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I. DYNAMICAL, DIRECTED INTERACTION NETWORKS

Network connectivity

The interaction network is directed and time dependent. For low attention capacity k, at any given time, it consists
of a large number of small clusters (connected components), without links between them. Here, we are using the
weak definition of connectedness for directed networks: A component of a network is connected if there exists at least
one directed link between the corresponding agents. Throughout time these connected components are permanently
reshuffled through continuous fission-fusion dynamics. With increasing k (or decreasing DS density) we observe a
decrease of the number of connected components (Fig. S2a). Thus the total system consists of fewer but larger
clusters. Eventually, for sufficiently high k, we have a finite probability over time to observe a fully connected network
with a single connected component (Fig. S2b). The critical k at which fully connected networks can be observed
increases with the density of DSs.

The disruption of local interaction networks, and therefore the fission-fusion dynamics, is strongly driven by re-
sponse of individual agents to the distracting environmental cues. Here, we should emphasize that the interaction
neighborhood of individual agents may be subject to significant fluctuations even in the absence of disrupting envi-
ronmental cues. Due to stochastic motion, individuals can in principle switch their attention from one neighbor to
another one, even if those neighbors are separated by a large spatial distance. However, this is not an exclusive feature
of the kNN model. The same behavior can be also observed in metric models with a fixed interaction radius, where
an agent may lose neighbors by moving away and instead gain new neighbors on the other side of its interaction zone.
In metric models the maximal separation of such neighbor swaps is set by the diameter of the interaction zone. In
topological models, this separation is in principle unbounded. But in heterogeneous environments with high density
of DSs, we observe formation of dense agent clusters (see Supp. Videos). Hence, the maximal separation in attention
swaps is effectively limited by the typical self-organized cluster size.

We measured the average life time of individual network edges as a function of DS density ρDS and attention limit
k. With increasing DS density (or decreasing k) we observe also a decrease in the average life time of an edge between
two interacting agents (Fig. S2c). Thus, overall, with increasing DS density or decreasing k the (local) interaction
networks become more dynamic.

Stationary distribution of in and out-degrees

From our numerical simulations, we can extract the stationary probability distribution f(Dout, Din) for an agent
having a particular combination of out-degree Dout and in-degree Din.

In homogeneous environments, ρDS → 0, the out-degree of each agent is directly set by the attention capacity k.
Thus, the distribution of individual in and out-degrees f(Dout, Din) is sharply peaked at Dout = k. The in-degree is
not fixed: Whereas a focal individual i pays attention only to k nearest neighbors, the number of other agents paying
attention to it may be lower or higher. Therefore, we observe a spreading out of f(Dout, Din) along the in-degree axis.
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This pattern holds also for finite number of DSs, however, now in addition, there is also a finite probability that an
agent interacting with a DS ignores its neighbors (see Fig. 2c,d). In this case, its out-degree with respect to social
interactions is zero: Dout = 0, while the in-degree can assume many possible values depending on how many other
agents pay attention to it at a given time. In general, for a finite DS density, the combined distribution f(Dout, Din)
shows a bimodal distribution with two maxima at Dout = 0 and Dout = k.

For low k, the fraction of agents responding to DSs remains low even at very high ρDS . The average out-degree
as well as the average in-degree increases as expected with increasing k. However, the expected in-degree of direct
responders with Dout = 0 is always lower then the expected in-degree of other agents with Dout > 0. As a results, for
low k (k < 3), DS responders become often completely isolated from other agents by having Din = Dout = 0.

II. COORDINATION-RESPONSIVENESS TRADE-OFF AS AN EMERGENT COLLECTIVE EFFECT

In order to show that the observed effects are genuinely collective and can not be traced back only to the behavior
of informed agents we compare the results of interacting agents with a non-interacting system, in which the strength
of social interactions is set to zero (γs = 0). Like in the model discussed in the main text, the attention slots of
agents are restricted to k; agents only pay attention to DSs which are among their kNO and within a distance smaller
than the radius of repulsion, but do not react to other agents which they perceive. Fig. S3a clearly shows that in
the absence of interaction for all values of k the accuracy of the flock is low. However, if we introduce interaction to
the system, the collective accuracy increases significantly for all k. For low k values we always observe the largest
increase, whereas at high k values and in particular high DS density we observe the smallest increase.

If we consider the accuracy of informed and uninformed individuals separately, we observe a qualitatively different
behavior: On the one hand, uninformed individuals move randomly in the absence of interactions (vanishing accuracy),
while with finite social interactions they exhibit an accuracy of C ≈ 0.8 at k = 2, which then decreases continuously
with increasing k (Fig. S3b). As the ratio of informed individuals is Rinf = 0.1, the accuracy of only uninformed
agents exhibits only a small difference to the total accuracy (Fig. S3a). On the other hand, in the absence of
social interactions, informed individuals have high accuracy at low k, which exhibits initially a moderate decrease
with increasing k, and then asymptotes to a constant, DS density-dependent, value. Therefore the behavior of only
informed agents is qualitatively different from the behavior of the total system (Fig. S3c). We note the overall increase
in the accuracy of informed individuals in the social model in comparison to the non-social model, which is due to
social interactions with uninformed individuals. Here, uninformed individuals may be viewed as an information
“reservoir”: Informed individuals bias the motion of uninformed individuals through social interactions. If single
informed individuals get distracted by environmental cues, the social interactions with their neighbors who keep the
memory of the consensus direction allows a quicker alignment with the preferred direction of motion.

III. QUANTIFYING THE COORDINATION-RESPONSIVENESS TRADE-OFF – GLOBAL FITNESS
FUNCTION

We can quantify the emergent trade-off between coordination and responsiveness by introducing the following global
fitness function depending on the collective accuracy C and DS avoidance A:

F̃ (C,A, k) = bcC + ba(A− 1) (1)

with bc being the benefits per unit of directional consensus, and ba the benefits per unit of DS avoidance. Without
loss of generality, the equation can be rescaled by bc to

F (C,A) = C + β(A− 1), (2)

where β = ba/bc represents the relative benefits of DS avoidance versus coordination. Please note that F is not
fitness in a strict evolutionary sense (selection at the level of individuals), as it is a function of collective variables
A and C. Here, “fitness” refers rather to a collective utility function, where (local) maxima correspond to (local)
optimal collective strategies for homogeneous collectives. For a given set of parameters, A and C are calculated in a
stationary regime of a stochastic system. Thus both variables reflect the average ability of individuals to avoid DSs
and to coordinate with their neighbors in homogeneous groups.

For β = 1 both behaviors yield equal benefits, whereas for β > 1 (β < 1) DS avoidance is more (less) beneficial
than coordination. For a wide range of DS densities and angular noises, we observe two distinct maxima of F in the
β, k-plane. For β � 1 coordination is much more beneficial than DS avoidance and the maximum of F is located
at small k where coordination is highest. With increasing β this maximum decreases and we eventually see a rise
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of a second maximum at large k, leading to two local maxima at intermediate β. Eventually, for large β, where DS
avoidance becomes far more important than coordination, we observe a single global maximum at large k.

IV. MODIFIED MODEL WITH HIGHER PRIORITY OF DS AVOIDANCE

In our model, we weight the attention to social cues and environmental cues in the same exact way: Agents may
only respond to a cue if it is within the agent’s k-nearest objects (kNO). Thus individuals can only interact with
distraction sites if their distance rank is within their attention capacity. In other words, due to limited attention
capacity an individual whose attention is saturated with social cues, may not detect a DS even if it is within the
corresponding repulsion zone. It can be interpreted as the natural consequence of the attention of individuals being
distracted by other (social) cues. However, if the DSs signal danger, it is natural to assume that individuals are more
sensitive to environmental cues than to social cues, i.e. that individuals put a higher attention weight to distraction
sites than to their neighbors.

In order to demonstrate that our general findings are present even if there is a higher effective attention weight
assigned to the environmental cues, we devised a simple model extension where the attention to nearby objects is
allocated differently putting a higher priority on DS detection. In the extended model, we introduce an additional
parameter Pdirect, which represents the probability that the agent will detect the DS once it is within the avoidance
zone, independently of its social neighborhood, i.e. independently whether the nearby DS is within its kNO. For
Pdirect = 0 the extended model reduces to the original model assuming equal attention weights of social and envi-
ronmental cues, as discussed in the main text. For Pdirect = 1 the agents deterministically detect the DS once they
are within the avoidance zone. Our qualitative result on the attention-responsiveness trade-off remains clearly valid
as long as Pdirect < 1 (see Fig. S6). Thus as long as there is some sensory “interference” between the response to
environment and response to social cues, which is reasonable to assume for agents with limited sensory and cognitive
capability using the same sensory system (e.g. vision) to interact with both, there will be a corresponding trade-off.
This shows that the observed trade-off is indeed a fundamental emergent property, not dependent on our simplifying
model assumption of equal attention weights to social and non-social cues.

.

V. EMERGENCE OF GLOBAL ORDER IN THE ABSENCE OF INFORMED INDIVIDUALS

In the absence of informed individuals Rinf = 0, there is no preferred direction of motion. Here, instead of collective
accuracy, coordination can be quantified using average polarization of the flock

C̃ =
1

N

〈
N∑
i=1

ûi

〉
, (3)

which is equivalent to the ferromagnetic order parameter in physics. By replacing C by C̃, we observe the same
fundamental coordination-responsiveness trade-off as discussed in the main text (Fig. S7).

VI. DISCUSSION OF IDEALIZING MODEL ASSUMPTIONS IN RELATION TO VISUAL
INTERACTIONS

For computational efficiency we considered in our work kNN-interactions (here kNN refers to interaction with k-
nearest neighbors). However, we also tested the Voronoi variant of the nearest-neighbor interaction (see SI Figure
S8), which is closely related to the so-called balanced kNN-network discussed in [1].

In order to keep the model as simple as possible we refrained from considering finite size agents and distraction
sites (DSs). This would require a whole new set of modeling decisions e.g. on the actual physical interaction of
agents and finite size DSs in addition to repulsion zones around them (DSs as “obstacles” with excluded volume).
Hence, we explicitly assume point-like agents and point-like environmental cues, which are surrounded by danger
zones which themselves represent the areas where an agent responding to the cue attempts to move away from it as
fast as possible. Line of sight obstructions are mathematically speaking not possible in this model. This idealizing
assumption is reasonable in cases where the actual physical dimensions of the agents and environmental cues are
small compared to the typical interaction ranges. Furthermore, we consider here, for simplicity, a two-dimensional
system which in itself is an idealization. Real collective behavior in nature happens in three dimensions whether its
aquatic systems (e.g. fish schooling) or terrestrial systems (e.g. ungulate herds). In 3D, even for finite size objects
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complete blocking of the line of sight becomes much harder, especially if we consider not too dense environments,
e.g. individuals can look above or through suspicious grass or smaller bush structures. Furthermore, for the kNN
interaction network, the rank of nearest objects is intrinsically related to their distance, and in particular for high k
we observe the formation of dense groups. Thus, the situation where one of neighboring agents is within the kNO
set and at the same time “behind” a distraction site is first very rare, and second only short-lived due to the flocking
dynamics. In our work, we also considered a Voronoi variant of our model, which corresponds to a spatially balanced
kNN-model, where obstructions of the “line of sight” become even less likely. Here, the qualitative results remain
absolutely unchanged (see SI Figure S8 ). Therefore, taking care of such rare line-of-sight obstructions does not
change the main findings of our paper on the coordination-responsiveness trade-off.

We note that the Voronoi networks were shown also to provide a good approximation of visual networks in 2D which
explicitly account for occlusions [2]. Calculation of visual networks as in [2] relies on ray-casting and is computationally
prohibitively expensive, especially for long simulations of large flocking systems in complex environments, as considered
here. Thus, in order to be able to investigate systematically the self-organized collective behavior in large systems for
broad range of parameters, we constrained ourselves here to the kNN and kNN-Voronoi interaction networks.

VII. NUMERICAL IMPLEMENTATION AND EXPERIMENTS

The mathematical model was implemented in C/C++ with the k nearest object interaction based on the kd-tree
structure from the CGAL library [3]. The kNN interaction implementation with periodic boundary conditions was
combining the standard kd-tree based algorithm with generation of mirror images of the environment to account for
the interactions on a torus.

The stochastic equations of motion were numerically integrated using a standard Euler-Maruyama scheme [4]. The
numerical time step was set to dt = 0.1, whereby also smaller time steps were tested to show that the general results
do not depend on the time step.

All the data were obtained by averaging over 20 realizations, each including 5× 104 relaxation time steps and 105

stationary time steps.
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SUPPLEMENTARY VIDEOS

Each supplementary movie shows the spatial dynamics in the main panel (left), the corresponding accuracy C versus
time (top right) and the corresponding DS avoidance A versus time (bottom right). The black line at A = 1 corre-
sponds to the DS avoidance of non-interacting agents (see Materials and Methods). The first part shows the initial
development of the system (t = 0− 200), the second part shows the stationary state at large times (t = 5200− 5400).

Supplementary Video 1: Collective behavior at high density of DSs for low attention capacity k = 1 characterized
by high accuracy of collective migration.

Supplementary Video 2: Collective behavior at high DS densities for high attention capacity k = 24 characterized
by efficient response to environmental cues.

Supplementary Video 3: Collective behavior in structured environment with a circular DS-free region for low
attention capacity k = 1.

Supplementary Video 4: Collective behavior in structured environment with a circular DS-free region for high
attention capacity k = 24.



SUPPLEMENTARY FIGURE 1

FIG. S1. Snapshots of the (undirected) social interaction network in random environments with ρDS = 0.25 for k = 3 upper
panel, and k = 12 lower panel, at Rinf = 0.1. Black agents are socially interacting, and red agents react to DSs. Informed and
uninformed individuals are represented by empty and filled circles, respectively. Light blue circles are repulsion zones of DSs
specified with blue dots. For the sake of clarity, the links between agents interacting with their periodic neighbors are removed.
The black squares depict the close-ups shown in panels a, b of Fig. 2 (main text). For low attention capacity (k = 3) the
network is sparse, composed of many small connected components, whereas for large attention capacity (k = 12), the network
is highly connected with less components.



SUPPLEMENTARY FIGURE 2
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FIG. S2. Temporal interaction networks. a: Average number of connected components (CC) of the interaction network versus
attention limit k. For all DS densities ρDS , we observe a fast decay of the number of connected components, which due to
constant number of agents N is equivalent to the growth of the average connected component size, indicating a more tightly
connected temporal network. b: The probability of observing one connected component during simulation. By increasing DS
density, nonzero probability happens at larger k values. c: The average life time of an edge in the interaction network decreases
with increasing density of DSs. However with increasing k for a fixed DS density, we observe longer life times due to increased
connectivity in the interaction network.



SUPPLEMENTARY FIGURE 3
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FIG. S3. Emergent collective behavior. Accuracy C vs attention limit k calculated for the whole system (a), uninformed
individuals (b) and informed individuals (c). Solid lines are for the interacting system and dashed dotted lines are for the
non-interacting system with γs = 0.



SUPPLEMENTARY FIGURE 4
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FIG. S4. Collective accuracy and DS avoidance in a structured environment with circular DS-free path. a: Accuracy C
(triangles) and normalized DS avoidance A (circles) versus attention limit k. The horizontal line, A = 1, corresponds to DS
avoidance of non-interacting agents. For socially interacting agents with low k values (k = 1, 2), we observe high accuracy
C together with almost complete ignorance towards environmental cues. By increasing k, more agents start to sense the
environment and react to DSs. At high k, the collective behavior is fully determined by the local environmental features:
We observe collective rotation along the circular path and complete ignorance of the global migration direction accessible to
informed individuals (see Supp. Movie S4). This trade-off is shown quantitatively by the global fitness function in panel b
versus attention capacity k and relative DS avoidance benefit β. There are two maxima in global fitness, one for low k, β � 1,
showing migration accuracy to be beneficial for the group, the other at high k, and β > 1, which indicates higher benefits
associated with DS avoidance in comparison to collective accuracy.



SUPPLEMENTARY FIGURE 5
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FIG. S5. Attention trade-off in a group of agents with active signalers. Each agent connected to another individual signalling
direct interaction with a DS (direct responder), pays only attention to the signaller(s) and ignores other social cues. Accuracy
C (a) and DS avoidance A (b) versus attention limit k for different DS densities at Rinf = 0.1.



SUPPLEMENTARY FIGURE 6
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FIG. S6. Model extension with the priority of DS avoidance. Accuracy C and DS avoidance A vs attention limit k in a
model where the agents first detect DSs with some probability and otherwise interact with their kNO. a: Pdirect = 0.2, b:
Pdirect = 0.5.
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FIG. S7. Emergence of global order in the system with no informed individuals, Rinf = 0. a: Coordination C̃ (directional
order) versus attention limit k for different DS densities. b: DS avoidance versus attention limit k. A = 1 corresponds
to non-interacting agents. The qualitative behavior with a coordination-responsiveness trade-off is similar to the model with
informed individuals, but here instead of a specific direction, the emergent consensus direction is random (spontaneous symmetry
breaking).
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FIG. S8. Collective motion of agents with Voronoi-based kNN interaction network. Here, k nearest agents are selected from
first shell of Voronoi neighbors. If the number of neighbors in first layer is smaller than k, then depending on k, the second
Voronoi shell is considered. It is defined by the Voronoi neighborhood of the (direct) Voronoi neighbors of the focal agent.
Accuracy C (a) and DS avoidance A (b) versus attention limit k at Rinf = 0.1.
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FIG. S9. Robustness of the general results for C and A vs k with respect to variation of model parameters. The panels
show results for changing individual model parameters by a factor of 2 (left columns) and 0.5 (right columns). Different rows
represent variation of different parameters, from top to bottom: v0, γs, γl, γp. The non-varied parameters are always set to
the default parameters: v0 = 0.5, γs = 1, γl = 1, γp = 0.1.


