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Mouse Stage Pig Stage Morphological criteria used to compare mouse and pig limb development
E9.5 . . ) . N .
(25-27 somites) D18 Prominent forelimb buds. First evidence of hindlimb bud formation.
E10.5 D21 (D23HL) Prominent forelimb bud outgrowth along the PD axis. No evidence of the AP expansion of the
34-36 somites istal mesenchyme giving rise to the handplate. Prominent hindlimb buds.
distal h iving ri he handpl Promi hindlimb bud
E11.25

(43-44 somites) D23 Handplate present. Footplate not yet formed.

E11.5-E11.75 ) .

(45-49 somites) D24 Handplate fully expanded along the AP axis. Onset of footplate formation.
E13.25 D30 All digital rays present as cartilaginous condensations. Interdigit indentations starting to form.
E13.75 D33 Cartilaginous templates of metacarpals and proximal phalanges clearly distinguished.

' Mineralization starting in the humerus.
E17.5 D55 Advanced fetal stages (prenatal in mice; midgestation in pig).

Used to illustrate limb skeletal pattern

Figure S1. Skeletal analysis of pig fore- and hindlimbs. Related to Figure 1. (A,
B) Fore- and hindlimbs of a pig foetus at gestational day 55. Mineralized bone is
stained with Alizarin red. s: scapula; h: humerus; r: radius; u: ulna; mc: metacarpals;
p: phalanges; pg: pelvic girdle; fe: femur; fi: fibula; mt: metatarsals. Note that the
carpal and tarsal bones of the wrist and ankle are not yet ossified. (C, D) Lateral (C)
and dorsal (D) views of pig fore- and hindlimb autopods at D55. Anterior is to the top.
Scale bars: 5mm; n=2 (E) Equivalent stages of mouse and pig limb bud development.
Note that due to the temporal delay in fore- and hindlimb development, D23 pig
hindlimb (HL) buds are comparable to D21 forelimb buds (see STAR Methods).
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Figure S2. Spatial distribution of Pitx1, Tbx4 and Tbx5 transcripts in early
mouse and pig limb buds. Related to Figure 1. (A-C) Spatial distribution of Pitx1 (A),
Tbx4 (B) and Tbx5 (C) transcripts in equivalent stages of mouse (E9.5) and pig (D18)
fore- and hindlimb buds. Scale bars: 0.25mm. n=2 per stage for all pig ISH probes;
n=3 per stage for all mouse ISH probes.
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Figure S3. Biological processes associated with the mCOP, mCCP and MS
categories of regulatory regions. Related to Figure 4. Gene ontology (GO) GREAT
analysis reveals that regulatory regions belonging to the mCOP and mCCP
categories associate with genes that function in cartilage and skeletal development

(GO terms indicated in bold). Top 20 biological processes are shown.
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HoxD cluster

Figure S4. Mouse and pig cis-regulatory landscapes encoding the HOXD gene
clusters. Related to Figure 4. HiC contact profile (Dixon et al., 2012) of the two TADs
flanking the mouse Hoxd cluster (top panel). Non-Hoxd genes located in the two
TADs are indicated in grey. Shown below are the ATAC-seq profiles for mouse
(mm10; chr2:73,921,944-75,601,943) and pig (susScr11; chr15:81,111,890-
82,911,114) limb buds at E10.5/D21 and E11.5/D24. Called peaks are indicated by
black bars. The previously identified mouse Hoxd limb regulatory regions CNS 39,
CNS65 (Andrey et al., 2013), CsB, CsC (Gonzalez et al., 2007) and islands |, IV and
V (Montavon et al., 2011) are evolutionary conserved and accessible (mCOP and
pCOM,; in grey) in limb buds of both species. Islands Il and Ill belong to the pCCM
category (indicated in pink) and function as enhancers in mouse limb buds at E12.5
(Montavon et al., 2011). In mouse limb buds at E11.5, these chromatin regions are
still closed, while they are accessible in pig limb buds at D24, which points to
possible heterochrony. CsA, which functions as a neural tube enhancer (Gonzalez et
al., 2007) is neither accessible in mouse nor pig limb buds.
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Figure S5. Mouse and pig cis-regulatory landscapes encoding the Thx5 locus.
Related to Figure 4. HiC contact profile (Dixon et al., 2012) of the mouse Tbx5 sub-
TAD (top panel), defined on the basis of SMC1A ChIA-PET data (Dowen et al., 2014).
Additional genes located in the same landscape are indicated in grey. Shown below
are the ATAC-seq profiles for both stages in mouse (mm10; chr5:119,690,014-
120,134,958) and pig (susScri1; chr14:37,602,722-38,104,628) limb buds. Called
regions are indicated as black bars. The position of the putative Tbx5 forelimb
enhancers Int2 (Minguillon et al., 2012) and CNS12sh (Adachi et al., 2016;
Cunningham et al.,, 2018) is indicated by open rectangles. None of these two
conserved regulatory elements overlap regions of accessible chromatin in mouse or
pig limb buds. Int2 has enhancer activity in the mouse forelimb field and early E9.5
forelimb buds (E8.5-E9.5; Minguillon et al., 2012). Our analysis indicates that Int2
might be no longer active during progression of mouse and pig limb bud outgrowth.
CNS12sh was identified in fish (Adachi et al.,, 2016), and deletion of these two
putative Tbx5 forelimb enhancers in mouse embryos causes neither limb bud
patterning nor skeletal defects (Cunningham et al., 2018). Conserved regions of open
chromatin in both mouse and pig limb buds (MCOP/pCOM) are indicated with black
arrowheads. Some of these may encode additional cis-regulatory regions active both
in mouse and pig limb buds at the stages analysed.
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Figure S6. Mouse and pig cis-regulatory landscapes encoding the Gli1 locus.
Related to Figure 4. HiC contact profile (Dixon et al., 2012) of the mouse Gli1 sub-
TAD (top panel) defined on the basis of SMC1A ChIA-PET data (Dowen et al., 2014).
Additional genes located in the same TAD are indicated in grey. Shown below are the
ATAC-seq profiles for both stages in mouse (mmi10; chr10:127,227,311-
127,538,540) and pig (susScr11; chr5:22,518,876-22,850,852) limb buds. All called
regions are indicated as black bars. mCCP and pCCM/PS regions are labelled in
blue and pink, respectively. No MS regions are present. The only region enriched in
GLI chromatin complexes in mouse limb buds corresponds to the Gli1 promoter and
the first exon/intron (Vokes et al., 2008). Interestingly, this element (labelled in red
and conserved and open in both species) is not sufficient to drive transgenic reporter
expression in a domain matching the endogenous Gli1 expression domain in mouse
limb buds (Vokes et al., 2008).



