	-	-	-	-
		High (no.=9)	Low (no.=8)	Р
HCV RNA (mear	1±SE)	69,910±8,729	64±17	0.00008
Male / female		5 / 4	8 / 0	
Age (range)		68.9 (60-77)	62.5 (50-70)	
Stage	I	2	2	
	II	7	5	
	IIIA	0	1	
Liver function (n	nean±SE)			
ICG-R15 (%)	(<10)	14.1±2.54	12.4±2.18	
Alb (g/dL)	(6.7-8.3)	4.02±0.16	3.99±0.21	
AST (IU/L)	(8-38)	62.1±19.7	37.6±6.04	
ALT (IU/L)	(40-44)	52.0±14.2	42.8±13.6	
T.bil (mg/dL)	(0.3-1.2)	0.79±0.17	0.59±0.09	
Fibrosis	F1	3	3	
	F2	1	4	
	F3	4	1	
	F4	0	0	
HCV genotype				
	1b	7	4	
	1b+2a	2	0	
	2a	0	3	
	2b	0	1	

Supporting Table 1. Clinicopathologic features between the two groups of patients with HCV-high and HCV-low loads used in this study.

The HCV RNA levels are indicated as an arbitrary unit, the viral copy number per 50 ng of total liver RNA normalized to the 18S rRNA guantity: High, HCV-high load (>30000 units of HCV RNA); Low, HCV-low load (<300 units of HCV RNA). The fibrosis score was determined according to the New Inuyama Classification.¹ HCV genotyping was performed as described previously.² HCV RNA, age, ICG-15 (indocyanin green retention at 15 min), Alb (serum albumin), AST (serum aspartate aminotransferase), ALT (serum alanine aminotransferase) and T.bil (total bilirubin) were analyzed by Mann-Whitney U test. Sex and stage were analyzed by Fisher's exact probability test. Fibrosis and HCV genotype were analyzed by the χ^2 test. Only HCV RNA was significantly different, and other variables were not. There was also no significant correlation between viral loads and all clinicopathologic variables according to a simple logistic regression analysis. To exclude the possible involvement of difference in sex ratio, we performed the same analyses of all variables using only male samples, a 5-to-8 comparison. No significant difference was observed among all of the clinicopathologic variables, but the TMPRSS2 gene and the 13 other genes were significantly different.

Supporting Table 2. Clinicopathologic features between two groups of patients with HCV-high and HCV-low loads used in the comprehensive analysis of gene expression.

		High (no.=5)	Low (no.=5)	Р
HCV RNA (mean	±SE)	74,665±14,625	71±20	0.009
Male / female		4 / 1	5/0	
Age (range)		66.6 (62-71)	65.2 (58-71)	
Stage	I	2	2	
	II	3	3	
	IIIA	0	0	
Liver function (m	nean±SE)			
ICG-R15 (%)	(<10)	12.4±2.38	8.90±2.25	
Alb (g/dL)	(6.7-8.3)	4.02±0.24	4.18±0.27	
AST (IU/L)	(8-38)	51.8±10.8	35.0±4.92	
ALT (IU/L)	(40-44)	45.8±8.75	39.8±13.5	
T.bil (mg/dL)	(0.3-1.2)	0.66±0.13	0.58±0.13	
Fibrosis	F1	2	1	
	F2	0	3	
	F3	3	0	
	F4	0	(1)	
HCV genotype				
	1b	4	5	
	1b+2a	1	0	
	2a	0	0	
	2b	0	0	

Chronic hepatitis without liver cirrhosis

	Liver cirrhosis					
		High (no.=7)	Low (no.=3)	Р		
HCV RNA (mear	n±SE)	140,287±59,501	97±64	0.017		
Male / female		5 / 2	3 / 0			
Age (range)		63.3 (54-69)	65.7 (56-73)			
Stage	I	6	2			
	II	1	1			
	IIIA	0	0			
Liver function (n	nean±SE)					
ICG-R15 (%)	(<10)	28.1±7.61	28.3±8.36			
Alb (g/dL)	(6.7-8.3)	3.84±0.11	4.00±0.42			
AST (IU/L)	(8-38)	54.1±4.7	53.0±11.1			
ALT (IU/L)	(40-44)	47.9±7.40	48.0±12.86			
T.bil (mg/dL)	(0.3-1.2)	0.94±0.14	0.81±0.08			
Fibrosis	F1	0	0			
	F2	0	0			
	F3	(2)	0			
	F4	5	3			
HCV genotype						
	1b	6	2			
	1b+2a	1	0			
	2a	0	1			
	2b	0	0			

The number of the fibrosis score in parentheses indicates a discrepancy between F3 or F4 determined by two pathologists. The statistical analyses were performed as described in Supporting Table 1, and none of the variables, except for HCV RNA, were significantly different between the two groups.

Supporting Table 3. One hundred thirty genes differentially expressed in the livers with high vs. low HCV loads.

No.	Accession No.	Gene symbol	Fold change	No.	Accession No.	Gene symbol	Fold change
Chro	nic hepatitis liver with	out liver cirrhosis		continued			
1	NM_002122	HLA-DQA1	4.17	67	AK096893		-6.03
2	NM_003733	OASL	3.87	68	NM_198462	FLJ46154	-4.14
3	NM_005909	MAP1B	3.30	69	NM_021614	KCNN2	-3.65
4	NM_005656	TMPRSS2	3.29	70	NM_000567	CRP	-3.53
5	NM_002993	CXCL6	3.21	71	NM_000450	SELE	-3.45
6	NM_003311	PHLDA2	3.09	72	BF514098		-3.44
7	AI763378	EHF	3.07	73	AI580142		-3.24
8	BC042028		2.99	74	N80145		-3.23
9	BE675995	SPEC2	2.99	75	M27830		-3.08
10	AK025180		2.97	76	AW975324		-2.97
11	BC089425	LOC129607	2.92	77	AA018404		-2.81
12	NM_003068	SNAI2	2.88	78	AK022897		-2.53
13	NM_006403	NEDD9	2.84	79	NM_003633	ENC1	-2.37
14	NM_001549	IFIT3/ IFIT4	2.83	80	NM_213589	RAPH1	-2.34
15	NM_002353	TACSTD2	2.79	81	AL049437		-2.31
16	NM_001001887	IFIT1	2.78	82	NM_001187	BAGE	-2.30
17	NM_002354	TACSTD1	2.75	83	BC022380	FLJ00310	-2.20
18	NM_006417	IFI44	2.72	84	AI650260		-2.13
19	NM_001565	CXCL10	2.61	85	AK000674	LOC134145	-2.09
20	NM_002303	LEPR	2.52	86	AB019490	RABGAP1L	-2.04
21	BF724558		2.52	87	BF511381	HMGA2	-2.01
22	NM_152878	MAFF	2.48	Chron	ic hepatitis liver with	liver cirrhosis	
23	NM_004030	IRF7	2.47	1	BC020750	SDS	8.09
24	NM_003749	IRS2	2.37	2	NM_005101	G1P2	3.58
25	NM_017631	FLJ20035	2.37	3	NM_003733	OASL	3.55
26	AV699047		2.37	4	NM_001300	KLF6	3.30
27	AI475680		2.34	5	NM_024786	ZDHHC11	3.20
28	AA937109	FNBP1	2.32	6	AK093529		3.08
29	AW954199		2.32	7	N55072		3.03
30	AK025967		2.31	8	NM_006887	ZFP36L2	2.67
31	NM_016323	HERC5	2.28	9	NM_015675	GADD45B	2.45
32	NM_139266	STAT1	2.27	10	BC020765		2.45
33	NM_002581	PAPPA	2.27	11	NM_005542	INSIG1	2.36
34	NM_005242	F2RL1	2.26	12	NM_032527	ZGPAT	2.32
35	BX647703		2.24	13	NM_002462	MX1	2.27
36	AK021801		2.23	14	NM_001065	TNFRSF1A	2.27
37	AK001125		2.23	15	BF528646		2.22
38	AV733347	LOC56902	2.22	16	AW612461		2.10
39	NM_004420	DUSP8	2.21	17	NM_001001924	MTSG1	2.07
40	AK026659		2.21	18	NM_005243	EWSR1	2.06
41	NM_033260	FOXQ1	2.20	19	NM_018584	CaMKIINalpha	2.06
42	NM_005139	ANXA3	2.19	20	NM_000505	F12	2.03
43	BE671038	LRRC16	2.19	21	NM_002616	PER1	2.02
44	BF590263	CSPG2	2.17	22	U62733	CPT1B	2.02
45	NM_018362	LIN7C	2.16	23	NM_030582	COL18A1	2.01
46	NM_004117	FKBP5	2.15	24	NM_005178	BCL3	2.00
47	NM_003045	SLC7A1	2.13	25	AA777349		2.00
48	AK074440		2.13	26	BC006435		2.00

49	NM_004864	GDF15	2.12	27	NM_019063	EML4	2.00
50	AV715309		2.11	28	NM_002432	MNDA	-2.83
51	NM_005257	GATA6	2.10	29	NM_016613	DKFZp586G012 3/ SLC25A24	-2.44
52	AK091504	SFX3	2.10	30	NM_197947	CLECSF12	-2.33
53	NM_001122	ADFP	2.10	31	AL833097		-2.31
54	NM_030674	SLC38A1	2.09	32	AI741439	SLC8A1	-2.29
55	NM_004867	ITM2A	2.07	33	NM_016613	DKFZp434L142	-2.25
56	NM_001547	IFIT2	2.07	34	NM_007115	TNFAIP6	-2.24
57	NM_004244	CD163	2.03	35	BG231961		-2.22
58	NM_032964	CCL15	2.03	36	AI799128		-2.14
59	NM_016114	ASB1	2.02	37	BF438173	FST	-2.11
60	AL049435		2.02	38	NM_003916	AP1S2	-2.10
61	NM_025074	FRAS1	2.01	39	AI743207		-2.07
62	U73936	JAG1	2.01	40	AI732988		-2.04
63	NM_015066	TRIM35	2.01	41	NM_020117	LARS	-2.02
64	AK000850		2.01	42	AI743123		-2.02
65	AW297731		2.01	43	NM_015173	TBC1D1	-2.02
66	AI806747		2.00	44	AI949827	NFE2L3	-2.01

A total of 130 genes differentially expressed more than 2 fold between the two groups of liver samples containing HCV-high and HCV-low viral loads were identified as described in Supporting Fig. 1. Eighty-seven genes were from 5-to-5 comparisons of patients with chronic hepatitis without liver cirrhosis, and 44 genes were from 7-to-3 comparisons of patients with chronic hepatitis with chronic hepatitis with liver cirrhosis (Supporting Table 2). *OASL* with gray shading overlaps in the two comparisons. Positive and negative values of the fold change indicate up-regulation and down-regulation, respectively, in the livers with high HCV loads compared with those with low HCV loads.

Evportingent		Gene	Primer sequence (5'-3') ^a			
Experiment			forward (upper) / reverse (lower)			
HCV	-		GACCAAGCTCAAACTCACTC			
quantitation		HCV type 1b	GCACGAGACAGGCTGTGATA			
			CGCGCGACDAGGAAGACTTC			
		(I PCR)	ATGTACCCCATGAGGTCGGC			
			AGGAAGACTTCSGAGCGRTC			
HUV			TGCCTTGGGGATAGGCTGAC (1a)			
genotyping		(2 nd PCR)	GAGCCATCCTGCCCACCCCA (1b)			
			CCAAGAGGGACGGGAACCTC (2a)			
			ACCCTCGTTTCCGTACAGAG (2b)			
			AAACGGCTACCACATCCAAG			
	NM_002046.4	105 IRINA	CCTCCAATGGATCCTCGTTA			
Internal			GGTCGGAGTCAACGGATTTG			
control		GAPDH	GGATCTCGCTCCTGGAAGAT			
		RPL34	GCACCAAAATCTGCATGTG			
			GCCCTGCTGACATGTTTCTT			
	NM_002122		CACCCGGCTACCTAATTCC			
		HLA-DQAT	CCCTGGATGAAAGATGGAAA			
	NM_003733	0491	CGTGGCAGAAGGGTACAGAT			
		UASL	AAGGGTTCACGATGAGGTTG			
			CTGGATGACATCAGCAATGG			
	NIM_005909	MAFID	AGGGGTTCGTGTTGTCTTTG			
	NM_005656	TMDDSS2p	CACTGTGCATCACCTTGACC			
		110111002	ACACACCGATTCTCGTCCTC			
Validation	NM 005656		ATGGCTTTGAACTCAGGGTC			
valuation	NW_005050	110111002	TTAGCCGTCTGCCCTCATTT			
	NM 002003		TGTTTACGCGTTACGCTGAG			
	NW_002995	CACLO	GACAAACTTGCTTCCCGTTC			
	NM 003068	SNA12	CTTTTTCTTGCCCTCACTGC			
	NW_005000	ONAIZ	ACAGCAGCCAGATTCCTCAT			
	NM 006403		AAGCCCTCTCAGAGCCTACC			
	1101_000400		GCGTTGAGAAGGGAAATGAA			
	NM 001540	IFIT3	GAACATGCTGACCAAGCAGA			
	INIVI_001549	1113	CAGTTGTGTCCACCCTTCCT			

Supporting Table 4. Primer sequences

NIM 002353		ACCTCCAAGTGTCTGCTGCT				
NIM_002333	IACOIDZ	GTCGTAGAGGCCATCGTTGT				
NM 001565		ACCGTACGCTGTACCTGCAT				
NM_001303	OXOLIO	TCTTGATGGCCTTCGATTCT				
NM 002303		TCCCATATCTGAGCCCAAAG				
NM_002000		CTGCTTTCACACTGGATGGA				
BE724558		TGCCACTCTTCAAAGGCTTC				
DI 724000		GACCCGGAGAGCTGTTTCTT				
NM 152878	MAFE	AAACCTGGGTGTCCTCACTG				
NM_102070		CCATCCGTGTCACCTTCTCT				
NIM 017631		GGTCAAGACCTGATGGGAGA				
NIM_017031	DDX00	TTTGCCTTGGTATCCTCTGG				
AV/6000/7	LOC1004227	GCTGGGATGACAAGGAAGAC				
AV033047	37	ATTCTGCCCCACCCTAAAAC				
AK021801		AGCCAGTTTGCAGTCAGTGTT				
AR021001		GAGGCAACATGAACCAGGAG				
NIM 018362		ACAGAAGAGGGCCTTGGATT				
NIM_010302		CCCCCATGTCTATCAGCAAT				
1173036		GACTCATCAGCCGTGTCTCA				
073930	JAGT	TGGGGAACACTCACACTCAA				
		GGGTAGAAGCCGTCATGTGT				
AN000650		AGCAATCTGCTTTTGGCACT				
N90145		CACCTTGGATGACGAAACAA				
1100145		GAGTTTCTGGGAAGGCAAAA				
AB010/00		TCCAAGCTGCGAAAAACTCT				
AB019490	RADGAPTL	TTCAAAGGGACACCAGGAAG				
	750261.2	GTGCAAGTACGGCGAAAAGT				
NIM_000887	ZFFJULZ	AGCCGATGGTATGAAAGGTG				
		CCTATCTTTGGGCCTTTGGT				
NIM_003342	INSIGT	TGACGCCTCCTGAGAAAAAT				
		GTGCCTACCCCAGATTGAGA				
NIM_001005	INFROFIA	TGTCGATTTCCCACAAACAA				
NIM 002016	AD192	GTTTCTTTTGGGAGGGGAAG				
NIM_003910	AF 132	ACACTACGTGGGGTTTCAGC				
		CGGCGGATTGACAGAAGTAT				
11111_020240	00042022	ACCTCCATAACCTCCCTTGG				
NM 016613		TTATCCAGCACCTGTGGTCA				
	LAINIJARR	CTACAGCAGGGAGCACCTTC				

	A 17/1/20		TCTTGCATTGGTCGATTTCA				
	AI741439	SLOOAT	GCTGTGCACAATACACACAAAA				
	NIM 012296	01 005 40 4	TTATCCAGCACCTGTGGTCA				
	NIVI_013300	3LC23A24	CTACAGCAGGGAGC	ACCTTC			
	NM_002569.2	FURIN	Hs00965485_g1				
	NM_002151.2	HPN	Hs01056332_m1				
Transmemb rane serine protease	NM_005656	TMPRSS2 ^d	Hs01120965_m1				
	NM_153609.2	TMPRSS6	Hs00542184_m1				
	NM_182973.1	TMPRSS9	Hs01572421_m1	TaqMan gene			
	NM_021978.3	ST14	Hs01058386_m1	expression			
	NM_024022.2	TMPRSS3	Hs00225101_m1	assay ^e			
	NM_006587.2	CORIN	Hs00198141_m1				
	NM_019894.3	TMPRSS4	Hs00212669_m1				
	NM_004262.2	HAT	Hs00975370_m1				
Control		GAPDH	Hs02758991_g1				

^a The primer sequences for SYBR green qPCR were designed by primer 3 (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi).

^{b, c} SYBR green qPCR of TMPRSS2 mRNA was performed using primer pair b

for human liver (Fig. 1A) and primer pair c for TMPRSS2-expressing cell clones (Fig. 5A and Fig. 6A).

^d TaqMan gene expression assay (Life Technologies) was used for qPCR of

TMPRSS2 mRNA in Huh7-25-CD81 cells (Fig. 4A) and human liver (Supporting

Fig. 4) infected with or without HCV.

^e Assay IDs (Life Technologies) used are shown.

Supporting Table 5. Twenty-six up-regulated genes in the livers of the HCV-high group

Gene symbol	Gene title	Fold change	Р		Function
HLA-DQA1	Major histocompatibility complex, class II, DQ alpha 1	9.28	0.002	ISG	Immune response
OASL	2'-5'-Oligoadenylate synthetase-like	7.27	0.0003	ISG	Anti-HCV replication
SNAI2	snail family zinc finger 2	7.03	0.004	EMT	E-cadherin repressor, anti-apoptosis
(AK021801)		4.63	0.021	ncR	Intron of BICC1 (bicaudal C homolog 1)
NEDD9	Neural precursor cell expressed, developmentally down-regulated 9	3.84	0.006	EMT	Focal adhesion
AP1S2	adaptor-related protein complex 1, sigma 2 subunit	3.66	0.011		Vesicle traffic
(AK000850)		3.36	0.004	ncR EMT	Intron of NEDD9
TMPRSS2	Transmembrane protease, serine 2	3.31	0.002		Proteolysis
SLC8A1	Solute carrier family 8 (sodium/calcium exchanger), member 1	3.11	0.011		Na ⁺ /Ca ²⁺ exchanger
MAP1B	Microtubule-associated	2.94	0.008		Microtubule stabilization
LOC100422737		2.93	0.008	ncR	Long non-coding RNA
MAFF	fibrosarcoma oncogene homolog F (avian)	2.82	0.002		Cellular stress response
SLC25A24	Solute carrier family 25 (mitochondrial carrier; phosphate carrier), member 24	2.73	0.046		Calcium-dependent mitochondrial solute carrier
DDX60	DEAD (Asp-Glu-Ala-Asp) box polypeptide 60	2.72	0.002	ISG	Anti-viral helicase
(N80145)		2.69	0.027	ncR	EST
LEPR	Leptin receptor	2.68	0.015		Liver fibrosis
CXCL10	ligand 10	2.68	0.021	ISG	Immune response
ZFP36L2	ZFP36 ring finger protein-like 2	2.65	0.002		RNA-binding protein, erythroid self-renewal
(BF724558)		2.63	0.0006	ncR	EST

JAG1	Jagged 1	2.59	0.027	ISG EMT	Notch 1 ligand
TACSTD2	Tumor-associated calcium signal transducer 2	2.58	0.006		Cell surface Ca signal transducer
IFIT3	Interferon-induced protein with tetratricopeptide repeats	2.47	0.027	ISG	TBK1 activation-mediated IRF3 phosphorylation
KLF6	Kruppel-like factor 6	2.29	0.008	ISG	Tumor suppressor, carcinogenesis
LIN7C	Lin-7 homolog C (C. elegans)	2.19	0.036		Cell-cell adhesion, tumor suppressor
TNFRSF1A	Tumor necrosis factor receptor superfamily, member 1A	2.07	0.027		Inflammation, apoptosis
FAM198B	Family with sequence similarity 198, member B	1.98	0.046		unknown

Twenty-six genes differentially expressed between the two groups of liver samples containing HCV-high and HCV-low viral loads were identified and validated as described in Supporting Fig. 1. The Mann-Whitney U test was performed to analyze the two-group comparisons, and *P* values (<0.05) are shown. A name in parentheses in the gene symbol column indicates the accession number of the gene. Six genes with gray shading overlap with previous studies that compared HCV-negative and -positive livers.³⁻⁷ ISG, IFN-stimulating genes listed in Interferome v2.01⁸; EMT, epithelial mesenchymal transition; ncR, non-coding RNA; EST, expression sequence tag.

Supporting Figures

Supporting Fig. 1. Summary of comparative study of comprehensive gene expression between two groups of chronic hepatitis livers with HCV-high (n=5) and HCV-low (n=5) viral loads. We also performed a comparative gene expression study as a reference between two groups of cirrhotic livers with HCV-high (n=7) and HCV-low (n=3) viral loads. Gene expression in the 20 human liver tissues was analyzed using the Human Genome U133 Plus 2.0 array, which contains 54,675 probe sets (Affymetrix). Gene expression call (present/absent) was calculated from raw data with GeneChip Operating Software 1.0 (GCOS, Affymetrix). Then, we compared the gene expression profiles statistically with Gene Spring version 7 (Agilent Technologies, Santa

Clara, CA). At first, the output data were normalized per chip and per gene, and then, all 54,675 probes were filtered with at least one present flag in 10 samples each. We obtained 29,070 and 29,664 probes as targets for comparison, respectively. After filtering probes that were significantly differentially expressed by more than 2 fold between the two groups (P<0.05 by Student's T test, Welch's T test and the parametric analysis based on cross-gene error model), we obtained 130 genes as candidate differentially expressed genes (Supporting Table 3); 87 and 44 genes were from each comparison, and one gene, OASL, overlapped. After validation of the representative probes using qPCR in 9-to-8 comparisons of chronic hepatitis livers without liver cirrhosis, 26 genes were identified as up-regulated in the HCV-high group of chronic hepatitis (Supporting Table 5). The qPCR of gene expression was normalized against 18S rRNA, which was the most consistently expressed gene in all patients' samples, compared to GAPDH and ribosomal protein L34 (RPL34) mRNAs. One half of the genes are ISGs, or related to the immune response, inflammation and EMT. Five noncoding RNAs of unknown function were also present in the up-regulated genes in the HCV-high group (Supporting Table 5). CH, chronic hepatitis without liver cirrhosis; LC, liver cirrhosis.

Supporting Fig. 2. Assessment of the inhibition of trypsin by SBTI using synthetic peptides as substrates. The reaction mixture of 100 μ M peptide substrate, 10 ng/mL of trypsin and various concentrations (0, 0.1, 1, 10ng/mL) of SBTI in 200 μ L Opti-MEM were prepared in 96-well black plates. Immediately after the trypsin was added, the fluorescence released was measured every 15 minutes for 3 hours at 28°C. The enzyme activity was linearly increased in a time-dependent manner and in a dose-dependent manner in the previous experiment (data not shown). The fluorescence was released for 60 minutes. Trypsin targeted five peptides except for RVRR, and SBTI inhibited all cleavage activity in a dose-dependent manner. The inhibition rate was slightly variable among substrate peptides.

Supporting Fig. 3. Infectivity of various HCVcc in the presence of SBTI. Huh7.5.1 cells $(4x10^4)$ pre-cultured for 1 day, were inoculated with 300 focus-forming units of various HCVcc in the presence of 1 mg/mL SBTI. After 2 hours, the inoculum was removed and the cells were cultured in fresh complete medium for 2 days. The HCV infectivity was determined as described in Fig. 2, and the control experiment in the absence of SBTI was expressed as 1.0. The experiment was performed in triplicate, and the result is expressed as the mean \pm SD. J6/JFH1⁹, S310/JFH1¹⁰ and TH/JFH1¹¹ were chimeric, JFH-1 HCVcc-containing structural genes of genotype 2a, 3a and 1b, respectively. * and **, *P*<0.05 and *P*<0.01 by the Student's t-test, respectively.

Supporting Fig. 4. mRNA expression of transmembrane serine proteases in human liver tissues with and without HCV infection. The mRNA levels of nine transmembrane serine proteases were quantified by qPCR. The expression was normalized to GAPDH expression by a relative quantitation method. The relative gene expression was expressed as a percentage ratio of the expression of the target gene to that of GAPDH. Open bar, average of 4 samples of HCV-negative normal livers from patients with hepatic metastasis of colon cancer; closed bar, average of 4 samples of chronic hepatitis livers without liver cirrhosis containing HCV-high viral load; error bar, SE.

Supporting Fig. 5. HCV infectivity after knockdown of FURIN and HPN with siRNA. (Upper and middle panels) FURIN and HPN mRNA were quantified by qPCR 2 days after transfection of 20 nM of siRNA (ON-TARGETplus SMARTpool, Dharmacon). The gene expression was normalized to GAPDH expression as described in Fig. 4A. The relative gene expression was expressed as a ratio to the control experiment. (Lower panel) The cells, 2 days post-transfection with siRNA, were inoculated with HCVcc for 2 hours. Then, the HCV infectivity was determined as described in Fig. 2, and the relative infectivity is expressed as a ratio to the control experiment. The results of two experiments are expressed as the mean \pm SD. Control, no transfection; NTC, non-targeting control siRNA.

Supporting Fig. 6. Immunoblotting of TMPRSS2 produced in TMPRSS2-wild type and TMPRSS2-mutant cell clones. (A) Structure of TMPRSS2 protein and the recognition site of the anti-TMPRSS2 antibody used. TMPRSS2 is a type II transmembrane serine protease and is thought to be activated by auto-cleavage at the C terminus of R255. QSR is the amino acid sequence of positions 3, 2 and 1 at the cleavage site. The antibody recognizes the C terminal active site (catalytic triad HDS) of trypsin-like serine protease. TM, transmembrane domain from aa 85 to aa 105; LDLR, low density lipoprotein receptor class A domain; SRCR, scavenger receptor cysteine-rich domain. (B) Immunoblotting of TMPRSS2. Fifty micrograms of protein extracted from the cells was subjected to sodium dodecyl sulfate-10% polyacrylamide gel electrophoresis and blotted onto a polyvinylidene fluoride membrane. A protein band of 24 kDa was detected specifically in TMPRSS2-wild type clone cells, but not in TMPRSS2-mutant clone cells with 0.1 µg/ml of anti-TMPRSS2 rabbit IgG (ATLAS Antibodies,

Stockholm, Sweden) followed by 0.04 μ g/ml of horse radish peroxidase-conjugated anti-rabbit IgG goat IgG Fab' (Immuno-Biological Laboratories, Gunma, Japan). The chemiluminescence was detected with an ImmunoStar LD reagent (Wako Pure Chemical Industries, Osaka, Japan) and a Light Capture (ATTO, Tokyo, Japan). A band of 67 kDa was nonspecific and TMPRSS2-mutant cells had no specific signal for TMPRSS2. Therefore, S441A is unreactive with the antibody, or non-cleaved TMPRSS2 is unreactive with the antibody. Beta-actin as a loading control was detected with 0.2 μ g/ml of anti- β -actin mouse IgG (Abcam, Cambridge, UK), followed by 0.02 μ g/ml of horse radish peroxidase-conjugated anti-mouse IgG goat IgG Fab' (Immuno-Biological Laboratories).

References

- Ichida F, Tsuji T, Omata M, Ichida T, Inoue K, Kamimura T, et al. New Inuyama classification; new criteria for histological assessment of chronic hepatitis. Int Hepatol Commun 1996;6:112-119.
- Okamoto H, Sugiyama Y, Okada S, Kurai K, Akahane Y, Sugai Y, et al. Typing hepatitis C virus by polymerase chain reaction with type-specific primers: application to clinical surveys and tracing infectious sources. J Gen Virol 1992;73 (Pt 3):673-679.
- Bigger CB, Brasky KM, Lanford RE. DNA microarray analysis of chimpanzee liver during acute resolving hepatitis C virus infection. J Virol 2001;75:7059-7066.
- Bigger CB, Guerra B, Brasky KM, Hubbard G, Beard MR, Luxon BA, et al. Intrahepatic gene expression during chronic hepatitis C virus infection in chimpanzees. J Virol 2004;78:13779-13792.
- Bieche I, Asselah T, Laurendeau I, Vidaud D, Degot C, Paradis V, et al. Molecular profiling of early stage liver fibrosis in patients with chronic hepatitis C virus infection. Virology 2005;332:130-144.
- Helbig KJ, Lau DT, Semendric L, Harley HA, Beard MR. Analysis of ISG expression in chronic hepatitis C identifies viperin as a potential antiviral effector. Hepatology 2005;42:702-710.
- De Giorgi V, Monaco A, Worchech A, Tornesello M, Izzo F, Buonaguro L, et al. Gene profiling, biomarkers and pathways characterizing HCV-related hepatocellular carcinoma. J Transl Med 2009;7:85.
- Rusinova I, Forster S, Yu S, Kannan A, Masse M, Cumming H, et al. Interferome v2.0: an updated database of annotated interferon-regulated genes. Nucleic Acids Res 2013;41:D1040-1046.
- 9. Date T, Kato T, Kato J, Takahashi H, Morikawa K, Akazawa D, et al. Novel

cell culture-adapted genotype 2a hepatitis C virus infectious clone. J Virol 2012;86:10805-10820.

- 10. Kim S, Date T, Yokokawa H, Kono T, Aizaki H, Maurel P, et al. Development of hepatitis C virus genotype 3a cell culture system. Hepatology 2014.
- Takebe Y, Saucedo CJ, Lund G, Uenishi R, Hase S, Tsuchiura T, et al. Antiviral lectins from red and blue-green algae show potent in vitro and in vivo activity against hepatitis C virus. PLoS One 2013;8:e64449.