Supporting Information

Thienopyrrolo[3,2,1-*jk*]carbazoles: Building Blocks for Functional Organic Materials.

Dorian Bader, Johannes Fröhlich, Paul Kautny*

Institute of Applied Synthetic Chemistry, TU Wien, Getreidemarkt 9/163, A-1060 Vienna, Austria

*paul.kautny@tuwien.ac.at

Table of Contents

1.	¹ H and ¹³ C NMR Spectra of the Products	1
2.	Cyclic Voltammetry	16
3.	HRMS – Spectra	20
4.	Electrochemical and photophysical data	27

1. ¹H and ¹³C NMR Spectra of the Products

Figure S 1: ¹H NMR spectrum of 4a

S2

Figure S 2: ¹³C NMR spectrum of 4a

S3

Figure S 3: ¹H NMR spectrum of 4b

Figure S 4: ¹³C NMR spectrum of 4b

Figure S 5: ¹H NMR spectrum of 5

Figure S 6: ¹³C NMR spectrum of 5

Figure S 7: ¹H NMR spectrum of 6

Figure S 8: ¹³C NMR spectrum of 6

Figure S 9: ¹H NMR spectrum of 7

Figure S 10: ¹³C NMR spectrum of 7

Figure S 11: ¹H NMR spectrum of 8

Figure S 12: ¹³C NMR spectrum of 8

Figure S 13: ¹H NMR spectrum of 9

Figure S 14: ¹³C NMR spectrum of 9

2. Cyclic Voltammetry

Figure S 16: Cyclovoltamogram of 8

Figure S 17: Cyclovoltamogram of 9

Figure S 18: Cyclovoltamogram of ICz

Figure S 19: Cyclovoltamogram of ACN reduction compared to 7

Figure S 20: Cyclovoltamogram of ACN reduction compared to 8

Figure S 21: Cyclovoltamogram of ACN reduction compared to 9

Figure S 22: Cyclovoltamogram of ACN reduction compared to ICz

3. HRMS – Spectra

Figure S 23: HRMS spectrum of 4a

Figure S 24: HRMS spectrum of 4b

Figure S 25: HRMS spectrum of 5

Figure S 26: HRMS spectrum of 6

Figure S 27: HRMS spectrum of 7

Figure S 28: HRMS spectrum of 8

Figure S 29: HRMS spectrum of 9

:

4. Electrochemical and photophysical data

	opt. BG ^{a,b}	$\lambda_{max}^{b,c}$	E_T^{d}	HOMO ^e	LUMO ^e	$\lambda_{max}^{\ b,f}$	$\epsilon_{max}^{\ \ f,h}$	$\lambda_{low}^{ b,g}$	$\epsilon_{low}{}^{g,h}$
	[eV]	[nm]	[eV]	[eV]	[eV]	[nm]	$[L*mol^{-1}*cm^{-1}]$	[nm]	$[L*mol^{-1}*cm^{-1}]$
ICz	3.30	375	2.84	-5.78	-2.27	285	37720	363	11100
7	3.25	390	2.57	-5.68	-2.38	280	29500	347	15140
8	3.30	380	2.71	-5.56	-2.28	284	27760	369	5880
9	3.22	410	2.79	-5.53	-2.30	283	42900	345	4720

Table S1. Electrochemical and photophysical data of ICz and the developed thienopyrrolo[3,2,1-jk]carbazoles 7-9.

^a HOMO-LUMO energy gaps, determined from the absorption onset. ^bmeasured in DCM solutions (5 μ M) at room temperature; ^cemission maximum; ^ddetermined from the highest vibronic transition in solid solutions of toluene/iPrOH (10:1; 1 mg/ml) at 77 K; ^ecalculated from the onset of the oxidation and reduction peak observed during cyclic voltammetry relative to ferrocene/ferrocene⁺ (4.8 eV); ^fabsorption maximum (only peaks > 270 nm considered due to possible solvent interference); ^glowest energy absorption peak; ^hmolar attenuation coefficient, calculated from absorption.