ABC transporters control ATP release through cholesterol-dependent volume-regulated anion channel activity

Patrick J. Dunn, Elizabeth J. Salm, and Susumu Tomita

A list of materials included

Figure S1. The exonuclease inhibitor did not alter hypotonicity-induced calcium responses

Figure S2. M_βCD treatment reduces filipin fluorescence intensity

Figure S3. The cellular cholesterol level controls ATP release

Figure S4. MDCK cells did not release ATP upon hypotonic stimulation

Figure S1. The exonuclease inhibitor did not alter hypotonicity-induced calcium responses *A* and *B*, HEK cells transfected transiently with RFP (*A*) or ABCG1 (*B*) were preincubated with an exonuclease inhibitor, 100 μ M ARL67156, and calcium responses were measured after hypotonic stimulation (final, 250 mmol/kg). The exonuclease inhibitor did not alter hypotonicity-induced calcium responses. Traces and quantifications of peak calcium responses (Δ F/F) with error bars are shown (n = 4). Data are mean ± standard deviation.

Figure S2. M_βCD treatment reduces filipin fluorescence intensity

HEK293 cells were treated with 5 mM methyl-beta cyclodextrin (M β CD) for one hour at 37°C for cholesterol depletion. Filipin staining was performed using the cell-based cholesterol detection assay kit (Cayman Chemical) before images were taken using a DeltaVision microscope equipped with an oil Plan Apo N 60x/1.42 NA objective (Olympus). *A*, representative images of filipin fluorscence in HEK cells treated with vehicle or M β CD *B*, filipin fluorescence intensity was quantified by line scanning of individual HEK cells (18 cells from 3 experiments each). M β CD treatment reduced filipin signal. Data are mean ± standard deviation; unpaired t test (*B*); ***p < 0.001.

Figure S3. The cellular cholesterol level controls ATP release

ATP release induced by hypotonicity (final, 250 mmol/kg) from HEK cells incubated with various concentrations of methyl-beta-cyclodextrin (M β CD) for cholesterol depletion or cholesterol mixed with M β CD for cholesterol repletion (n=6).). One-way ANOVA followed by Tukey's test with pairwise comparisons made to vehicle alone (0 mM); F(8,45) = 204.3, p < 0.001. Data are mean ± standard deviation; *p < 0.05, ***p < 0.001

