-insD-7-intQ, dicC-ydfXW dicA |n = 0, l = 1i

51 dsdC, norR nsrR |n = 1, l = 1i

52 dtpA, omrA, omrB ompR |n = 0, l = 1i

53 ecpA, ecpR matA |n = 0, l = 1i

54 efeU 1U 2, motAB-cheAW, psd-mscM, tsr, ung cpxR |n = 0, l = 1i

55 epd-pgk-fbaA, gapA-yeaD, mpl cra, crp |n = 0, l = 2i

56 erpA, iscR, rnlAB |n = 1, l = 0i

57 evgA, nhaR hns |'d = 1.3802.., l = 1i

58 fabA, fabB fabR, fadR |n = 0, l = 2i

59 fadE, fadIJ arcA, fadR |n = 0, l = 2i

60 fbaB, fruBKA, glk, gpmM-envC-yibQ, pfkA, ppc, pykF,

pyrG-eno, tpiA

cra |n = 0, l = 1i
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61 fldB, pgi, ribA, ydbK-ompN soxS |n = 0, l = 1i

62 folE-yeiB, metA, metC, metF metJ |n = 0, l = 1i

63 fpr, pqiABC, rirA-waaQGPSBOJYZU marA, soxS |n = 0, l = 2i

64 fucAO, fucR, zraR crp |n = 1, l = 1i

65 gfcA, ybhL, yfiR-dgcN-yfiB, ymiA-yciX yjjQ |n = 0, l = 1i

66 hupA, trg crp, fis |n = 0, l = 2i

67 ibaG-murA, rplU-rpmA-yhbE-obgE mlrA |n = 0, l = 1i

68 ibpAB, yadV-htrE IHF |n = 0, l = 1i

69 idnK, idnR crp, gntR |n = 1, l = 2i

70 isrC-flu, pth-ychF oxyR |n = 0, l = 1i

71 lgoR, uxuR crp, exuR |'d = 1.6180.., l = 2i

72 lolA-rarA, osmB rcsB |n = 0, l = 1i

73 lsrACDBFG-tam, lsrR, oxyR, rbsR crp |n = 1, l = 1i

74 malI, mlc crp |n = 1, l = 1i

75 manA, yhfA crp |n = 0, l = 1i

76 mngAB, mngR |n = 1, l = 0i

77 nadA-pnuC, nadB nadR |n = 0, l = 1i

78 nimR, nimT |n = 1, l = 0i

79 ompX, rpsP-rimM-trmD-rplS, ychO, ysgA fnr |n = 0, l = 1i

80 pepD, yhbTS csgD |n = 0, l = 1i

81 phoP, slyB |n = 2, l = 0i

82 pspABCDE, pspG IHF, pspF |n = 0, l = 2i

83 purR, pyrC fur |n = 1, l = 1i

84 rhaR, rhaS crp |n = 2, l = 1i

85 rrsA-ileT-alaT-rrlA-rrfA, rrsE-gltV-rrlE-rrfE fis, lrp |n = 0, l = 2i

86 rrsB-gltT-rrlB-rrfB, rrsC-gltU-rrlC-rrfC, rrsD-ileU-alaU-

rrlD-rrfD-thrV-rrfF, rrsG-gltW-rrlG-rrfG, rrsH-ileV-alaV-

rrlH-rrfH

fis, hns, lrp |n = 0, l = 3i

87 ssb, uvrA arcA, lexA |n = 0, l = 2i

88 ttdABT, ttdR |n = 1, l = 0i
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89 ycjG, ycjY-ymjDC-mpaA pgrR |n = 0, l = 1i

90 yegRZ, yfdX-frc-oxc-yfdVE evgA |n = 0, l = 1i

91 ykgMO, znuA, znuCB zur |n = 0, l = 1i

TABLE VI: List of fiber building blocks with ID, genes in

the fiber, external regulators of the fiber and fiber numbers.

We provide Supplementary File 1 which plots every building

block using the same IDs.
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