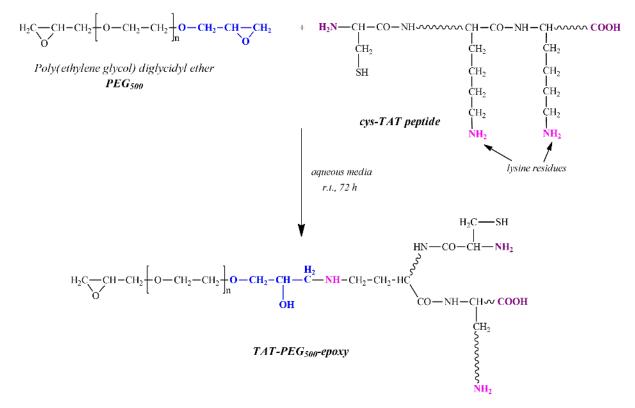
SUPPLEMENTARY INFORMATION

Effect of TAT-DOX-PEG irradiated gold nanoparticles conjugates on human osteosarcoma cells

Raoul V. Lupusoru,^{1,#} Daniela A. Pricop,^{2,#} Cristina M. Uritu,^{3,4,*} Adina Arvinte,³ Adina Coroaba,^{3,*} Irina Esanu,⁵ Mirela F. Zaltariov,⁶ Mihaela Silion,³ Cipriana Stefanescu,⁷ Mariana Pinteala,^{3,*}

 ¹Department of Pathophysiology, Faculty of Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
 ²Faculty of Physics, "Alexandru Ioan Cuza" University, 700506 Iasi, Romania
 ³Centre of Advanced Research in Bionanoconjugates and Biopolymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
 ⁴Advanced Research and Development Center for Experimental Medicine (CEMEX), "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
 ⁵Department of Internal Medicine I, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania
 ⁶Department of Inorganic Polymers, "Petru Poni" Institute of Macromolecular Chemistry, 700487 Iasi, Romania
 ⁷Department of Biophysics and Medical Physics-Nuclear Medicine, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iasi, Romania


[#]These authors contributed equally to this work.

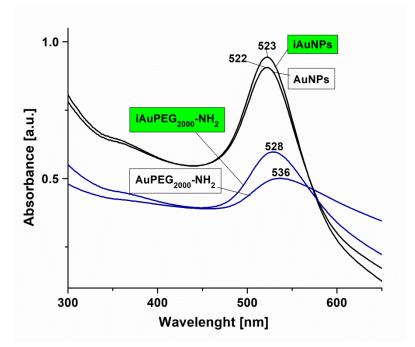
Corresponding authors: MARIANA PINTEALA, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania, e-mail: <u>pinteala@icmpp.ro</u>; CRISTINA M. URITU, "Grigore T. Popa" University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania, e-mail: <u>cristina-mariana.uritu@umfiasi.ro</u>; ADINA COROABA, "Petru Poni" Institute of Macromolecular Chemistry, 41A Grigore Ghica Voda Alley, 700487 Iasi, Romania, e-mail: <u>adina.coroaba@icmpp.ro</u>.

I. Supplementary schemes

Scheme S1. The reaction scheme between DOX and PEG₅₀₀ via oxirane opening ring, in aqueous media, at room temperature, for 72 h

Scheme S2. The reaction scheme between cys-TAT and PEG₅₀₀ via oxirane opening ring, in aqueous media, at room temperature, for 72 h

II. Ultraviolet-visible spectroscopy (UV-Vis)


Experimental

UV-Vis absorption spectra were recorded using a Shimadzu Spec Pharma 1800 instrument. The samples were 1/10 diluted to the initial concentration of the particle suspensions before recording the spectra. The resulting concentrations of the particle samples were calculated using Lambert-Beer law, based on the mean diameter provided by TEM imaging data¹.

Results and discussion

1. Structure characterization of AuNPs, *i*AUNPs, AuPEG₂₀₀₀-NH₂ and *i*AuPEG₂₀₀₀-NH₂ nanoparticles by UV-Vis spectroscopy

UV-Vis spectroscopy is well-known to assess the gold nanoparticle characteristics, principally related to size and concentration, in close connection with imaging data^{2,3}. Exposing the samples in the wavelength range between 300 and 700 nm, the corresponding spectra were obtained, providing the absorption band of each compound as shown in Figure S1. One can observe that the intensity of the absorption band intensity (SPR) has increased in irradiated sample iAuNPs as compared to non-irradiated one, suggesting the continuation of nucleation process after light absorption⁴. The red shift in the SPR absorbance of the nanoparticles with polymer was largely determined by a slight change in the refractive index of the local environment of the AuNPs, indicating an increase in nanoparticle size⁵. At the same time, a slight increase in the SPR bandwidth was explained by the amplification of local plasmonic field, which may be due to the dimerization tendency of irradiated nanoparticles⁶, as confirmed by TEM images. The UV-vis data shows that the SPR intensity of nanoparticles has changed after polymer coating. The red shift in the SPR absorbance of the PEGylated nanoparticles was largely determined by a slight change in the refractive index of the local environment of the iAuPEG₂₀₀₀-NH₂, indicating an increase in nanoparticle size⁵. According to Figure S1, the spectrum of *i*AuPEG₂₀₀₀-NH₂ suspension reveals a maximum intensity of the SPR band at 528 nm, while those of AuPEG₂₀₀₀-NH₂ at 536 nm. The red shifted absorption bands of the PEGylated nanoparticle spectra are evidence regarding the successful grafting of the polymer onto the gold nanoparticle surface, either native or irradiated.

Figure S1. UV-Vis spectra of AuNPs, *i*AUNPs, AuPEG₂₀₀₀-NH₂ and *i*AuPEG₂₀₀₀-NH₂ nanoparticles displaying the influence of irradiation on spectral features. The spectrum of *i*AuPEG₂₀₀₀-NH₂ is less shifted and shows an absorption band of higher intensity than in AuPEG₂₀₀₀-NH₂.

2. Determination of the concentration of intermediate products, AuPEG2000-NH2 and *i*AuPEG2000-NH2using a calibration curve in UV-Vis.

After purification by centrifugation, the excess of unbound ligand and displaced citrate were removed along with a percentage of gold particles that should be quantified. The calibration curves were obtained for each product, by measuring the absorbance at 536 and 528 nm for AuPEG₂₀₀₀-NH₂ and *i*AuPEG₂₀₀₀-NH₂, having different, known concentrations (see Table S1 and S2).

The absorbance values of purified nanoparticles were found of 0.838 and 1.421 a.u. for AuPEG₂₀₀₀-NH₂ and *i*AuPEG₂₀₀₀-NH₂, respectively. Using the corresponding equations of the calibration curves (see Fig. S2 and S3), one can assess that the concentrations of the aforementioned products are around 0.2 mM in both cases, indicating a percentage of 80% recovered nanoparticles after polymer coating.

Table S1. UV-Vis spectroscopy data obtained for different concentrations of AuPEG₂₀₀₀-NH₂

Concentration [mM]	0.02	0.04	0.08	0.1	X	0.25
Absorbance [a.u.]	0.108	0.187	0.367	0.407	0.838	1.0159

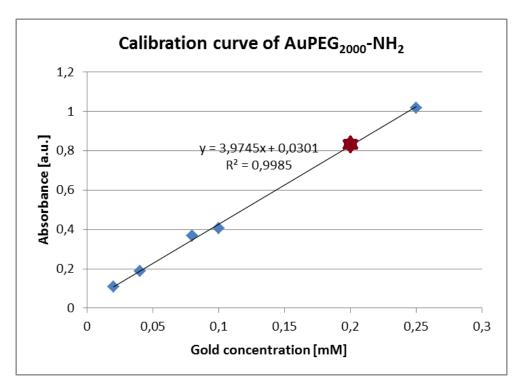


Figure S2. The absorbance calibration curve of AuPEG₂₀₀₀-NH₂ based on the data from Table S1.

Table S2. UV-Vis spectroscopy data obtained for different concentrations of iAuPEG₂₀₀₀-NH₂

Concentration [mM]	0.02	0.04	0.08	0.1	X	0.25
Absorbance [a.u]	0.186	0.293	0.59	0.748	1.421	1.765

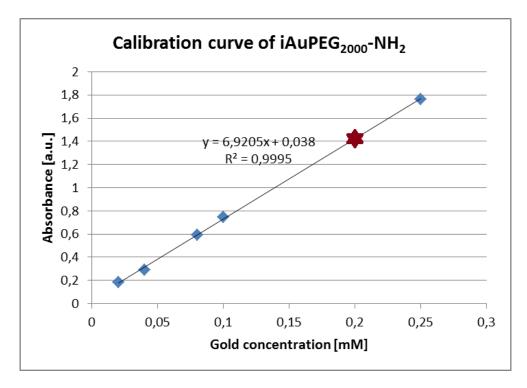


Figure S3. The absorbance calibration curve of *iAuPEG*₂₀₀₀-*NH*₂ based on the data from Table 2.

III. Mass spectrometry (MS) assay

Experimental

MS data were acquired using an Agilent 6520 Series Accurate-Mass Quadrupole Time-of-Flight (Q-TOF) LC/MS instrument. The aqueous solutions of $DOX-PEG_{500}$ -epoxy and $TAT-PEG_{500}$ -epoxy precursors were studied by MS analysis along with the aqueous solutions of starting compounds (DOX, cys-TAT and PEG₅₀₀). The samples were injected into the electrospray ion source (ESI) using a syringe pump at a flow-rate of 0.01 mL·min⁻¹. The running parameters of Q-TOF MS were set as follows: electrospray ionization in positive ion mode; drying gas (N₂) flow rate 8 L·min⁻¹; drying gas temperature 325 °C; nebulizer pressure 25 psig; capillary voltage 4000 V; fragmentation voltage 200 V; the full-scan mass spectra of the examined compounds were acquired in the m/z range 100–3000. The mass scale was calibrated using the standard calibration procedure and standard compounds provided by the manufacturer. Data were collected and processed using Mass Hunter Workstation Software Data Acquisition for 6200/ 6500 Series, version B.01.03.

Results and discussion

PEG₅₀₀ precursor can be easily ionized under positive conditions and all peaks present in the mass spectrum (Fig. S4a) were assigned to single-charged sodium adduct ions series $[M+Na]^+$ with repeating units of 44 Da (C₂H₄O monomer unit).

The DOX drug (Fig. S4b) was detected at m/z 544.21, as single charge protonated ion [DOX + H]⁺, corresponding to its molecular mass of 543 Da. Mass spectrum also shows the existence of a dimeric species $[2DOX + H]^+$ at m/z 1087.39. In addition to the signal corresponding to the DOX monomeric and dimeric species, the ion at m/z 397.11 occurs due to the loss of amino sugar moiety, corresponding to 146 Da. The mass spectrum of the DOX-PEG₅₀₀-epoxy (Fig. S4c) revealed the formation of complex at m/z 1026.57, corresponding to single charged protonated ion [DOX-PEG₅₀₀-epoxy+H]⁺, which confirms that the reaction of DOX with PEG₅₀₀-epoxy was successfully carried out. However, in the mass spectrum of DOX-PEG₅₀₀-epoxy it can be also observed low-intensity ion peaks of unreacted precursors.

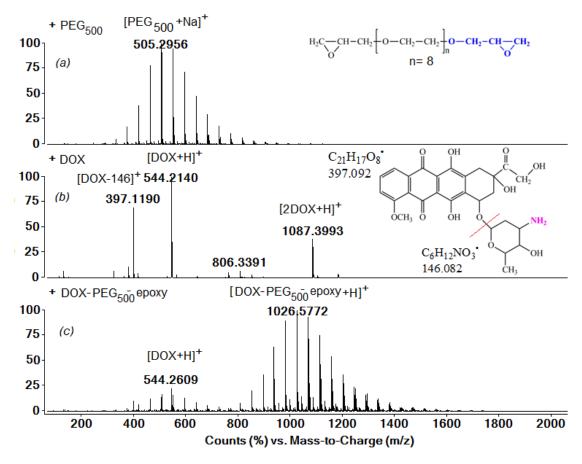


Figure S4. Positive ESI-QTOF mass spectra of (a) PEG₅₀₀, (b) DOX and (c) DOX-PEG₅₀₀-epoxy.

The TAT molecules show multiple charge states in a mass spectrum (Fig. S5a), where the distinctive ions at m/z 439.69, 658.51 and 1315.97 are due to the formation of the single, doubly and triply charged ions of TAT peptide, $[TAT+H]^+$, $[TAT+2H]^{2+}$ and $[TAT+3H]^{3+}$, respectively.

The ESI-MS spectrum of TAT-PEG₅₀₀-epoxy (Fig. S5b) shows the presence of the molecular ion of the complex at low intensity m/z 1820.17 corresponding to single-charge sodium adduct (these ions were underlined in the zoom). In addition, the peaks at m/z 329.5, 439.33, 658.51 and 1315.97 corresponds to unreacted TAT (multiple charge states up to +4).

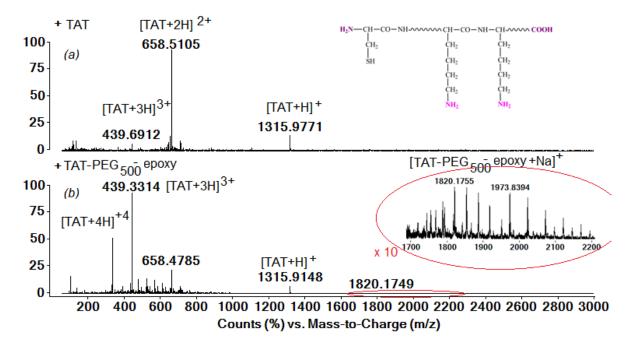
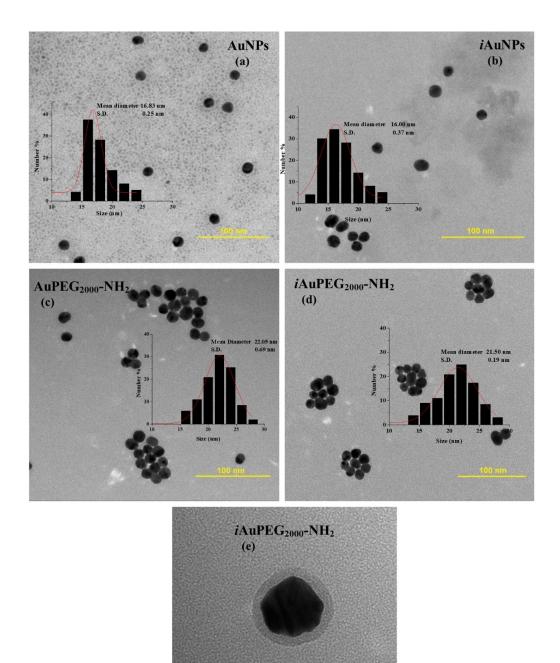


Figure S5. Positive ESI-QTOF mass spectra of (a) TAT and (b) TAT-PEG₅₀₀-epoxy.

IV. Particle size and morphology of gold nanoparticles using TEM imaging


Supplementary figures and notes

To determine the mean diameter and dimensional distribution of the synthesized nanoscale entities, a series of microscopic images were analysed, measuring about 1000 particles per product. Figure S6 illustrates TEM images of PEGylated nanoparticles (irradiated and non-irradiated), along with the starting products (AuNPs and *i*AuNPs), using a scale of 100 nm scale to observe the morphological details, while in the main manuscript there were presented images at a scale of 200 nm to observe the agglomeration tendency, when applicable.

The Table S3 correlates the particles size and morphology data obtained by different techniques: UV-Vis spectroscopy, TEM, DLS/ELS.

Sample	λ _{max} [nm] UV-Vis	Mean diameter [nm] TEM	Hydrodynamic diameter [nm] DLS	Polydispesity Index DLS	ζ potential [mV] <i>ELS</i>	
AuNPs	522	16.83	39.0±5.6	0.45	-40.35	
iAuNPs	522	16.00	19.5±2.8 (>99%) 138.8±27.3	0.76	-30.10	
AuPEG ₂₀₀₀ -NH ₂	536	21.5	43.3±0.0 (>99%) 461.3±93.7 0.57		26.97	
<i>i</i> AuPEG ₂₀₀₀ -NH ₂	528	22.05	44.9±3.4 (>99%) 401.7±93.8	0.46	29.07	

Table S3. The influence of irradiation and polymer coating on suspension properties.

Figure S6. TEM images of non-irradiated particles, AuNPs (a) and AuPEG₂₀₀₀-NH₂ (c), in comparison with irradiated products, *i*AuNPs (b) and *i*AuPEG₂₀₀₀-NH₂ (d).

<u>0 nm</u>

The polymer coating (e) has a slight influence on the particle size, but showing a more significant effect on aggregation behaviour. The irradiated PEGylated nanoparticles exhibit a phenomenon of uniform clustering, with the formation of entities with dimensions up to 100 nm.

V. Fourier-transform infrared spectroscopy (FTIR)

Supplementary results and discussions

The variation of FTIR spectra for the intermediate products AuNPs, *i*AuNPs, AuPEG₂₀₀₀-NH₂ and *i*AuPEG₂₀₀₀-NH₂ are presented in Figure S7, beside sodium citrate and HS-PEG₂₀₀₀-NH₂.

Usually, the absorption of citrate molecules by specific coordination of carboxylate is dominant, but a number of other citrate molecules are subjected to intermolecular interactions with adsorbed species, which are not in contact with metal surface⁷. The mode of the carboxylate binding (bridging and chelating) was determined by the magnitude of separation between the carboxylate stretches. The FTIR spectrum of the pure sodium citrate shows two distinct absorption bands assigned to asymmetric and symmetric stretching vibrations of COO⁻ at 1616 and 1398 cm⁻¹, respectively. In AuNPs one can be observed two similar absorption bands, slightly shifted to 1591 and 1396 cm⁻¹, while in the IR spectrum of *i*AuNPs the asymmetric stretching vibration appeared at 1631 cm⁻¹ and the symmetric stretches are present at 1371 and 1450 cm⁻¹ revealing two coordination mode of the carboxylate binding: bridging and monodentate. The magnitude of separation between the carboxylate stretches are: $\Delta_{\text{sodium citrate}}=218 \text{ cm}^{-1}$ (ionic), $\Delta_{\text{AuNPs}}=195 \text{ cm}^{-1}$ (bridging), $\Delta_{\text{iAuNPs}}=181$ cm⁻¹ (bridging) and monodentate ($\Delta_{iAuNPs}=260$ cm⁻¹), following the generally proposed order: Δ (chelating) < Δ (bridging) < Δ (ionic) < Δ (monodentate)⁸. A weak peak at 1734-1735 cm⁻¹ can be observed in all nanoparticle compounds and was assigned to C=O stretching vibrations of carboxyl group. The PEGylated products do not exhibit significant differences between AuPEG₂₀₀₀-NH₂ and iAuPEG₂₀₀₀-NH₂, but the FTIR signal of PEG has undergone several modifications. The C-O-C stretching bands of HS-PEG₂₀₀₀-NH₂ were found at 1280 and 1112 cm⁻¹, while in PEGylated gold nanoparticles one can be observed only a strong peak at 1151 and 1149 respectively, with a shoulder at 1130 cm⁻¹. The aliphatic C-H bending vibrations, encountered at 1400 and 1344 cm⁻¹ in HS-PEG₂₀₀₀-NH₂ as moderate intensity peaks, were found at 1400 cm⁻¹ as strong peaks in conjugated compounds. The C-H stretching vibrations at 2887 cm⁻¹ as strong signal in unreacted HS-PEG₂₀₀₀-NH₂ are smaller and a little shifted at 2852, 2924 and 3014 cm⁻¹ in AuPEG₂₀₀₀-NH₂ and at 2854, 2924 and 3016 cm⁻¹ in *i*AuPEG₂₀₀₀-NH₂. C-H rocking vibrations observed at 1469 cm⁻¹ in HS-PEG₂₀₀₀-NH₂ cannot be distinguished in the products. The primary amino group is very clearly represented in the spectra of all PEGylated compounds by the characteristic bands at 3126 cm⁻¹ and 1629 cm⁻¹. In the spectra of non-irradiated and irradiated AuPEG₂₀₀₀-NH₂ conjugates the well-defined band at 696 nm is due to the formation of Au-S bonds and the smaller one at 796 nm is attributed to the C-S bond. The Table S4 summarizes all FTIR data obtained and peak assignment.

Figure S7. FTIR spectra of AuNPs, *i*AuNPs, AuPEG₂₀₀₀-NH₂ and *i*AuPEG₂₀₀₀-NH₂ samples besides sodium citrate and PEG₂₀₀₀-NH₂

CH2 rocking 4 C-C stretching 464 C-S stretching 464 C-S stretching 518 C-C vibrations 518 C-C vibrations 55 C-H 617 6 Au-S 6 N-H bending 725 7 C-S, N-H 804 6 C-H rocking 9 7 C-O stretching 9 9 C-OH, C-O-C 948 9 deformation 9 9 C-O 1031 10 Stretching 11 11 C-O, C-N 1207 12 Stretching 1402 14 C-H bending, amide II 1402 14 C-H bending, amide II 1585 10 N-H 1620 10 C=O stretching 1726 17 C=O stretching 1726 17 C=O stretching 1726 17 C=O stretching <	Band (cm ⁻¹)										
CH2 rocking4C-C stretching464C-S stretching4C-S stretching4C-C vibrations518C-H61761N-H bending725C-S, N-H804C-O stretching9C-O stretching9C-O stretching9C-O, C-C948deformation9C-O, C-C,1109C-O, C-N1207stretching11C-O, C-N120712591C-H bending, amide II1402N-H deformation, amide II1620N-H deformation, amide II1620N-H deformation, amide II1385N-H deformation, amide II32862286228C-H stretching172617261728622829242932463246	Non-irr		irradiated samp	Ir	Irradiated samples						
C-C stretching 464 C-S stretching 518 5 C-C vibrations 518 5 C-C vibrations 518 5 C-H 617 6 Au-S 6 7 C-H 617 6 N-H bending 725 7 C-S, N-H 804 7 C-O stretching 9 9 C-Odeformation 9 9 C-OO 948 9 C-Oot, C-O 948 9 C-Oot, C-O 948 9 C-Oot, C-O 1031 10 Stretching 1109 10 C-O, C-N 1207 110 Stretching 1402 14 C-H bending, amide II 1402 14 M-H 1620 10 C=O, amide II 1620 10 C=O stretching 1726 17 O 2862 28 O 3246	AuPEG2000-NH2	Band assignment	AuPEG2000-DOX	AuPEG2000-TAT-DOX	iAuPEG2000-NH2	iAuPEG2000-DOX	iAuPEG2000-TAT-DOX				
C-S stretching 4 518 5 C-C vibrations 518 C-H 617 6 N-H bending 725 7 C-S, N-H 804 7 C-H rocking 9 7 C-S, N-H 804 7 C-O stretching 99 9 C-OH, C-O-C 948 9 C-O, Stretching 1031 10 C-O stretching 1031 10 C-O, C-C, 1109 10 C-O, C-H 1109 10 Stretching 11 11 C-O, C-N 1207 12 C-H bending, amide III 1402 14 C-H bending 1452 14 C=O, amide II 1585 10 N-H 1620 10 deformation, amide I 2862 28 C-H stretching 1726 17 Stretching 1726 17 C-H stretching 3246 </th <th>26</th> <th>rocking</th> <th></th> <th>433</th> <th>428</th> <th></th> <th>433</th>	26	rocking		433	428		433				
518 5 C-C vibrations 5 C-H 617 6 Au-S 6 N-H bending 725 7 C-S, N-H 804 7 C-H rocking 9 7 C-O stretching 9 9 C-Oth, C-O-C 948 9 C-O, C-C, 1031 10 Stretching 1109 10 C-O-C, 1109 10 C-O, C-N 1207 12 Stretching 11 10 C-O, C-N 1207 12 C-H bending, amide II 1402 14 C=O, amide II 1585 10 N-H deformation, amide I 1620 10 C=O stretching 1726 17 C-H stretching 30 30 N-H primary 3246 3246		stretching		464		462	466				
C-C vibrations 5 C-H 617 6 Au-S 6 6 N-H bending 725 7 C-S, N-H 804 7 C-H rocking 9 7 C-O stretching 9 9 C-OH, C-O-C 948 9 C-O, Stretching 1031 10 Stretching 1031 10 C-O, C, N 1109 12 C-O, C-N 1207 12 Stretching 11 12 C-O, C-N 1207 12 C-H bending, amide III 1402 14 C-O, C-N 1585 16 N-H bending 1452 16 C=O, amide II 1620 10 N-H deformation, amide I 1620 10 C-H stretching 1726 17 O-H stretching 3246 3246	189	stretching	478		493						
C-H 617 6 Au-S 6 N-H bending 725 7 C-S, N-H 804 7 C-H rocking 9 7 C-H rocking 9 7 C-O stretching 9 9 C-Odeformation 948 9 C-Oot, C-O 948 9 C-Oot, C-O 948 9 C-Oot, C-O 948 9 C-Oot, C-O 1031 10 C-Oot, C-N 1031 10 C-O, C-H 1109 10 C-O, C-N 1207 12 C-H bending, amide III 1402 14 C-H bending 1452 14 C=O, amide II 1620 10 N-H 1620 10 Question 30 30 N-H primary 3246 3246	520				520		536				
C-H 617 6 Au-S 6 N-H bending 725 7 C-S, N-H 804 7 C-H rocking 9 7 C-H rocking 9 7 C-O stretching 9 9 C-Odeformation 948 9 C-Oot, C-O 948 9 C-Oot, C-O 948 9 C-Oot, C-O 948 9 C-Oot, C-O 1031 10 C-Oot, C-N 1031 10 C-O, C-H 1109 10 C-O, C-N 1207 12 C-H bending, amide III 1402 14 C-H bending 1452 14 C=O, amide II 1620 10 N-H 1620 10 Question 30 30 N-H primary 3246 3246		vibrations	543	540		540					
Au-S 66 N-H bending 725 7 C-S, N-H 804 7 804 7 7 C-S, N-H 804 7 C-O stretching 9 9 C-Odd C-O 948 9 C-O stretching 1031 10 C-O stretching 1031 10 C-O-C, 1109 10 C-O-C, 1109 10 C-O-C, 1109 10 C-O-C, 1109 10 C-O, C-H 11 11 stretching 1402 14 C-H bending, amide III 1402 14 C-H bending 1452 10 C=O, amide II 1585 10 N-H 1620 10 10 C-H stretching 1726 17 30 N-H primary 3246 3246 3246	557		594	584	557						
Au-S 66 N-H bending 725 7 C-S, N-H 804 7 804 7 7 C-S, N-H 804 7 C-O stretching 9 9 C-Odf, C-O-C 948 9 deformation 9 9 -C-O 1031 10 Stretching 1031 10 C-O-C, 1109 10 C-O-C, 1109 10 C-O-C, 1109 10 C-O-C, 1109 10 C-O, C-N 1207 12 Itage 1402 14 C-H bending, amide III 1402 14 C-H bending 1452 10 C=O, amide II 1620 10 N-H 1620 10 QE-O-F 2862 28 C-H stretching 30 30 N-H primary 3246 3246 <td>519</td> <td></td> <td>621</td> <td>584 619</td> <td>617</td> <td>622</td> <td>615</td>	519		621	584 619	617	622	615				
N-H bending 725 7 C-S, N-H 804 7 804 7 804 7 C-H rocking 9 9 7 C-O stretching 99 9 9 C-OH, C-O-C 948 9 9 C-O, C-O 1031 10 9 C-O-C, 1109 10 10 C-O-C, 1109 11 10 C-O-C, 1109 11 10 C-O, C-H 1207 12 10 Stretching 1402 14 14 C-O, C-N 1259 14 14 14 C-H bending, amide II 1402 14 <td>596</td> <td></td> <td>688</td> <td>696</td> <td>698</td> <td>698</td> <td>690</td>	596		688	696	698	698	690				
C-S, N-H 7 804 7 C-H rocking 9 C-O stretching 9 C-O, Stretching 9 C-O, Stretching 1031 stretching 1031 C-O, C, 1109 1031 C-O, C-H 1109 Stretching 11 C-O, C-N 1207 1259 12 C-H bending, amide II 1402 C-H bending 1452 C=O, amide II 1585 N-H deformation, amide I 1620 C-B stretching 1726 T 2862 2924 29 30 30 N-H primary 3246	732		000	020	732	070	070				
C-S, N-H 804 C-H rocking 9 C-O stretching 9 C-OH, C-O-C 948 deformation 9 -C-O 1031 stretching 1031 C-O-C, 1109 C-O-C, 1109 C-O-C, 1109 C-O-C, 1109 C-O-C, 1109 C-O-C, 1109 C-O, C-N 1207 1259 12 C-H bending, 1402 amide II 1402 N-H 1620 deformation, 1620 mide I 1620 C-H stretching 1726 N-H primary 3246	796		779		798		785				
C-O stretching 9 C-OH, C-O-C 948 deformation 9 -C-O 1031 10 stretching 1031 10 C-O-C, 1109 10 C-O-C, 1109 10 C-O-C, 1109 10 C-O, C-H 1207 12 stretching 1402 14 C-H bending, 1402 14 amide III 1452 14 C-H bending 1452 16 C=O, 1585 16 M-H 1620 10 deformation, 1620 10 mide I 2862 28 C-H stretching 1726 17 30 30 30 N-H primary 3246 3246	,,,	N-H	,	796	170	800	100				
C-OH, C-O-C 948 deformation 9 -C-O 1031 10 stretching 1031 10 C-O-C, 1109 0 C-O, C-H 1207 12 C-O, C-N 1207 12 C-H bending, 1402 14 amide III 1585 0 N-H 1620 10 deformation, 1620 10 amide I 2862 28 C-H stretching 1726 17 30 30 30 N-H primary 3246 3246		rocking	839	840	839	842	842				
deformation 9 -C-O 1031 10 stretching 1031 10 C-O-C, 1109 11 C-O-C, 1109 11 Stretching 11 11 C-O-C, 1109 11 C-O, C-H 1109 11 C-O, C-N 1207 11 1259 11 11 C-O, C-N 1207 11 C-H bending, 1402 14 C=O, 1585 10 N-H 1620 10 deformation, 1620 10 mide I 10 10 C=O stretching 1726 17 C-H stretching 2862 28 2924 29 30 N-H primary 3246 3246	006	stretching			906						
-C-O 1031 10 stretching 1109 11 C-O-C, 1109 11 Stretching 11 11 C-O, C-H 1109 11 Stretching 11 11 C-O, C-N 1207 11 1259 12 12 C-H bending, amide II 1402 14 C=O, amide II 1585 10 N-H deformation, amide I 1620 10 C=O stretching 1726 17 2862 29 30 N-H primary 3246 3246			950	948		950	950				
stretching 1031 10 C-O-C, 1109 11 C-C-H 11 11 stretching 11 11 C-O, C-N 1207 11 C-O, C-N 1207 11 C-H bending, amide III 1402 14 C-H bending 1452 14 C-H bending 1452 14 C-H bending 1452 14 C=O, 1585 16 N-H 1620 16 deformation, amide I 1620 16 C-H stretching 1726 17 2862 28 29 30 30 30 N-H primary 3246 16	987				987						
C-C-H 11 stretching 11 C-O, C-N 1207 12 1259 1259 12 C-H bending, amide III 1402 14 C-H bending 1452 14 C-H bending 1452 14 C-H bending 1452 14 C-H bending 1452 14 C-O, amide II 1620 16 N-H 1620 16 deformation, amide I 12 14 C-O stretching 1726 17 C-H stretching 2924 29 30 30 30 N-H primary 3246 14	028				1029	1031					
stretching 1 C-O, C-N 1207 12 1259 1259 12 C-H bending, amide III 1402 14 C-H bending 1452 14 C-O, amide II 1585 16 N-H deformation, amide I 1620 16 C=O stretching 1726 17 C-H stretching 2862 28 Q2924 29 30 N-H primary 3246 16		C,	1107	1109		1101	1109				
1207 12 C-O, C-N 1259 12 C-H bending, amide III 1402 14 C-H bending 1452 14 C-O, amide II 1585 1585 N-H deformation, amide I 1620 16 C=O stretching 1726 17 C-H stretching 2862 28 Q244 29 33 N-H primary 3246 3246	130				1130						
C-O, C-N 1259 C-H bending, amide III 1402 14 C-H bending 1452 14 C-H bending 1452 14 C=O, amide II 1585 16 N-H deformation, amide I 1620 16 C=O stretching 1726 17 C-H stretching 2862 28 N-H primary 3246 3246	151	ening		1202	1149	1011	1202				
C-H bending, amide III 1402 14 C-H bending 1452 14 C=O, amide II 1585 15 N-H deformation, amide I 1620 16 C=O stretching 1726 17 C-H stretching 2862 28 N-H stretching 30 30 N-H primary 3246 3246	203	C-N	1259	1203 1257	1203	1211 1259	1203 1257				
C-H bending 1452 C=O, amide II 1585 N-H deformation, amide I 1620 16 10 C=O stretching 1726 17 2862 28 2924 29 2924 29 29 2924 29 29 2924 29 29 29 29 29 24 29 29 29 29 24 29 29 24 29 29 24 29 29 24 29 29 24 29 29 24 29 24 20 24 20 24<	400		1390	1392	1400	1396	1392				
C=O, amide II 1585 N-H deformation, amide I 1620 16 1620 C=O stretching 1726 17 2862 28 28 2924 29 2924 29 29 30 30 30 <td></td> <td></td> <td>1458</td> <td>1458</td> <td></td> <td>1462</td> <td>1458</td>			1458	1458		1462	1458				
N-H deformation, amide I 1620 16 1620 C=O stretching 1726 17 1726 C-H stretching 2862 28 2924 29 2924 29 29 30 N-H primary 3246 3246		,	1577	1583		1575	1587				
C=O stretching 1726 17 2862 28 29 29 29 29 29 29 30	627		1625	1.55	1629	1639	14.50				
2862 28 C-H stretching 2924 29 30 31 3246	726		1725	1674	1722	1725	1668				
C-H stretching 2924 2924 N-H primary 31 3246 3246	736	stretching	1735 2862	1739	1733	1735	1735				
30 N-H primary 3246	852 924	stretching	2862 2925	2866 2924	2854 2924	2856 2924	2862 2924				
N-H primary 33	014	C-IT stretching	2723	<i>272</i> 4	3016	2727					
N-H primary 3246	126				3126						
		primary		3207			3210				
N-H stretching		stretching		3321			3307				
3386				3375			2200				
-OH 34	438		3425		3435	3467	3398				

 Table S4. FTIR spectra band assignment for non-irradiated and irradiated samples.

VI. XPS spectroscopy

Sample	High resolution spectrum	Binding energy (eV)	Assign.	Area %	High resolution spectrum	Binding energy (eV)	Assign.	Area %
		284.6	С-Н/С-С	66.93		82.7	Au ⁰	95.50
AuNPs	C1s	286.0	C-0	11.81	Au4f	86.4		
Autors	CIS	287.9	COO	17.71	Au41	83.4	Au^+	4.50
		289.2	COOH	03.53		87.1		
		284.6	C-H/C-C	63.03	Au4f	82.7	Au ⁰	80.45
iAuNPs	C1s	286.1	C-0	15.68		86.4		
<i>l</i> Aunr s		287.7	COO-	15.96		83.6	Au^+	19.55
		288.9	COOH	05.34		87.3		
AuPEG2000-NH2	C1s	284.6	C-C/C-H	54.37		82.9	Au ⁰	87.66
		286.2	C-0	16.21		86.6		
		287.4	COO	04.32		83.4	Au^+	4.62
		288.2	C-N	06.03	Au4f	87.1		
		289.0	C-S	06.03		83.7	Au-S	7.72
		289.5	COOH	13.05		87.4		
	C1s	284.6	C-C/C-H			82.9	Au ⁰	78.15
iAuPEG2000-NH2		286.1	C-0	09.30	Au4f	86.6		
		287.4	COO	02.63		83.2	Au^+	15.63
		288.2	C-N	06.73		86.9		
		289.0	C-S	06.73		83.5	Au-S	6.23
		289.6	COOH	08.96		87.2		

Table S5. The assignments of XPS signals from deconvoluted C1s and Au4f high resolution spectra of AuNPs, iAUNPs, AuPEG₂₀₀₀-NH₂ and iAuPEG₂₀₀₀-NH₂ products.

VII. Biological assay

Preparation of solutions for the MTS assay. Determination of nanoparticle loading with drug. Firstly, the mass concentration of the final products has been determined. The total amount of $AuPEG_{2000}$ -TAT-DOX in a volume of 1058.33 µL solution (1000 µL $AuPEG_{2000}$ -iAuPEG_{2000}, 50 µL DOX-PEG_{500}-epoxy and 8.33 µL TAT-PEG_{500}-epoxy), identical to that of $iAuPEG_{2000}$ -TAT-DOX is 8.6029 mg, calculated by summing the weight of all components present in the reaction mixture: 0.0394 mg Au (0.2 · 10⁻³ mmol · 197 g/mol), 8 mg PEG_{2000} (4 · 10⁻³ mmol · 2000 g/mol), 0.48 mg DOX-PEG_{500}-epoxy (0.46 · 10⁻³ mmol · 1043.5 g/mol, M_{DOX} = 543.5 g/mol) and 0.0835 mg TAT-PEG_{500}-epoxy (0.046 · 10⁻³ mmol · 1815 g/mol, M_{cys-TAT} = 1315 g/mol). Thus, the concentration of these solutions was calculated, having the value of 8.13 mg/mL. Two stock solutions (1000 µL) of 1 mg/mL AuPEG_{2000}-TAT-DOX/ iAuPEG_{2000}-TAT-DOX were prepared by mixing 123 µL of the 8.13 mg/mL solutions with 877 µL ultrapure water for each of them. Similarly, the total amount of AuPEG_{2000}-DOX in a volume of 1050 µL solution, identical to that of *iAuPEG_{2000-DOX* is 8.5165 mg, calculated by summing the all the components present in the reaction mixture: 0.0394 mg Au ($0.2 \cdot 10^{-3}$ mmol · 197 g/mol), 8 mg PEG₂₀₀₀ ($4 \cdot 10^{-3}$ mmol · 2000 g/mol) and 0.48 mg *DOX-PEG₅₀₀epoxy* ($0.46 \cdot 10^{-3}$ mmol · 1043.5 g/mol, M_{DOX} = 543.5 g/mol). The corresponding concentration of these solutions was found of 8.11 mg/mL. Another two stock solutions (1000 µL) of 1 mg/mL *AuPEG₂₀₀₀-DOX/ iAuPEG₂₀₀₀-DOX* have been prepared mixing 123.31 µL of the 8.11 mg/mL solutions and 876.69 µL ultrapure water for each of them. Solutions of concentrations of 100, 10, 1 and 0.01 µg/mL were further prepared by successive dilutions of the stock solutions (1 mg/mL) for all compounds in question. Since the antitumor activity of drug loaded nanoparticles was evaluated against the pure drug having the same concentration, the percent of the drug from the carrier was also calculated. Thus, the *AuPEG₂₀₀₀-TAT-DOX/iAuPEG₂₀₀₀-TAT-DOX* compounds, comprising 0.25 mg DOX (0.46 \cdot 10⁻³ mmol · 543.5 g/mol) from the total amount of product (8.6029 mg), which is equivalent to 2.9% of the drug covalently bound in the nanoparticulate coating. For those products containing no TAT peptide, mL *AuPEG₂₀₀₀-DOX* and *iAuPEG₂₀₀₀-DOX*, this percentage is very slightly higher, 2.94% respectively (0.25 mg DOX from 8.5165 mg product). As a consequence, the solutions of 10, 1 and 0.01 µg/mL drug loaded carrier comprise 0.29/0.294, 0.029/0.0294 and 0.0029/0.00294 µg/mL DOX, respectively.

References

- 1. Liu, X., Atwater, M., Wang, J. & Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. *Colloids Surf. B Biointerfaces* **58**, 3–7 (2007).
- Aslam, M., Fu, L., Su, M., Vijayamohanan, K. & Dravid, V. P. Novel one-step synthesis of amine-stabilized aqueous colloidal gold nanoparticles. *J. Mater. Chem.* 14, 1795–1797 (2004).
- 3. Ji, X. *et al.* Size control of gold nanocrystals in citrate reduction: the third role of citrate. *J. Am. Chem. Soc.* **129**, 13939–13948 (2007).
- Andries, M., Pricop, D., Oprica, L., Creanga, D.-E. & Iacomi, F. The effect of visible light on gold nanoparticles and some bioeffects on environmental fungi. *Int. J. Pharm.* 505, 255–261 (2016).
- Venkatesan, R. *et al.* Doxorubicin conjugated gold nanorods: a sustained drug delivery carrier for improved anticancer therapy. *J. Mater. Chem. B* 1, 1010–1018 (2013).
- Boerigter, C., Campana, R., Morabito, M. & Linic, S. Evidence and implications of direct charge excitation as the dominant mechanism in plasmon-mediated photocatalysis. *Nat. Commun.* 7, 10545 (2016).
- 7. Martynyuk, O. *et al.* On the high sensitivity of the electronic states of 1 nm gold particles to pretreatments and modifiers. *Molecules.* **21**, 432 (2016).

8. Zeleňák, V., Vargová, Z. & Györyová, K. Correlation of infrared spectra of zinc(II) carboxylates with their structures. *Spectrochim. Acta A Mol. Biomol. Spectrosc.* **66**, 262–272 (2007).