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Appendix S1 The herd effect function

In this paper we study the herd effect of vaccination, denoted by the function Gj(fj). In Section 3.2
we have defined Gj(fj) as the final fraction of people susceptible in population j after vaccinating
a fraction fj of the susceptible people at time τ . More precisely, for fj ∈ [0, sj(τ)]

Gj(fj) = lim
t→∞

sj(t), (1)

with sj(t) evolving according to the differential equations of the SIR model (1) for t > τ . In this
appendix we present and analyze an alternative formulation of the herd effect Gj(fj), which forms
the basis of the structural analysis of the herd effect.

S1.1 Implicit formulation of the herd effect

Based on the differential equations of the SIR model we derive an implicit expression for the herd
effect. From (1) the following equation follows, which presents the relation between ij(t) and sj(t)
at any time t (Hethcote 1976):

ij(t) = −sj(t) +
log(sj(t))

σj
+ s0,j + i0,j −

log(s0,j)

σj
(2)

Above relation characterizes the state of the system at any point in time, but prior to vaccination.
Upon vaccination at time τ the state of the system changes from state (sj(τ), ij(τ)) to state (sj(τ)−
fj , ij(τ)). Hence, the state (sj(τ)− fj , ij(τ)) directly after vaccination can be seen as a new initial
state, where ij(τ) can be obtained from (2). Gj(fj) is then obtained from (2) by setting ij(t) = 0
and thus is the unique solution to:

0 = −Gj(fj) +
log(Gj(fj))

σj
+ sj(τ)− fj + ij(τ)− log(s(τ)− fj)

σj

⇔ 0 = −Gj(fj) +
log(Gj(fj))

σj
+ s0,j + i0,j −

1

σj
log

(
s0,j

(
1− fj

sj(τ)

))
− fj

(3)

Above equation holds for all i0,j > 0. The value of Gj(fj) in the limit i0,j ↓ 0 can be determined by
substituting i0,j = 0. (3) extends the final size equation to any initial state. The original final size
equation can be recovered for fj = 0, s0,j → 1 and i0,j → 0 (see e.g., Kermack and McKendrick
(1927), Ma and Earn (2006), Diekmann et al. (2012) and Keeling and Shattock (2012)). We refer
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to Appendix S5 for an alternative expression of Gj(fj) using the Lambert W function denoted by
W (x) (cf. Corless et al. 1996, Ma and Earn 2006).

S1.2 Derivatives of the herd effect

We present implicit equations for the first and second order derivative of the function G(f) with
respect to f (we drop the subscript j for convenience). These derivatives will appear in the next
sections to prove the structural characteristics of the herd effect G(f). Denote by G′(f) and G′′(f)
respectively the first and second order derivative of the function G(f) with respect to f which can
be derived from (3):

G′(f)

[
1− 1

σG(f)

]
=

1

σ(s(τ)− f)
− 1 (4)

G′′(f)

[
1− 1

σG(f)

]
=

1

σ(s(τ)− f)2
− 1

σ

[
G′(f)

G(f)

]2
⇔ G′′(f) =

G(f)2 − [G′(f)(s(τ)− f)]2

(σG(f)− 1)G(f)(s(τ)− f)2

(5)

Appendix S2 Analysis of the herd effect - Lemmas and theorems

This appendix consists of theorems that describe the characteristics of the function G(f). The
proofs for Theorem 1, Theorem 2 and Theorem 3 are presented as well as other results required for
these proofs. This appendix is structured as follows. We start with deriving bounds on the herd
effect in Section S2.1. Section S2.2 focuses on the structure of the function G(f). In Section S2.3
we formally derive and study the dose-optimal vaccination fraction.

We need that the differential equations (1) have a solution s(t), i(t) and r(t) for all t which
conforms to intuition: all fractions are between 0 and 1, s(t) is non-increasing over time and r(t)
non-decreasing over time. We omit this technical result for brevity.

S2.1 Bounds on the herd effect

In the following three theorems we formally proof which values are feasible for G(f).

Theorem S2.1. It holds that G(f) > 0 for all f ∈ [0, s(τ)) and limf↑s(τ)G(f) = 0.

Proof. Consider the characterization of G(f) in (22). Note that W [0] = 0 and W [x] < 0 for
−1
e ≤ x < 0 (Appendix S5). In our case x = −σ exp{−σB(f, σ)}, with limf↑s(τ)B(f, σ) = +∞.

Thus, x < 0 for f ∈ [0, s(τ)) and approaches 0 for f ↑ s(τ). Therefore, W [x] < 0 and G(f) > 0 for
f ∈ [0, s(τ)) and limf↑s(τ)G(f) = 0.

Theorem S2.2. It holds that G(f) < 1
σ for all f ∈ [0, s(τ)] under the assumption that i0 > 0.

Proof. The differential equations in (1) show that i(t) is maximized when s(t) = 1/σ. Note that
G(f) describes the fraction of people susceptible, when the pandemic has died out. Therefore, if
G(f) = 1/σ, the function i(t) is maximal when the pandemic has died out, so i(t) is at most equal
to 0. This contradicts our assumption that i0 > 0. Using the same argument, it can be noted that
it is not possible for G(f) to be greater than 1/σ. As long as s(t) > 1/σ, the number of infectives
is increasing, thereby reducing s(t). In a final state, when i(+∞) = 0, it must always hold that the
fraction of susceptible people is below 1/σ, which completes the proof.
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Theorem S2.3. It holds that G(f) < s(τ) − f for all f ∈ [0, s(τ)) for vaccination in an infected
population.

Proof. Upon vaccination the system changes from state (s(τ), i(τ)) to state (s(τ) − f, i(τ)). By
assumption we have that s(τ) > 0 and i(τ) > 0 for vaccination in an infected population. By
the differential equations in (1) this implies that the derivative of s(t) directly after vaccination is
negative. As G(f) = limt→+∞ s(t) (2) and s(t) is non-increasing over time, we have that G(f) <
s(τ + ε) ≤ s(τ)− f .

S2.2 Analysis of the structure of the herd effect

This section is dedicated to deriving structural results on the herd effect G(f). This is done by
analyzing the derivatives of this function as presented in Section S1.2.

Lemma S2.1. The function G(f) is twice differentiable for all f ∈ [0, s(τ)) in case of vaccination
in an infected population (i0 > 0) and twice differentiable for all f ∈ [0, s(τ)) with f 6= s(τ)− 1

σ in
case of vaccination in a completely susceptible population (the limit i0 ↓ 0).

Proof. We prove the following four statements consecutively:

(i). The function G(f) is differentiable for all f ∈ [0, s(τ)) for vaccination in an infected popula-
tion.

(ii). In case of vaccination in a completely susceptible population (i.e., s0 > 0, i0 = 0 and s(τ) =
s0) the function G(f) is indifferentiable if and only if f∗ = s(τ)− 1

σ or f = s(τ).

(iii). The function G(f) is twice differentiable for all f ∈ [0, s(τ)) in case of vaccination in an
infected population.

(iv). The function G(f) is twice differentiable for all f ∈ [0, s(τ)) except for f = f∗ = s(τ)− 1
σ in

case of vaccination in a completely susceptible population.

We start the proof:

(i). Note that vaccination in an infected population means i(τ) > 0 and i0 > 0 which implies
G(f) < 1

σ by Theorem S2.2. For G(f) = 1
σ the function G′(f) is not defined as can be seen in

(4). However, this does not occur for vaccination in an infected population (Theorem S2.2).
The function G(f) : [0, s(τ)] → R. We therefore also analyze the existence of the derivative
at the boundaries f = 0 and f = s(τ). Because G(0) < 1

σ by Theorem S2.2:

lim
f↓0

G′(f) =
1[

1− 1
σG(0)

] ( 1

σs(τ)
− 1

)
(6)

By Theorem S2.1 we have limf↑s(τ)G(f) = 0 < 1
σ and thus limf↑s(τ)G

′(f) < 0.

(ii). First we will prove that the given vaccination fractions indeed render G(f) to be indifferen-
tiable. Consider the explicit expression for G(f) in (22) and insert the parameter settings for
vaccination in a completely susceptible population and the value for f∗:

G(f) =
−1

σ
W [−σ exp{− log(σ)− 1}] =

−1

σ
W [− exp{−1}] =

1

σ
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By (i) the function G(f) is indifferentiable at f∗, because G(f∗) = 1
σ . Part (i) also states that

G(f) is indifferentiable at f = s(τ). Now we will also prove that for vaccination in a completely
susceptible population G(f) is differentiable for all f ∈ [0, 1) for which f 6= f∗. By definition
of the Lambert W function, W (y(f)), this function is differentiable for all y(f) /∈ {0,−1/e}
(Corless et al. 1996). Let G(f) = −1

σ W [y(f)], with y(f) = −σ(s(τ) − f) exp {−σ(s(τ)− f)}
for vaccination in a completely susceptible population (22). Clearly y(f) < 0, since f < s(τ).
Thus, we only need to investigate for which f the function y(f) = − exp{−1}. Note that this
only holds for: σ(s(τ)− f) = 1⇔ f = s(τ)− 1

σ = f∗

(iii). By (4) and (5) G(f) is twice differentiable unless one of the following conditions holds: G(f) =
1
σ , f = s(τ), G(f) = 0. In Theorem S2.1 we showed that G(f) > 0 for all f ∈ [0, 1). By
Theorem S2.2 we know that G(f) < 1

σ for vaccination in an infected population and since
limf↑s(τ)G(f) = 0, part (iii) follows directly.

(iv). For vaccination in a completely susceptible population we showed that G(f) = 1
σ ⇔ f = f∗

in part (ii), which proves part (iv).

Theorem 1. There is a unique vaccination fraction f∗ = max
(
s(τ)− 1

σ , 0
)

that maximizes the
herd effect: the herd effect G(f) is increasing in f for all f < f∗, maximized for f = f∗ and
decreasing for f > f∗.

Proof. By Theorem S2.1 the function G′(f) is not defined for f = s(τ), but we know that
limf↑s(τ)G(f) = 0. We analyze the derivative G′(f) (4). Because G(f) < 1

σ for all f ∈ [0, s(τ)]

(Theorem S2.2), the function G(f) is maximized for f = f∗ = s(τ)− 1
σ . It is increasing for f < f∗

and decreasing for f > f∗. Note that for s(τ) ≤ 1
σ we get f∗ ≤ 0 and thus the function G(f) is

only decreasing in that case.

Lemma S2.2. Let G′′(f) be the second derivative of the function G(f) with respect to f . Then for
i0 > 0 the following holds:

(i). G′′(f) = 0 if and only if G(f) = 2
σ − (s(τ)− f).

(ii). G′′(f) > 0 if and only if G(f) > 2
σ − (s(τ)− f).

(iii). G′′(f) < 0 for f ≥ s(τ) − 1
σ and G′′(f) < 0 if and only if G(f) < 2

σ − (s(τ) − f) for
f < s(τ)− 1

σ .

Proof. We analyze G′′(f) which is presented in (5). Because limf↑s(τ)G(f) = 0 (Theorem S2.1),
the function G′′(f) is not defined for f = s(τ). We prove the three statements of the lemma:

(i). We analyze G′′(f) = 0 and consider that G(f) < 1
σ (Theorem S2.2):

G′′(f) = 0⇔ G(f)2 − [G′(f)(s(τ)− f)]2

(σG(f)− 1)G(f)(s(τ)− f)2
= 0

⇔ G(f)2 −
[
G′(f)(s(τ)− f)

]2
= 0

⇔ G(f)2 =

[
[1− σ(s(τ)− f)]G(f)

[σG(f)− 1]

]2
⇔ [1− σ(s(τ)− f)]2 = [σG(f)− 1]2

(7)
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In the second step we use that (σG(f)− 1)G(f)(s(τ)− f)2 6= 0, which holds for all f < s(τ)
by Theorems S2.1 and S2.2. In the third step we substitute (4). Thus G′′(f) = 0 if and only
if one of the following two relations holds:

1− σ(s(τ)− f) = σG(f)− 1⇔ G(f) =
2

σ
− (s(τ)− f) if f < s(τ)− 1

σ

1− σ(s(τ)− f) = 1− σG(f)⇔ G(f) = (s(τ)− f) if f > s(τ)− 1

σ

By Theorem S2.3 G(f) < (s(τ) − f) which implies that the second relation cannot hold.
Thus, G′′(f) = 0 if and only if the first relation holds. The function G′′(f) = 0 on the
interval

[
0, s(τ)− 1

σ

)
for the value of f which satisfies G(f) = 2

σ − (s(τ)− f).

(ii). Consider the second expression in (5), by Theorems S2.1 and S2.2 we have: (σG(f) −
1)G(f)(s(τ)− f)2 < 0 for f < 1 From (7) we derive:

G′′(f) > 0⇔ G(f)2 −
[
G′(f)(s(τ)− f)

]2
< 0

⇔ G(f)2 <

[
[1− σ(s(τ)− f)]G(f)

[σG(f)− 1]

]2
⇔ [1− σ(s(τ)− f)]2 > [σG(f)− 1]2

Thus G′′(f) > 0 if and only if one of the following two relations hold:

1− σ(s(τ)− f) < σG(f)− 1⇔ G(f) >
2

σ
− (s(τ)− f) if f < s(τ)− 1

σ

1− σ(s(τ)− f) > 1− σG(f)⇔ G(f) > (s(τ)− f) if f ≥ s(τ)− 1

σ

By Theorem S2.3 the second relation cannot hold and thus G′′(f) > 0 if and only if G(f) >
2
σ − (s(τ)− f), which can only hold for f < s(τ)− 1

σ .

(iii). Analogous to the previous proof we have: G′′(f) < 0 ⇔ [1 − σ(s(τ) − f)]2 < [σG(f) − 1]2

Thus, G′′(f) < 0 if and only if one of the following two relations hold:

1− σ(s(τ)− f) > σG(f)− 1⇔ G(f) <
2

σ
− (s(τ)− f) if f < s(τ)− 1

σ

1− σ(s(τ)− f) < 1− σG(f)⇔ G(f) < (s(τ)− f) if f ≥ s(τ)− 1

σ

By Theorem S2.3 the second relation is satisfied and thus G′′(f) < 0 for all f ≥ s(τ) − 1
σ .

For f < s(τ)− 1
σ we have that G′′(f) < 0 if and only if G(f) < 2

σ − (s(τ)− f).

Theorem S2.4. The derivative of G(f) with respect to f , denoted by G′(f), is bounded from above
by 1, i.e., G′(f) < 1 ∀f ∈ [0, s(τ)]

Proof. From (4) we have:

G′(f)

[
1− 1

σG(f)

]
=

1

σ(s(τ)− f)
− 1⇔ G′(f) =

σG(f)

σG(f)− 1
· 1− σ(s(τ)− f)

σ(s(τ)− f)
(8)
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From Lemma S2.2 we note that G′(f) has an extreme under the following condition:

G(f) =
2

σ
− (s(τ)− f) (9)

By contradiction we assume that there exists a vaccination fraction f̄ for which G′(f̄) ≥ 1 and
assume that f̄ meets condition (9), then:

G′(f̄) =
2− σ(s(τ)− f̄)

σ(s(τ)− f̄)
≥ 1⇔ f̄ > s(τ)− 1

σ

We arrive at a contradiction, because by Theorem 1 we have that G′(f) < 0 for all f > s(τ) − 1
σ .

Thus, G′(f) < 1 for all f that are an extreme for G′(f). This completes the proof that G′(f) < 1
for all f ∈ (0, s(τ)). We consider the two boundary cases: f = 0 and f = s(τ). From Lemma S2.1
we know that limf↑s(τ)G

′(f) < 0 and thus the lemma is satisfied for f = s(τ). For limf↓0G
′(f),

we distinguish between three cases:

(i). if G′′(0) = 0: then f = 0 is an extreme of the function G′(f) for which the derivative is
strictly smaller than 1.

(ii). if G′′(0) > 0: then for a very small ε > 0 we have G′(ε) > limf↓0G
′(f) and G′(f) < 1 for all

f ∈ (0, s(τ)]. Thus also limf↓0G
′(f) < 1.

(iii). if G′′(0) < 0: then from Lemma S2.2 we have that G(0) < 2
σ − s(τ). By (6) we have:

lim
f↓0

G′(f) =
1[

1− 1
σG(0)

] ( 1

σs(τ)
− 1)

)

Since G(f) < 1
σ by Theorem S2.2, we have limf↓0G

′(f) < 0 in case s(τ) < 1
σ . In that case

the theorem is satisfied. For s(τ) > 1
σ we substitute G(0) < 2

σ − s(τ) in (6):

lim
f↓0

G′(f) <

[
2− σs(τ)

1− σs(τ)

](
1− σs(τ)

σs(τ)

)
=

2

σs(τ)
− 1 < 1

This completes the proof that G′(f) < 1 for all f ∈ [0, s(τ)].

Theorem 2. There exists a unique vaccination fraction f̄ with 0 ≤ f̄ ≤ f∗ such that G(f) is
strictly convex (G′′(f) > 0) for all f < f̄ and strictly concave (G′′(f) < 0) for all f > f̄ .

Proof. By (5) note that G′′(f) is a continuous function for f < s(τ), because both G(f) and G′(f)
are continuous by Lemma S2.1. Consider the function M(f) = G(f) − 2

σ + (s(τ) − f). From
Lemma S2.2 we have that f̄ must satisfy G(f̄) = 2

σ − (s(τ)− f̄), i.e. M(f̄) = 0. Denote by M ′(f)
the derivative of M(f) with respect to f : By Theorem S2.4 we have M ′(f) < 0. This implies that
M(f) = 0 has only one solution and thus there is only one f̄ for which G′′(f̄) = 0. As G′′(f) is
a continuous function this implies that on either side of f̄ the function G(f) is either convex or
concave.

By Lemma S2.2 we have G′′(f) < 0 for f ≥ s(τ)− 1
σ and thus G(f) is concave for f > f̄ . Since

M ′(f) < 0 and M(f̄) = 0 it holds that M(f) > 0 for f < f̄ . By Lemma S2.2 this implies that
G(f) is convex for all f < f̄ , which proves the convex-concave shape of the function G(f). Note
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that this prove only holds for i0 > 0. In case i0 = 0 we refer to Lemma S2.3. By Lemma S2.2 G(f)
is concave for f ≥ f∗, such that f̄ ≤ f∗. This completes the proof of this theorem.

Lemma S2.3. In case of vaccination in a completely susceptible population, the function G(f) is
convex for all f < f∗ and concave for all f > f∗, where f∗ = s(τ)− 1

σ .

Proof. By Lemma S2.1(ii) we have that G(f∗) = 1
σ for vaccination in a completely susceptible

population. Since the vaccination fraction f∗ also maximizes the function G(f) (Theorem 1), it
holds that G(f) < 1

σ for all f 6= f∗. In Lemma S2.2 we derived conditions for G(f) to be convex
or concave where we needed that G(f) < 1

σ . These conditions can still be used if we apply them
only to f 6= f∗.

G′′(f) > 0⇔ G(f) >
2

σ
− (s(τ)− f) and G′′(f) < 0⇔ G(f) <

2

σ
− (s(τ)− f)

Note that for f∗ we have G(f∗) = 1
σ = 2

σ − (s(τ) − f∗). By Theorem 1 the function G(f) is
decreasing for f > f∗, whereas the expression 2

σ − (s(τ)− f) is increasing in f . This implies that
G(f) is concave for all f > f∗. The function G(f) is increasing for f < f∗, just as the expression on
the right hand side in the conditions for convexity and concavity. By Theorem S2.4 the expression
2
σ − (s(τ) − f) increases with a faster rate than G(f). This implies that G(f) is convex for all
f < f∗.

Theorem 3. For the structure of G(f) we can distinguish three cases based on s(τ), the proportion
of susceptibles at the moment of vaccination τ :

(i) C < s(τ) < 1: We have f∗ > f̄ > 0. Thus G(f) is increasing and convex between 0 and f̄ ,
increasing and concave between f̄ and f∗, and decreasing and concave above f∗.

(ii) 1/σ < s(τ) ≤ C: We have f∗ > 0 and f̄ = 0. Thus G(f) is increasing and concave between
0 and f∗, and decreasing and concave above f∗.

(iii) 0 ≤ s(τ) < 1/σ: We have f̄ = f∗ = 0. Thus G(f) is decreasing and concave everywhere.

Proof. From Theorem 2 it follows that f̄ ≤ f∗. It therefore suffices to proof the following two steps:

(a) f∗ > 0 if s(τ) > 1/σ and f∗ = 0 otherwise.

(b) f̄ > 0 if s(τ) > C and f̄ = 0 otherwise.

The proof is given below:

(a) This follows directly from Theorem 1: f∗ = max
(
s(τ)− 1

σ , 0
)
.

(b) We start from deriving the value C. By Theorem 2 the function G(f) has a convex and a
concave part for certain parameter settings. By Lemma S2.2 the following condition must
hold for G(f) to be convex: G(f) > 2

σ −(s(τ)−f). Since G(f) is convex for all values f below
a certain threshold, the following condition requires that the function G(f) has a convex part:

G(0) >
2

σ
− s(τ) (10)
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We solve above inequality with equality to obtain the value C. By substituting in (3) this
results in the following, where H(x) = −x+ 1

σ log(x):

0 = − 2

σ
+ s(τ) +

1

σ
log

(
2

σ
− s(τ)

)
+ s0 + i0 −

1

σ
log(s0)

H

[
2

σ
− s(τ)

]
= H[s0]− i0

s(τ) =
W [−σ exp{kσ}] + 2

σ
= C with k = H[s0]− i0

We know that −1 < W [−σ exp{kσ}] < 0 (cf. Appendix S5) and thus 1
σ < C < 2

σ . Note that
for s(τ) ≤ 1

σ condition (10) is never met by Theorem S2.2. By Theorem S2.1 the condition
is always met for s(τ) ≥ 2

σ . Thus only for s(τ) > C the function G(f) has a convex part and
for s(τ) = C we have f̄ = 0.

This completes the proof of this theorem.

S2.3 The dose-optimal vaccination fraction

We present the dose-optimal vaccination fraction f̃ and relate it to the vaccination fractions f∗ and
f̄ as defined in Theorem 1 and Theorem 2 respectively.

Corollary 1. The function D(f) as defined by (4) is maximized by the unique vaccination fraction
f̃ for which G′(f̃) = D(f̃). The function D(f) is increasing for f < f̃ and decreasing for f > f̃ .

Proof. The function D(f) is defined as follows: D(f) = 1
f [G(f)−G(0)].

d

df
D(f) =

1

f

[
G′(f)−D(f)

]
d2

df2
D(f) =

1

f
G′′(f)− 2

f2
[G′(f)−D(f)]

By the first derivative of D(f), f̃ is clearly an extreme of the function D(f). Observe that in the
limit f ↓ 0 is always a solution of the condition G′(f̃) = D(f), by limit definition of the one-sided
derivative. For parameter settings for which the function G(f) does not have a convex part, the
function D(f) is maximized for f = 0. Namely, in that case G(f) is concave, meaning that the
slope of G(f) is decreasing in f . The average slope on the interval [0, f ], measured by D(f), is
then also decreasing. Analogously, D(f) is increasing as long as G(f) is convex. This implies that
f = 0 cannot maximize the function D(f) if G(f) has a convex domain and that f̃ is in the concave
domain of G(f).

Assume that f̃ is the first value in the concave domain for which G′(f̃) = D(f). Because of
concavity it holds that G(f) for all f > f̃ is below the line through G(0) and G(f̃). For all f > f̃
this implies:

1

f
[G(f)−G(0)] <

1

f̃

[
G(f̃)−G(0)

]
Let f1 be an arbitrarily selected value greater than f̃ . Because of concavity the function G(f) for
all f > f1 is below the line through G(0) and G(f1). This implies that D(f) is decreasing for f > f̃ .
Thus, there is only one strictly positive solution for the condition G′(f) = D(f), which is in the
concave and increasing domain of G(f). By the second derivative of D(f), f̃ gives a maximum.
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Lemma 1. Consider the following three vaccination fractions: f∗ as defined in Theorem 1, f̄ as
defined in Theorem 2 and f̃ as defined in Corollary 1. The following relation holds: f̄ ≤ f̃ ≤ f∗

Proof. By Lemma S2.2 we know that G′′(f) ≤ 0⇔ G(f) ≤ 2
σ − (s(τ)−f). Filling in the expression

for f∗ = s(τ)− 1
σ results in G(f∗) ≤ 1

σ . This clearly holds by Theorem S2.2 and thus f̄ ≤ f∗, due to

Theorem 2. The optimal vaccination fraction f̃ is defined as the fraction that maximizes the function
D(f) and meets the condition G′(f̃) = D(f̃). Observe that D(f̃) ≥ 0, because limf↓0D(f) = 0
and f̃ maximizes D(f). This implies that G′(f̃) ≥ 0 and thus f̃ ≤ f∗ by Theorem 1. By argument
we showed in Corollary 1 that f̃ cannot be in the convex domain of the function G(f), such that
f̄ ≤ f̃ . This completes the proof of this lemma.

Lemma S2.4. For increasing σ the dose-optimal vaccine fraction f̃ converges to f∗.

Proof. The basic reproduction ratio is denoted by σ. By Lemma 1 it suffices to show that
limσ↑+∞ f

∗ − f̄ = 0. By definition we have limσ↑+∞ f
∗ = limσ↑+∞ s(τ) − 1

σ = s(τ). Clearly, for
σ ↑ +∞ and f̄ = s(τ) the condition G(f̄) = 2

σ − (s(τ) − f̄) is satisfied, as limf↑s(τ)G(f) = 0 by
Theorem S2.1. This completes the proof.

Lemma S2.5. In case of vaccination in a completely susceptible population f̄ = f̃ = f∗.

Proof. This result follows directly from Lemma 1 and Lemma S2.3.

S2.4 The best vaccination moment

In Section 4.5 we state that it is optimal to vaccinate as early as possible in an ideal world. We
prove this in the following lemma.

Lemma S2.6. The herd effect G(f) is increasing in s(τ).

Proof. Let G′s(τ)(f, s(τ)) be the derivative of G(f, s(τ)) with respect to s(τ):

G′s(τ)(f, s(τ))

[
1− 1

σG(f, s(τ))

]
=

−f
σs(τ)[s(τ)− f ]

Observe that the objective function is increasing in s(τ), because G(f, s(τ)) < 1
σ by Theorem S2.2.

Therefore, to maximize the herd effect one should vaccinate as soon as possible, i.e., when s(τ) is
as high as possible.

Appendix S3 Generality of the function G(f)

One of the extensions to the standard SIR compartmental model, is the SInR model with n
different consecutive infectious stages. Let s(t) and r(t) denote the fraction of people respectively
susceptible and removed at time t. The fractions of people susceptible in every state are given by
ik(t) for k = 1, ..., n. Interpretation dictates that s(t) +

∑n
k=1 ik(t) + r(t) = 1 for all t. Let βk and

γk denote respectively the transmission rate and recovery rate in infectious stage k. The differential
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equations for the SInR model are:

ds

dt
= −s

n∑
k=1

βkik

di1
dt

= s
n∑
k=1

βkik − γ1i1

dik
dt

= γk−1ik−1 − γkik k = 2, ..., n

dr

dt
= γnin

(11)

Hyman et al. (1999) prove that R0 =
∑n

k=1
βk
γk

for this model, with R0 denoting the basic repro-
duction ratio.

Theorem S3.1. Up to a constant, the expression for G(f) given in (3) also applies to the SInR
model with σ =

∑n
k=1

βk
γk

.

Proof. The following relation can be derived from (11), using σ =
∑n

k=1
βk
γk

. Analogous to Ma

and Earn (2006) we define Gk(t) =
∑n

j=k+1 ij(t) + r(t), Gn(t) = r(t). From (11) this implies that
d
dtGk(t) = γkik. ∫ ∞

0

1

s(t)
ds =−

n∑
k=1

βk

∫ ∞
0

ik(t)dt⇔

log(s(t))− log(s(0)) =−
n∑
k=1

βk
γk

[Gk(t)−Gk(0)]

=σ

[
s(t) +

n∑
k=1

ik(t)

]
− σ

[
s(0) +

n∑
k=1

ik(0)

]

−
n∑
k=1

βk
γk

[
n∑

m=k+1

im(t)− im(0)

]
(12)

We let t → ∞ and use that ik(∞) = 0 for k = 1, ..., n. This results in the following expression,
which is equal to the expression for the SIR (3) model up to a constant:

0 = −s(∞) +
1

σ
log(s(∞))− 1

σ
log(s(0)) + s(0) +

n∑
k=1

ik(0)− 1

σ

n∑
k=1

βk
γk

n∑
m=k+1

im(0) (13)

We vaccinate a fraction f of the population at time τ . Analogous to the analysis of the SIR
model, we let (s(τ)− f, i1(τ), ..., in(τ)) be a new initial state and define the value s(∞) according
to (13). The values for ik(τ) for k = 1, ..., n can be calculated according to (12). We define
G(f) = limt→∞ s(t), where s(t) follows (11) for t > τ . This results in the following:

0 =−G(f) +
1

σ
log(G(f))− 1

σ
log

(
s(0)

(
1− f

s(τ)

))
+ s(0) +

n∑
k=1

ik(0)

− f − 1

σ

n∑
k=1

βk
γk

n∑
m=k+1

im(0)

(14)

10



Above expression equals the expression for the SIR model (3) up to the final term, which is a
constant.

Lemma 2. The results of Theorem 1, Theorem 2, Theorem 3 and Corollary 1 also apply to the
SInR model with σ =

∑n
k=1

βk
γk

. In particular, for each SInR model with given initial conditions

there exist vaccination fractions f̄ , f̃ and f∗ that together characterize the convex-concave and
increasing-decreasing shape of the herd effect.

Proof. By Theorem S3.1 the expression for G(f) in the SInR model is equal to the expression in
the SIR model up to a constant. This constant disappears after taking the derivative, implying
that the first and second order derivative do not change. The structural properties of the function
G(f) thus carry over.

Appendix S4 Optimal vaccine allocation - Theorems and proofs

In this appendix we characterize the optimal solution to the vaccine allocation problem of Sec-
tion 3.3. We first derive a basic result in Section S4.1: that it is suboptimal to leave vaccines
unused. The main derivation of the optimality conditions is presented in Section S4.2.

S4.1 The total effect of vaccination

We formally show that it is optimal to use the entire available vaccine stockpile. Thereto we define
the function Fj(fj) as the total effect of vaccinating with a fraction fj in population j:

Fj(fj) = Gj(fj) + fj (15)

Observe that the dose-optimal vaccination fraction f̃ as defined by Corollary 1 does not only
result in the highest additional herd effect per dose of vaccine, but also in the highest additional
total effect per dose of vaccine. Formally, f̃ also maximizes the average slope of the total effect
F (f) on the interval [0, f ], calculated as [F (f) − F (0)]/f . As vaccinating with the fraction f̃ is
very efficient per dose of vaccine, the optimal allocation tries to allocate as close as possible to f̃
in a subset of all the populations as can be seen in Theorem 5.

Theorem S4.1. The fraction of people not infected during the epidemic, Fj(fj) = Gj(fj) + fj, is
increasing in fj for all fj ∈ [0, sj(τ)).

Proof. We prove this theorem for a single population and therefore drop the subscript j in the
proof. Let F ′(f) denote the derivative of F (f) with respect to f :F ′(f) = d

dfF (f) = G′(f) + 1. By

Theorem 1 G′(f) > 0 for all f < s(τ)− 1
σ and G′(f) < 0 for all f > s(τ)− 1

σ . Hence, the function
F (f) is increasing for all f < s(τ)− 1

σ . F (f) is increasing under the following condition:

F ′(f) = G′(f) + 1 =
σG(f)

σG(f)− 1

[
1

σ(s(τ)− f)
− 1

]
+ 1

=
1

σG(f)− 1

[
G(f)

(s(τ)− f)
− 1

]
> 0

By Theorem S2.2 F ′(f) > 0 if and only if G(f) < (s(τ)− f), which holds by Theorem S2.3 for all
f ∈ [0, s(τ)). Thus the function F (f) is increasing for all f ∈ [0, s(τ)).
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Because the functions Fj(fj) are all non-decreasing there always exists an optimal solution for
which all available vaccines are used:

Lemma S4.1. The vaccine allocation problem always has an optimal solution for which
∑

j∈J fjNj =
V .

Proof. Let xj for all j ∈ J be a solution of the vaccine allocation problem and assume that∑
j∈J xjNj < V . Let yj for all j ∈ J be the solution for which yj ≥ xj for all j ∈ J , such that∑
j∈J yjNj = V . By Lemma S4.1 the functions Fj(f) are non-decreasing and thus Fi(yi) ≥ Fj(xj)

for all j ∈ J . This implies that:
∑

j∈J NjFj(yj) ≥
∑

j∈J NjFj(xj). Hence, the proposed solution yj
for all j ∈ J for which

∑
j∈J yjNj = V is also an optimal solution.

S4.2 Optimality conditions

Theorem 2 establishes that resource allocation Problem (3) is a knapsack problem with S-shaped
return functions: non-decreasing and convex for all x smaller than some value x̂ and concave for
all x > x̂ (cf. Ginsberg (1974) and Ağralı and Geunes (2009)). As the vaccine allocation problem
is a maximization problem with inequality constraints, necessary conditions for the optimum are
given by the Karush-Kuhn-Tucker (KKT) conditions. Let δ be the KKT multiplier for the capacity
constraint, λj for the non-negativity constraint fj ≥ 0 for all j ∈ J and µj for the constraint fj ≤
sj(τ) for all j ∈ J . Denote by f ,λ, µ the vectors with the variables fj , λj and µj respectively. Let
L(f ,λ, µ, δ) denote the Lagrange function of the maximization problem. The KKT conditions for
this problem are given in (16). Observe that the marginal efficiency ω as introduced in Section 5.1
follows from the KKT condition that the partial derivative of L(f ,λ, µ, δ) with respect to fj equals
0 for all j ∈ J .

L(f ,λ, µ, δ) =
∑
j∈J

NjFj(fj)− δ

∑
j∈J

fjNj − V

−∑
j∈J

(µj(fj − sj(τ))− λjfj)

∂

∂fj
L(f ,λ, µ, δ) = 0 ∀j ∈ J

δ

∑
j∈J

fjNj − V

 = 0 δ ≥ 0

λjfj = 0 ∀j ∈ J λj ≥ 0 ∀j ∈ J
µj(fj − sj(τ)) = 0 ∀j ∈ J µj ≥ 0 ∀j ∈ J

(16)

We analyze the solution to (3) using the KKT conditions. We first present the solution to the
general problem in Theorem S4.2. In Lemma S4.2 and Lemma S4.3 we discuss two simplifications.
These enable us to proof the Central Insight in Theorem 4.

Theorem S4.2. For every optimal solution to (3) there exist J ′ ⊆ J , k ∈ J ′ and ω ≥ 0 such that:

(i). For all j ∈ J ′ \ {k}, fj is the unique solution to G′j(fj) = ω for which fj ≥ f̄j.

(ii). G′k(fk) = ω, and either fk is the unique solution to this equation for which fk ≥ f̄k or fk is
the unique solution for which fk < f̄k.

(iii). Either fj = 0 or fj = sj(τ) for every j ∈ J \ J ′.

12



Proof. The proof of this theorem consists of the following steps:

(a). Let J ′ ⊆ J such that 0 < fj < sj(τ) for all j ∈ J ′. We prove that G′j(fj) = ω for all j ∈ J ′.

(b). We prove that for at most one population there is a strictly positive vaccination fraction in
the strictly convex domain, i.e. 0 < fk < f̄k for at most one k ∈ J ′.

We proof the two steps consecutively:

(a). This result follows from the KKT conditions. Note that for any population j for which
0 < fj < sj(τ) the KKT conditions require that µj = 0 and λj = 0. This gives the following:

∂

∂fj
L(f ,λ, µ, δ) = NjF

′
j(fj)− δNj − µj + λj

= Nj

[
F ′j(fj)− δ

]
= 0⇔ F ′j(fj) = G′j(fj) + 1 = δ

Hence, G′j(fj) = ω, with ω = δ − 1.

(b). By contradiction assume there is an optimal solution with at least two strictly positive
variables in the convex domain. W.l.o.g. let 0 < fj < f̄j for j = 1, 2, i.e. the
functions F1(f) and F2(f) are convex at respectively f1 and f2. Choose an 0 < ε <

min
{
f1, f2

N2
N1
, f̄1 − f1, (f̄2 − f2)N2

N1

}
and let δ = εN1

N2
such that:

f1N1 + f2N2 = (f1 + ε)N1 + (f2 − δ)N2

By the KKT conditions F ′1(f1) = F ′2(f2) and by convexity of F1(f1) and F2(f2) the following
can be derived:

N1F1(f1 + ε) +N2F2(f2 − δ) > N1F1(f1) +N2F2(f2) + εN1[F
′
1(f1)− F ′2(f2)]

= N1F1(f1) +N2F2(f2)

Above relation shows that the objective function can be improved by a small change in the
allocation. Thus, a solution with more than one strictly positive variable in the convex domain
can never be optimal.

Lemma S4.2. If sj(τ) > 1
σj

for all j ∈ J , then there is no optimal solution to (3) for which fj = 0

and fk = sk(τ) for two populations j, k ∈ J . This implies that (iii) of Theorem S4.2 changes into:
Either fj = 0 for all j ∈ J \ {J ′ ∪ {k}} or fj = sj(τ) for all j ∈ J \ {J ′ ∪ {k}}.

Proof. By contradiction assume that f1 = 0 and f2 = s2(τ) w.l.o.g. Let ε > 0 and δ = εN1
N2

< 1
such that:

f1N1 + f2N2 = (f1 + ε)N1 + (f2 − δ)N2

The following holds:

N1F1(ε) +N2F2(s2(τ)− δ)−N1F1(0)−N2F2(s2(τ))

= N1[G1(ε)−G1(0)] +N2[G2(s2(τ)− δ)−G2(s2(τ))] > 0

For sj(τ) > 1
σj

the function Gj(f) is initially increasing by Theorem 1, implying that G1(ε) > G1(0).

Furthermore, by Theorem S2.1 Gj(fj) > 0 for all 0 ≤ fj < sj(τ) and limfj↑sj(τ)Gj(fj) = 0. This
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implies that G2(s2(τ)−δ) > G2(s2(τ)). Thus, a small change in allocation can improve the solution.
We arrive at a contradiction which completes the proof of this lemma.

Lemma S4.3. If sj(τ) > 1
σj

for all j ∈ J and V ≤
∑

j∈J Njf
∗
j then there is no optimal solution to

(3) with fj = sj(τ) for some j ∈ J . This implies that (iii) of Theorem S4.2 changes into: fj = 0
for all j ∈ J \ {J ′ ∪ {k}}.

Proof. By contradiction assume that there is a population k ∈ J for which fk = sk(τ) in the optimal
solution. Since sk(τ) > 1

σk
this implies that fk > f∗k = sk(τ)− 1

σk
. Because V ≤

∑
j∈J Njf

∗
j there

must also be a population l for which fl < f∗l in the optimal allocation. Let ε > 0 be sufficiently

small such that fl + ε < f∗l and fk − ε Nl
Nk

> f∗k . Then the following holds, where the inequality
follows from Theorem 1:

NlFl(fl + ε) +NkFk

(
sk(τ)− ε Nl

Nk

)
−NlFl(fl)−NkFk(sk(τ))

Nl [Gl(fl + ε)−Gl(fl)] +Nk

[
Gk(sk(τ))−Gk

(
sk(τ)− ε Nl

Nk

)]
> 0

A small change in allocation can improve the solution. Hence, there cannot be an optimal solution
with fj = sj(τ) for some j ∈ J . We arrive at a contradiction which proves the first part of this
lemma. The implication then directly follows from Lemma S4.2.

Theorem 4. Every optimal solution to (3) can be characterized as follows:

(i). A subset of populations J ′ ⊆ J is vaccinated with the regular fraction that corresponds to
marginal efficiency ω.

(ii). Possibly another population k is also vaccinated with marginal efficiency ω, but with the
exceptional fraction for which fk < f̄k.

(iii). The remaining populations are not vaccinated at all.

Proof. This theorem can be reformulated more analytically as follows: For every optimal solution

to (3) there exist J ′ ⊆ J , k ∈ J ′ and ω ≥ 0 such that:

(i). For all j ∈ J ′ \ {k}, fj is the unique solution to G′j(fj) = ω for which fj ≥ f̄j .

(ii). G′k(fk) = ω, and either fk is the unique solution to this equation for which fk ≥ f̄k or fk is
the unique solution for which fk < f̄k.

(iii). fj = 0 for all j ∈ J \ J ′.

The proof then follows directly from Theorem S4.2, Lemma S4.2 and Lemma S4.3.

Theorem 5. Consider a set of populations J with ∀j: Gj(f) = G(f) and a total available amount
of resources equal to V . Let |J | = n and order the populations such that N1 ≤ ... ≤ Nn. The
optimal allocation for particular cases is as follows:

(a). if V < f̃N1, then allocate only to the smallest population. Set f1 = V/N1 and fj = 0 for
j = 2, ..., n.
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(b). if V =
∑

j∈K f̃Nj for a subset K ⊆ J , then set fj = f̃ for j ∈ K and fj = 0 for j /∈ K.

(c). if V >
∑

j∈J f̃Nj, then allocate pro rata over all the populations: fj = V∑
j∈J Nj

for all j ∈ J .

Proof. This proof uses ideas that are also used in the proof of Proposition 1 of Ginsberg (1974).

(a). Step (b) in the proof of Theorem S4.2 shows that an optimal allocation results in at most
one strictly positive vaccination fraction in the convex domain. By this result, the proposed
allocation follows directly from convexity of the function G(·) for all f < f̄ < f̃ .

(b). The proposed allocation results in the maximum attainable value for the objective function
for V available vaccines and is thus optimal.

(c). We prove the optimality of the proposed allocation using the items of Theorem S4.2. More
precisely, regarding item (iii) we show that fj = s(τ) cannot occur for any j ∈ J ′ and we
analyze the two types of strategies that remain. Consider item (iii): for the special case of
identical parameters it holds that sj(τ) := s(τ) for all j ∈ J . We can show that an allocation
with fj = s(τ) and fk < s(τ) for arbitrary populations j, k ∈ J cannot be optimal:

NjF (fj − ε) +NkF

(
fk + ε

Nj

Nk

)
−NjF (fj)−NkF (fk) = εNj(F

′(fk)− F ′(fj)) > 0

The inequality follows because of the structure of the function F (·). Thus, it is not optimal to
set fj = s(τ) for some j ∈ J . Using this result, there are two possible allocations remaining
by Theorem S4.2:

(i) Either the amount V is allocated pro rata over the populations in K ⊆ J . i.e., fj =
V∑

j∈K Nj
= x̂ and fj = 0 for all j /∈ K.

(ii) Or an amount ξ is allocated to one population k and the remaining (V − ξ) is allocated
pro rata over all populations in I ⊆ J\{k}. i.e., fk = ξ/Nk, fj = V−ξ∑

j∈I Nj
= ŷ for j ∈ I

and fj = 0 for all j /∈ I ∪ {k}.

First we consider scheme (i) and prove that it is optimal to allocate pro rata over all popu-
lations, i.e., we show that it is optimal to let K equal J . Let zj and xj respectively denote
the pro rata allocation over K ⊂ J and over J , such that zj = ẑ = V∑

j∈K Nj
for all j ∈ K and

xj = x̂ = V∑
j∈J Nj

for all j ∈ J . Note that ẑ > x̂ > f̃ , because V >
∑

j∈J Nj f̃ by assumption.

This implies the following inequality by Corollary 1:

[F (ẑ)− F (0)]/ẑ < [F (x̂)− F (0)]/x̂

⇔
∑
j∈K

NjF (ẑ)−
∑
j∈K

NjF (0) <
∑
j∈J

NjF (x̂)−
∑
j∈J

NjF (0)

⇔
∑
j∈K

NjF (ẑ) +
∑
j /∈K

NjF (0) <
∑
j∈J

NjF (x̂)

The first equivalence follows by substituting the definitions of x̂ and ẑ and the second equiv-
alence follows by rearranging terms. The last inequality shows precisely that allocating pro
rata over all populations gives a higher objective value than allocating pro rata over K ⊂ J .

Second, we now consider allocation scheme (ii), in which an amount of ξ is allocated to
population k and the remaining V − ξ is allocated pro rata over I ⊆ J\{k} to reach a
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vaccination fraction ŷ. We will show that allocation scheme (ii) will never be superior to
allocation scheme (i), in which the latter allocates pro rata over all populations to reach a
vaccination fraction x̂. By contradiction we assume that allocation (ii) is optimal and thus
better than allocation (i).

We first show that the vaccination fraction x̂ in allocation (i) is smaller than the vaccination
fraction ŷ in allocation (ii). By Theorem S4.2 ξ/Nk lies in the convex domain of F (·), which
implies ξ/Nk < f̄ < f̃ . We also know that f̃ < x̂ ≤ 1

Nk
(
∑

j∈J Nj −
∑

j∈I Nj)x̂, where the

first inequality follows because x̂ > f̃ by V >
∑

j∈J Nj f̃ and the second inequality because
I ⊆ J\{k}. By combining the inequalities, we have that:

ξ/Nk <
1

Nk
(
∑
j∈J

Nj −
∑
j∈I

Nj)x̂

⇔ ξ
∑
j∈J

Nj < V
∑
j∈J

Nj − V
∑
j∈I

Nj

⇔ V∑
j∈J Nj

<
V − ξ∑
j∈I Nj

The first equivalence follows from x̂ = V∑
j∈J Nj

and in the second equivalence we rewrite

terms. Note that the last inequality is precisely x̂ < ŷ.

We now compare allocation (i) and (ii). Under the assumption that (ii) is better than (i), the
following must hold:

NkF (ξ/Nk) +
∑
j∈I

NjF (ŷ) +
∑

j /∈I∪{k}

NjF (0) >
∑
j∈J

NjF (x̂)

⇔NkG(ξ/Nk) +
∑
j∈I

NjG(ŷ) +
∑

j /∈I∪{k}

NjG(0) >
∑
j∈J

NjG(x̂)
(17)

The equivalence above follows from the fact that both allocations allocate the same amount
of vaccines, i.e., the direct effect is the same. Hence, it suffices to consider the herd effect
instead of the total effect. (17) implies the following:

NkG

(
ξ

Nk

)
+
∑
j∈I

Nj

[∫ ŷ

0
G′(f)df +G(0)

]
+

∑
j /∈I∪{k}

NjG(0) >
∑
j∈J

Nj

[∫ x̂

0
G′(f)df +G(0)

]

⇔ NkG

(
ξ

Nk

)
+
∑
j∈I

Nj

∫ ŷ

0
G′(f)df >

∑
j∈J

[
Nj

∫ x̂

0
G′(f)df

]
+NkG(0)

⇔
∑
j∈I

Nj

[∫ ŷ

0
G′(f)df −

∫ x̂

0
G′(f)df

]
>
∑
j /∈I

[
Nj

∫ x̂

0
G′(f)df

]
−Nk

[
G

(
ξ

Nk

)
−G(0)

]

⇔
∑
j∈I

Nj

∫ ŷ

x̂
G′(f)df >

∑
j /∈I

Nj [G(x̂)−G(0)]−Nk

[
G

(
ξ

Nk

)
−G(0)

]
(18)

The equivalences above follow from rearranging, cancelling and recombining terms. By
Lemma 1 f̃ is in the concave domain, which also holds for all f > f̃ . Since ŷ > x̂ > f̃
it holds that G′′(ŷ) < 0 and G′′(x̂) < 0. This implies that (ŷ − x̂)G′(x̂) >

∫ ŷ
x̂ G

′(f)df . We
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thus have the following:

∑
j∈I

Nj [(ŷ − x̂)G′(x̂)] >
∑
j∈I

Nj

∫ ŷ

x̂
G′(f)df

>
∑
j /∈I

Nj [G(x̂)−G(0)]−Nk[G(ξ/Nk)−G(0)]

>
∑
j /∈I

NjG
′(x̂)x̂−Nk[G(ξ/Nk)−G(0)]

(19)

The second inequality follows from (18) and in the last inequality we use that [G(f) −
G(0)]/f > G′(f) for all f > f̃ by Corollary 1. The three inequalities in (19) together
establish that:

.

∑
j∈I

Nj(ŷ − x̂)G′(x̂) >
∑
j /∈I

NjG
′(x̂)x̂−Nk[G(ξ/Nk)−G(0)]

⇔ G′(x̂)

∑
j∈I

Nj(ŷ − x̂)−
∑
j /∈I

Nj x̂

 > −Nk[G(ξ/Nk)−G(0)]

⇔ −ξG′(x̂) > −Nk[G(ξ/Nk)−G(0)]

⇔ G′(x̂) < [G(ξ/Nk)−G(0)]/(ξ/Nk)

(20)

The first equivalence follows from rearranging terms and the second by definition of x̂ and ŷ.
The third equivalence follows from multiplying both sides of the inequality with −1/ξ.

We will now show that the last inequality in (20) will lead to a contradiction. Because
the function G(·) is convex at ξ/Nk we have that [G(ξ/Nk) − G(0)]/(ξ/Nk) < G′(ξ/Nk).
Thus, under the assumption that (ii) is optimal it must hold that G′(x̂) < G′(ξ/Nk) by the
last inequality of (20). If allocation (ii) is optimal we also have that G′(ξ/Nk) = G′(ŷ) by
Theorem S4.2, and thus that G′(x̂) < G′(ŷ). However, because x̂ < ŷ and both fractions are
in the concave domain of the function G(·) it holds that G′(x̂) > G′(ŷ). We thus arrive at a
contradiction, which implies that allocation scheme (ii) can never be better than allocation
scheme (i) for V >

∑
j∈J Nj f̃ . Thus, the optimal allocation for V >

∑
j∈J Nj f̃ is allocation

(i): i.e., the pro rata allocation over all populations in J . This completes the proof of part
(c) of this theorem.

Appendix S5 The Lambert W function

This appendix considers the Lambert W function, or product log function (cf. Corless et al. (1996)).
This function is denoted by W (x) and solves:

x = W (x)eW (x). (21)
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The herd effect G(f) can be expressed using the Lambert W function:

G(f) =
−1

σ
W (−σ exp{−σB(f)})

with B(f) = s0 + i0 −
1

σ
log

(
s0

(
1− f

s(τ)

))
− f

(22)

which can be verified by substituting (22) into (21), which leads to (3). In this study we consider
only real valued x and the function W (x) is then defined only for x ≥ −1

e . For x ∈ [−1
e , 0] the

function W (x) has two values, but two branches of W (x) can be defined that are both single
valued. The constraint W (x) ≤ −1 can be added to construct the branch W−1(x) defined only for
x ∈ [−1

e , 0]. The other branch W0(x) holds for all x ≥ −1
e and meets the constraint W (x) ≥ −1.

This branch is also referred to as the principal branch, denoted by Wp(x).

Let G(f) = −1
σ W [y(f)], with y(f) = −σs0

(
1− f

s(τ)

)
exp {−σ(s0 + i0 − f)} (22). We will

study y(f) in more detail to determine which branch of the Lambert W function is needed for the
calculation of G(f).

Theorem S5.1. −1
e ≤ y(f) ≤ 0

Proof. We can easily see that y(f) ≤ 0, because σ > 0, s0 > 0 and f ≤ s(τ). Analyze the extreme
values of y(f):

d

df
y(f) = σs0 exp {−σ(s0 + i0 − f)}

[
1

s(τ)
− σ

(
1− f

s(τ)

)]
= 0⇔ f = s(τ)− 1

σ

It suffices to show that y(f) ≥ −1
e for f = s(τ)− 1

σ :

− s0
s(τ)

exp{−σ(s0 + i0 − s(τ))− 1} ≥ −1

e

log(s0)− σ (s0 + i0 − s(τ)) ≤ log(s(τ))

0 ≤ −s(τ) +
1

σ
log(s(τ)) + s0 + i0 −

1

σ
log(s0)

By (2) above relation holds, because i(τ) ≥ 0.

By Theorem S2.2 we know that G(f) < 1
σ and thus −1 < W (−σ exp{−σB(f, σ)}) < 0. By

Theorem S5.1 only the principal branch W0(x) is needed when using the Lambert W function for
G(f) in (22).

Appendix S6 Interacting populations

In Section 5.4 the optimal allocation is analyzed for geographically distant populations that interact
with each other. We use the same initial states and population sizes as in Section 5.3.

In this appendix we study the relative performance of ignoring interaction by either using
the optimal allocation for non-interacting populations or by using the equitable allocation, which
allocates pro rata over all populations. In Figure 1 we illustrate the performance of these two
solutions relative to the optimal allocation for the interacting case. We evaluate the additional
herd effect and observe that the non-interacting solution performs close to optimal and outperforms
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the equitable allocation. Note that the additional herd effect becomes negative for large vaccine
stockpiles, because vaccinating many people leaves very few people susceptible. This implies that
herd effect can be lower for large vaccine stockpiles than for no vaccination, resulting in a negative
additional herd effect.

Figure 1: The left figure illustrates the relative performance of the optimal allocation for the
non-interacting case (Figure 7) and the equitable pro rata allocation evaluated in the model as
described in Section 5.4 with interactionfactor c = 0.01. We evaluate the additional herd effect for
vaccine stockpiles up to size 550, because the right figure shows that for larger vaccine stockpiles
the additional herd effect becomes negative.

We also study the optimal allocation for increasing levels of interaction. Figures 2, 3, 4 and
5 display the optimal allocation in case interaction between populations is respectively 0.01, 0.02,
0.05 and 0.1 times the interaction within a population. This corresponds to interaction between
populations being a factor 100, 50, 20 or 10 times weaker than interaction within a population.
The figures are discussed in Section 5.4.

Each of the graphs present the optimal vaccine allocation (the solid lines) over three interact-
ing populations for different sizes of vaccine stockpile. The dashed and dotted lines indicate the
important vaccination fractions: the dashed line in the middle equals Ṽj = f̃jNj , the upper dotted
line equals V ∗j = f∗jNj and the lower dotted line equals V̄j = f̄jNj .
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Figure 2: The graphs present the optimal vaccine allocation (the solid lines) over three interacting
populations for different sizes of vaccine stockpile. The dashed and dotted lines indicate the im-
portant vaccination fractions: the dashed line in the middle equals Ṽj = f̃jNj , the upper dotted
line equals V ∗j = f∗jNj and the lower dotted line equals V̄j = f̄jNj .
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Figure 3: The optimal allocation in case interaction between populations is 0.02 times the interac-
tion within a population.

21



Figure 4: The optimal allocation in case interaction between populations is 0.05 times the interac-
tion within a population.
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Figure 5: The optimal allocation in case interaction between populations is 0.1 times the interaction
within a population.
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