Low-cost, easy-to-build noninvasive pressure support ventilator for under-resourced regions: open source hardware description, performance and feasibility testing Onintza Garmendia^{1,2}, Miguel A. Rodríguez-Lazaro¹, Jorge Otero^{1,3}, Phuong Phan⁴, Alexandrina Stoyanova⁵, Anh Tuan Dinh-Xuan ⁶, David Gozal ⁷, Daniel Navajas^{1,3,8}, Josep M. Montserrat^{2,3,9} and Ramon Farré^{1,3,9} Affiliations: ¹Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Universitat de Barcelona, Barcelona, Spain. ²Sleep Lab, Hospital Clinic, Universitat de Barcelona, Barcelona, Spain. ³CIBER de Enfermedades Respiratorias, Madrid, Spain. ⁴Hue Central Hospital, Hue, Vietnam. ⁵Dept of Economics, Faculty of Economics and Business, Universitat de Barcelona, Barcelona, Spain. ⁶Service de Physiologie-Explorations Fonctionnelles, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France. ⁷Dept of Child Health, The University of Missouri School of Medicine, Columbia, MO, USA. ⁸Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona, Spain. ⁹Institut d'Investigacions Biomediques August Pi Sunyer, Barcelona, Spain. Correspondence: Ramon Farré, Unitat de Biofísica i Bioenginyeria, Facultat de Medicina i Ciències de la Salut, Casanova 143, 08036 Barcelona, Spain. E-mail: rfarre@ub.edu ## @ERSpublications Patients in under-resourced areas cannot be treated by mechanical ventilation given the unaffordable cost of conventional devices; here a low-cost, easy-to-build ventilator with open access details for free replication is designed and tested https://bit.ly/34UcbWp **Cite this article as:** Garmendia O, Rodríguez-Lazaro MA, Otero J, *et al.* Low-cost, easy-to-build noninvasive pressure support ventilator for under-resourced regions: open source hardware description, performance and feasibility testing. *Eur Respir J* 2020; 55: 2000846 [https://doi.org/10.1183/13993003.00846-2020]. This single-page version can be shared freely online. ## **ABSTRACT** Aim: Current pricing of commercial mechanical ventilators in low-/middle-income countries (LMICs) markedly restricts their availability, and consequently a considerable number of patients with acute/chronic respiratory failure cannot be adequately treated. Our aim was to design and test an affordable and easy-to-build noninvasive bilevel pressure ventilator to allow a reduction in the serious shortage of ventilators in LMICs. **Methods:** The ventilator was built using off-the-shelf materials available *via* e-commerce and was based on a high-pressure blower, two pressure transducers and an Arduino Nano controller with a digital display (total retail cost <75 USD), with construction details provided open source for free replication. The ventilator was evaluated, and compared with a commercially available device (Lumis 150 ventilator; Resmed, San Diego, CA, USA): 1) in the bench setting using an actively breathing patient simulator mimicking a range of obstructive/restrictive diseases; and b) in 12 healthy volunteers wearing high airway resistance and thoracic/abdominal bands to mimic obstructive/restrictive patients. $\textbf{Results:} \quad \text{The designed ventilator provided inspiratory/expiratory pressures up to } 20/10 \text{ cmH}_2\text{O},$ Copyright ©ERS 2020. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. respectively, with no faulty triggering or cycling; both in the bench test and in volunteers. The breathing difficulty score rated (1-10 scale) by the loaded breathing subjects was significantly (p<0.005) decreased from 5.45 ± 1.68 without support to 2.83 ± 1.66 when using the prototype ventilator, which showed no difference with the commercial device $(2.80\pm1.48; p=1.000)$. **Conclusion:** The low-cost, easy-to-build noninvasive ventilator performs similarly to a high-quality commercial device, with its open-source hardware description, which will allow for free replication and use in LMICs, facilitating application of this life-saving therapy to patients who otherwise could not be treated.