SUPPLEMENTARY DATA

Two routes for extracellular electron transfer in *Entercoccus faecalis*Lars Hederstedt, Lo Gorton and Galina Pankratova

Table S1 Oligonucleotides used in this work.

Primer	Sequence (5´ to 3´)
invCATR2	gctctgcaacttcatcattctg
invGFPR1	cttcaccctctccactgaca
ndh3dwn	tgatacgtagccgcttct
ndh3up	gataatgcaattgccgc
pplAmid	gactgcacggtaaccat
pplAup	acgccagcatacccagca

Figure S1. Representative cyclic voltammograms illustrating the electrochemical behavior of OsRP (black curve) and 0.5 mM $K_3Fe(CN)_6$ (grey curve), respectively, on graphite electrodes in 50 mM phosphate buffer pH 7.40. The scan rate was 10 mV s⁻¹.

Figure S2

Amperometry with washed cells of *E. faecalis* ferric reductase defective strains grown without heme. The graph shows EET current density obtained depending on the D-glucose concentration provided to the cells and with ferricyanide as redox mediator.