1	Supplementary information		
2			
3	Metabolic	c switching of Mycobacterium tuberculosis during hypoxia is controlled by	
4		the virulence regulator PhoP	
5			
6 7 8	Prab	hat Ranjan Singh ¹ , Vijjamarri Anil Kumar ^{1, 2} , and Dibyendu Sarkar ^{1,*}	
9			
10	¹ CSIR-I	nstitute of Microbial Technology, Sector 39 A, Chandigarh 160036, India	
11			
12			
13	Running title:	Metabolic switching in mycobacteria	
14			
15			
16			
17 18 19	² Present Address: National Institute of Child Health and Human Development, Building 6, National Institutes of Health, Bethesda, MD 20892		
20 21 22		ndence to: Dibyendu Sarkar, CSIR-Institute of Microbial Technology, 5291; Fax: 091-172-2690585; E-mail: <u>dibyendu@imtech.res.in</u>	
23 24 25 26	Key Words:	Hypoxia regulator; metabolic switching; <i>M. tuberculosis</i> PhoP; Protein - protein interactions; virulence regulator	

27 Table S1

29	Oligonucleotide	primers used in F	RT-aPCR and ChIP	experiments of this study
	ongonaereotrae	primero abea mir	er gi ore und onn	enperimentes of time study

Primers ^a	Sequence or description (5'-3')	Reference
FPnarK1RT	ATCGTGTTGCTAATTCCGGC	This study
RPnarK1RT	TTGCCAACAACCCAACTAGC	This study
FPnirBRT	GTCAGCGGATCGACTTGTTC	This study
RPnirBRT	GCTTTATTTGTGCGGTGCC	This study
FPnarGRT	TCGAGCATCTTAAGCCGTTT	This study
RPnarGRT	TCGAGTGAAACGACCACTTG	This study
FPglnRRT	GAGCTGCTGAAATACCTGGC	This study
RPglnRRT	AGCTTTGTATCCGACGTTGC	This study
FPdosRRT	CTATCAGGCCTTACCGACCA	This study
RPdosRRT	AACCGCGACACGTAGTTCTT	This study
FPnarK2RT	GTGACCTGGGAGATGTCGTT	This study
RPnarK2RT	AGAACCCGTAGATCGTGGTG	This study
FPhspXRT	CGACAAGGACGTCGACATTA	This study
RPhspXRT	CCTTGTCGTAGGTGGCCTTA	This study
FPnarK1	GTACTCGAGCACAATAGCTTTC	This study
RPnarK1	CGAAGGGGCCGCGGGGACTGC	This study
FPnirB	TGGTTATCTCCTCATGCTTCGT	This study
RPnirB	GCCGACCACGACGATCTCGCGAGCCG	This study
FPnarG	ACGGTGTGGTTGACGGTGGCC	This study
RPnarG	GCGCCCGCTGCGCTCCAGCAG	This study
FPglnR	CGAAGGGGCCGCGGGGACTGC	This study
RPglnR	GGCAGGACCGGATCCGGATA	This study
FPdosR	AATAATGGATCCGTCCACAACCAT	This study
RPdosR	AATAATGGTACCTGGGCGGGCAG	This study
FPnarK2	CCCTTTCCAGTGGCGACCAGGCT	This study
RPnarK2	CCAGAAGTTGACCACCGAGATCC	This study
FPhspX	TGATCAACCTCCGCTGTTCGAT	This study
RPhspX	CTCAGAAAACTCGGGGAAGA	This study
FP16SrDNA	CTGAGATACGGCCCAGAGCTC	This study
RP16SrDNA	CGTCGATGGTGAAAGAGGTT	This study
FPpks2	GTTGTGGAAGGCGTTGTTAC	This study
RPpks2	GTCGTAGAACTCGTCGCAAT	This study

32 ^aFP, forward primer; RP, reverse primer

37 Table S2

39 Oligonucleotide primers used for cloning and amplifications in this study

Primers		
^a FPdosRstart	AATAATCATATGATGGGAAGCGCCGA	This study
RPdosRstop	AATAATGGATCCTCATCGAGCACCCA	This study
FPhrcAstart	AATAATCATATGATGGGAAGCGCCGA	This study
RPhrcAstop	AATAATGGATCCTCATCGAGCACCCA	This study
RPdosR-N	AATAATGGATCCATGGGAAGCGCC	This study
FPdosR-C	AATAATTCACTTGTCGTCATCGTCTTTGTAGT	This study
	CTCGAGCACCCAG	
FPphoPD71N	GTGATCCTCAACGTGATGATGCCC	(1)
RPphoPD71N	CATCATCACGTTGAGGATCACCGC	(1)
FPdosR54E	GTCGCGGTGCTGGAGGTCCGGTT	This study
RPdosR54E	AACCGGACCTCCAGCACCGCGAC	This study
FPkidosR	AATAATCATATGATGGCGAAGAAC	This study
RPkidosR	AATAATGGATCCCCGGCGCGGTT	This study
FPphoPstart	AATAATGGATCCATGCGGAAAGGGGT	This study
RPphoPFLAG	AATAAGCTTTCACTTGTCGTCATCGTCTTTGT	This study
	AGTCTCGAGGCTCCCGCA	
^b FPdosRLHS	CACCTTTTCCATAAATTGGGATATCCCGCAG	This study
	GTCTGACCGCCGCG	
RPdosRLHS	TTTTTTTCCATTTCTTGGCTCAAAGCGACGC	This study
	TCGTCTC	
FPdosRRHS	CACCTTTTCCATAGATTGGTATATCGGCGACG	This study
	TCCTGGG	
RPdosRRHS	TTTTTTTCCATCTTTTGGGATATCATCACCG	This study
	AACCTGGCTGCGA	
FPmdosR	AATAATGGATCCATGGGAAGCGCC	This study
RPmdosR	AATAATCTGCAGTCATCGAGCACC	This study
FPmglnR	AATGGATCCATGCCTACGGGCCCCACG	This study
RPmglnR	AATAAGCTTTCACTTGCAACGGTTTAG	This study
FPdosRup	TGCCGCCCTTGACCCGT	This study
RPdosRup	GGTAAGAACGCGTAGTCCA	This study
FPdosRupmut	CGTACTACGATTTCATTACGCTGGTTCGGC	This study
RPdosRupmut	TAATGAAATCGTAGTACGATCGCTTGACCC	This study

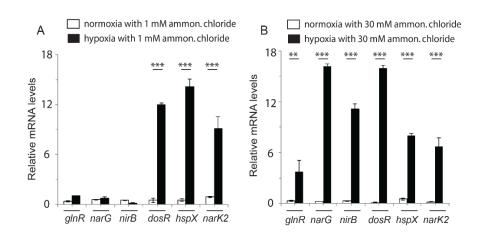
41 ^aFP, forward primer; RP, reverse primer; ^bLHS, left hand sequence; RHS, right hand sequence

Table S3

45

Plasmids used in this study

47


Plasmids	Relevant genotype or sequence (5'-3')	Source or Reference
pET28b	<i>E. coli</i> cloning vector, Amp ^{r a}	Novagen
pET-dosR	DosR residues 1–217 cloned in pET28b	This study
pET-dosR-N	DosR residues 1-193 cloned in pET28b	This study
pET-dosR-C	DosR residues 143-217 cloned in pET28b	This study
pET-phoP-N	PhoP residues 1-141 cloned in pET15b	(2)
pET-phoP-C1	PhoP residues 141-247 cloned in pET15b	(2)
pET-phoP-C2	PhoP residues 150-247 cloned in pET15b	(2)
pGEX-4T-1	<i>E. coli</i> cloning vector, Amp ^{r a}	GE-Healthcare
pGEX-dosR	DosR residues 1–217 cloned in pGEXT-4T-1	This study
p19Kpro	Mycobacterial expression vector, Hyg ^{r b}	(3)
p19Kpro-phoP	PhoP residues 1–247 cloned in p19kpro	(4)
p19Kpro-dosR	DosR residues 1–217 cloned in p19kpro	This study
pST-Ki	Integrative mycobacterial expression vector, Kan ^r ^c	(5)
pST-Ki-dosR	DosR residues 1–217 cloned in pST-Ki	This study
pSM128	Integrative promoter probe vector for mycobacteria ^d	(6)
pSM-dosRup	dosRup3-lacZ fusion in pSM128	This work
pSM-dosRupmut	PhoP binding site mutated in pSM-dosRup	This work
pME1mL1	Mycobacterial protein expression vector ^b	(7)
pME1mL1-phoP	PhoP residues 1-247 cloned in pME1mL1	(8)
pUAB300 ^b	Episomal mycobacteria- <i>E. coli</i> shuttle plasmid	(9)
pUAB300-dosR	DosR residues 1–217 cloned in pUAB300	This study
pUAB300-dosR-N	DosR residues 1–193 cloned in pUAB300	This study
pUAB300-dosR-C	DosR residues 143–217 cloned in pUAB300	This study
pUAB300-	Asp54 mutated to Glu in <i>dosR</i> of pUAB300-	This study
dosRD54E	dosR	
pUAB400 ^c	Integrative mycobacteria-E. coli shuttle plasmid	(9)
pUAB400-phoP	PhoP residues 1–247 cloned in pUAB400	(10)
pUAB400-phoP-N	PhoP residues 1–141cloned in pUAB400	This study
pUAB400-phoP-C	PhoP residues 141–247 cloned in pUAB400	This study
pUAB400-	Asp71 mutated to Asn in <i>phoP</i> of pUAB400-	This study
phoPD71N	phoP	
pUAB300-glnR	GlnR residues 1-252 cloned in pUAB300	This study

^a ampicillin resistance; ^b hygromycin resistance; ^c kanamycin resistance; ^d streptomycin resistance

54

55

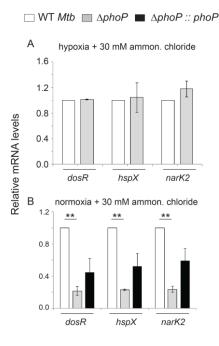

56 57

Fig. S1: Regulation of hypoxia-inducible mycobacterial genes. (A-B) RT-qPCR was carried out to
compare expression levels of indicated hypoxia-inducible genes in the WT bacilli under specific conditions of
growth (normoxic or hypoxic) coupled with either limiting nitrogen (1 mM ammonium chloride) or surplus
nitrogen (30 mM ammonium chloride) conditions. The difference of mRNA levels with standard deviations
were determined from at least three independent RNA preparations (***P*<0.01; ****P*<0.001).

63

64 Figure S2

65

66

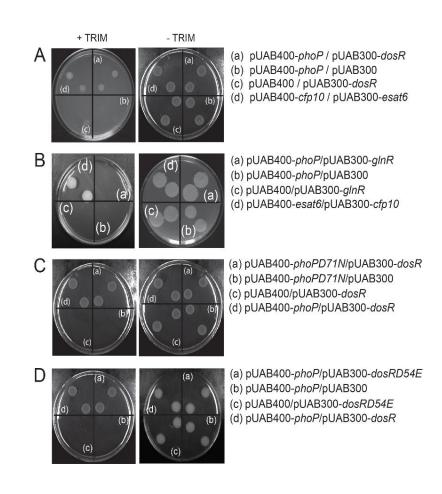
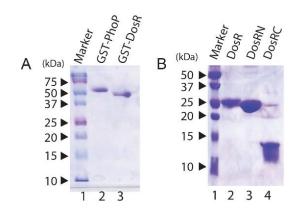

67 68

Fig. S2: Regulation of hypoxia-inducible Mtb genes by the *phoP* locus under indicated growth conditions. (A-B) RT-qPCR was carried out to compare relative expression of hypoxia-inducible genes in the WT, $\Delta phoP$ and the complemented mutant under hypoxia and normoxia, respectively,

coupled with surplus (30 mM) ammonium chloride. The results show average mRNA levels of
 hypoxia-inducible genes with standard deviations derived from replicate experiments using at least 3


74 independent RNA preparations.

- 75 Figure S3:

- Fig. S3: M-PFC experiments examined (A) PhoP-DosR, and (B) PhoP-GlnR interactions in *M. smegmatis* as described in the Methods. Growth of transformants on 7H11/Kan/Hyg in presence of
 TRIM suggests *in vivo* protein-protein association between the regulator pairs. Co-expression of
 empty vectors and *esat6/cfp10* pair, were included as negative and positive control, respectively. (CD) To examine the effect of phosphorylation of regulators on PhoP-DosR interactions, M-PFC
 experiments were carried out using phosphorylation defective mutants of PhoP and DosR,
- 89 respectively. Results of the M-PFC experiments using regulator pairs (C) PhoPD71N-DosR and (D)
- 90 PhoP-DosRD54E suggest that phosphorylation do not appear to have a role on PhoP-DosR protein-
- 91 protein interactions.92

- 94 Figure S4
- 95
- 96
- 97

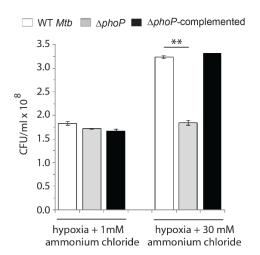

98 99

Fig. S4: Recombinant proteins, expressed and purified as described in the Methods, were analysed by 12% SDS-PAGE, and visualized by Coommassie blue staining. While panel A resolves GST-tagged PhoP (lane 2) and DosR (lane 3) (\approx 3 µg each), panel B analysed His₆-tagged DosR (lane 2), N-103 domain of DosR (DosRN; lane 3) and C-domain of DosR (DosRC; lane 4), respectively (\approx 5 µg each). Domain constructs of DosR are described in the 'Results' section. As a reference, molecular mass markers are resolved in lane 1 of both panels, and sizes of proteins in kDa are indicated to the left.

106

107 Figure S5

- 108
- 109

110

111

112	Fig. S5: CFU/ml data of the V	T and the mutant strains	grown for 12 days unde	r indicated hypoxic
-----	-------------------------------	--------------------------	------------------------	---------------------

- 113 conditions. *AphoP* shows limited growth as that of the WT bacilli under hypoxia coupled with
- 114 limiting nitrogen conditions. However, under hypoxia coupled with nitrogen surplus conditions, WT
- bacilli is capable to overcome the growth defect. In contrast, $\Delta phoP$ mutant is unable to restore
- 116 growth as that of the WT bacteria. Importantly, growth defect of the mutant under identical conditions
- is fully restored in the complemented mutant.

119 **References**

120

- Gupta S, Pathak A, Sinha A, Sarkar D. 2009. Mycobacterium tuberculosis PhoP recognizes two adjacent direct-repeat sequences to form head-to-head dimers. Journal of bacteriology 123 191:7466-76.
- Pathak A, Goyal R, Sinha A, Sarkar D. 2010. Domain structure of virulence-associated response regulator PhoP of Mycobacterium tuberculosis: role of the linker region in regulatorpromoter interaction(s). The Journal of biological chemistry 285:34309-18.
- De Smet KA, Kempsell KE, Gallagher A, Duncan K, Young DB. 1999. Alteration of a single amino acid residue reverses fosfomycin resistance of recombinant MurA from Mycobacterium tuberculosis. Microbiology 145 (Pt 11):3177-84.
- 4. Anil Kumar V, Goyal R, Bansal R, Singh N, Sevalkar RR, Kumar A, Sarkar D. 2016. EspRdependent ESAT-6 Protein Secretion of Mycobacterium tuberculosis Requires the Presence
 of Virulence Regulator PhoP. The Journal of biological chemistry 291:19018-30.
- 5. Parikh A, Kumar D, Chawla Y, Kurthkoti K, Khan S, Varshney U, Nandicoori VK. 2013.
 Development of a new generation of vectors for gene expression, gene replacement, and protein-protein interaction studies in mycobacteria. Applied and environmental microbiology 79:1718-29.
- 137 6. Dussurget O, Timm J, Gomez M, Gold B, Yu S, Sabol SZ, Holmes RK, Jacobs WR, Jr.,
 138 Smith I. 1999. Transcriptional control of the iron-responsive fxbA gene by the mycobacterial
 139 regulator IdeR. J Bacteriol 181:3402-8.
- 140 7. Ehrt S, Guo XV, Hickey CM, Ryou M, Monteleone M, Riley LW, Schnappinger D. 2005.
 141 Controlling gene expression in mycobacteria with anhydrotetracycline and Tet repressor.
 142 Nucleic acids research 33:e21.
- B. Goyal R, Das AK, Singh R, Singh PK, Korpole S, Sarkar D. 2011. Phosphorylation of PhoP
 protein plays direct regulatory role in lipid biosynthesis of Mycobacterium tuberculosis. The
 Journal of biological chemistry 286:45197-208.
- Singh A, Mai D, Kumar A, Steyn AJ. 2006. Dissecting virulence pathways of Mycobacterium tuberculosis through protein-protein association. Proceedings of the National Academy of Sciences of the United States of America 103:11346-51.
- 149 10. Singh R, Anil Kumar V, Das AK, Bansal R, Sarkar D. 2014. A transcriptional co-repressor regulatory circuit controlling the heat-shock response of Mycobacterium tuberculosis.
 151 Molecular microbiology 94:450-65.

152