Table S1: categories of gene expression pattern within the developing digit. | Туре | Gene | Early expression | Perturbation | | | |---------|------------|--|---|--|--| | Stripes | Gdf5 | (Merino et al., 1999; Storm
& Kingsley, 1999; Gao et
al., 2009; Ray et al., 2015;
Huang et al., 2016) | Gdf5 beads embedded adjacent to nascent joints inhibits joint formation in chick (Merino et al., 1999) and mouse (Storm and Kingsley, 1999) Gdf5(-/-) mice show ectopic joint initiation (Storm and Kingsley, 1999) | | | | | Wnt9a | (Kan & Tabin, 2013;
Sohaskey et al., 2008) | Retroviral mis-expression of Wnt9a in chick
induces ectopic joint formation and
downregulates chondrogenesis (Hartmann &
Tabin, 2001) | | | | | Wnt16 | (Kan & Tabin, 2013) | WNT/ß-catenin signalling is necessary and
sufficient to form joints (Guo et al., 2004) | | | | | PthrP | (Gao et al., 2009) | | | | | | Chordin | (Kan & Tabin, 2013) | | | | | | cJun | (Kan & Tabin, 2013) | Cre mediated deletion of cJun from early
mouse limb mesenchyme disrupts interzone
formation and Wnt9a/Wnt16 interzone
expression (Kan and Tabin, 2013) | | | | Dots | pSMAD1/5/8 | (Huang et al., 2016) | Activation of the BMP pathway inhibits joint formation (Brunet et al., 1998; Zou et al., 1997) Inhibition of the BMP pathway expands joint progenitors (Yi et al. 2008) In chick, interdigital sources of BMP, both endogeneously present and exogeneously applied, affect joint patterning in nearby digits (Dahn and Fallon, 2000; Suzuki et al., 2008) | | | | | lhh | (Gao et al., 2009) | Loss of joints in Ihh(-/-) mice (Hilton et al., 2005) Partial rescue of joints in Ihh(-/-); Gli3 (-/-) double mutant mice Mouse Ihh E95K mutation, reducing capacity and range of hedgehog signalling, leads to loss of middle phalanx from digit V, and spreading of Gdf5 expression (Gao et al., 2009) | | | | | Ppr | (Gao et al., 2009) | | | | | | Hip1 | (Gao et al., 2009) | | | | | Holes | Gli1 | (Gao et al., 2009) | | | | Table S2: Summary of model variables and parameters | Category | Туре | Description | | | | | |---------------|-------------------|--|--|--|--|--| | Dot
system | A | Concentration of dot molecule | | | | | | | S | Concentration of hole molecule | | | | | | | D_{A} | Diffusivity of A | | | | | | | $D_{\mathcal{S}}$ | Diffusivity of S | | | | | | | k_A | Controls degradation and production of A | | | | | | | k_S | Controls degradation and production of S | | | | | | | h_A | Concentration-independent production of A | | | | | | | $h_{\mathcal{S}}$ | Concentration-independent production of S | | | | | | | k_{deg} | Degradation rate of A outside domain | | | | | | | В | Concentration of activating stripe molecule | | | | | | | I | Concentration of inhibitory stripe molecule | | | | | | | D_B | Diffusivity of B | | | | | | OL 1 | D_I | Diffusivity of I | | | | | | Stripe | h_B | Controls production of B that is independent of I | | | | | | system | k_B^0 | Controls degradation and production of B | | | | | | | k_I | Controls degradation and production of I | | | | | | | κ_B^0 | Controls the inhibitory effect of A and B on the production of B | | | | | | | L_0 | Initial digit length | | | | | | | L | Final digit length | | | | | | | W | Digit width | | | | | | Geometry | ϵ | Semi-minor axis (half-width) of ellipses at digit ends | | | | | | | T | Total simulation time | | | | | | | T_i | Time to allow patterns to settle without growth | | | | | | | L_P | Length of patterning region | | | | | ## **Table S3: Simulation parameters** Unless otherwise stated, we kept the following parameters constant across all simulations: $$\begin{aligned} k_A &= 0.0025, k_S = 0.003, k_B^0 = 0.01875, k_I = 0.0375 \ h_A = 0.00025, h_S = 0.003, h_B = \\ 0.00187, \kappa_B^0 &= 0.2, k_{deg} = 1 \times 10^{-5}, \epsilon = 3, T_i = 5e3, \delta t = 20 \end{aligned}$$ | Figure | D_A | D_S | D_B | D_I | L_0 | L | W | T | other | |-------------|--------|--------|---------|--------|-------|-----|-----|------|---| | 1C,D | 0.008 | 0.16 | 0.006 | 0.12 | 128 | 128 | 128 | 12e4 | $k_B = k_B^0 S_0^2, \kappa_B = \kappa_B^0 A_0, \epsilon = 0, T_i = 0$ | | 1F | 0.008 | 0.16 | 0.006 | 0.12 | 128 | 128 | 20 | 6e4 | - | | 2B | 0.0007 | 0.0135 | 0.0004 | 0.0076 | 5 | 36 | 6 | 12e4 | - | | 2C | 0.002 | 0.039 | 0.0011 | 0.0219 | 5 | 40 | 10 | 12e4 | $L_P = \infty, 12,2$ | | 2D | 0.0018 | 0.036 | 0.001 | 0.0203 | 5 | 115 | 10 | 24e4 | $T_i = 2e4$ | | 3A (left) | 0.004 | 0.08 | - | - | 128 | 128 | 128 | 12e4 | - | | 3A (middle) | 0.008 | 0.16 | - | - | 128 | 128 | 128 | 12e4 | - | | 3A(right) | 0.016 | 0.32 | - | - | 128 | 128 | 128 | 12e4 | - | | 3B (upper) | 0.0015 | 0.03 | 0.0008 | 0.0169 | 10 | 34 | 10 | 6e4 | $T_i = 1e3$ | | 3B (middle) | 0.001 | 0.02 | 0.0008 | 0.0169 | 10 | 34 | 10 | 6e4 | $T_i = 1e3$ | | 3B (lower) | 0.0004 | 0.0075 | 0.0008 | 0.0169 | 10 | 34 | 10 | 6e4 | $T_i = 1e3, k_{deg} = 6 \times 10^{-5}$ | | 4B (left) | 0.002 | 0.039 | 0.0015 | 0.0292 | 50 | 50 | 50 | 20e4 | $T_i = 2e4, \epsilon = 3$ | | 4B (middle) | 0.002 | 0.039 | 0.0015 | 0.0292 | 10 | 50 | 50 | 20e4 | $T_i = 2e4, \epsilon = 3, k_{deg} = 1 \times 10^{-6}$ | | 4B (right) | 0.002 | 0.039 | 0.0015 | 0.0292 | 10 | 50 | 50 | 20e4 | $T_i = 2e4, \epsilon = 3$ | | 5A (left) | - | - | 0.00112 | 0.2250 | 40 | 40 | 10 | 6e4 | $k_B = 0.0128, \kappa_B = 0.22, \epsilon = 0$ | | 5A (middle) | - | - | 0.0079 | 0.1575 | 40 | 40 | 10 | 6e4 | $k_B = 0.0128, \kappa_B = 0.22, \epsilon = 0$ | | 5A (right) | - | - | 0.0056 | 0.1125 | 40 | 40 | 40 | 6e4 | $k_B = 0.0128, \kappa_B = 0.22, \epsilon = 0$ | | 5B (left) | 0.0018 | 0.036 | - | - | 40 | 40 | 10 | 12e4 | $T_i = 1e3, \epsilon = 0$ | | 5B (middle) | 0.0012 | 0.024 | - | - | 40 | 40 | 10 | 12e4 | $T_i = 1e3, \epsilon = 0$ | | 5B (right) | 0.0027 | 0.054 | - | - | 40 | 40 | 40 | 12e4 | $T_i = 1e3, \epsilon = 0$ | | 5C (left) | 0.0018 | 0.036 | 0.001 | 0.0203 | 40 | 40 | 10 | 12e4 | $T_i = 1e3, \epsilon = 0$ | | 5C (middle) | 0.0012 | 0.024 | 0.001 | 0.0203 | 40 | 40 | 10 | 12e4 | $T_i = 1e3, \epsilon = 0$ | | 5C (right) | 0.0027 | 0.054 | 0.0015 | 0.0304 | 40 | 40 | 40 | 12e4 | $T_i = 1e3, \epsilon = 0$ | | S1C | 0.0008 | 0.16 | 0.006 | 0.12 | 128 | 128 | 20 | 6e4 | $k_{deg} = 0.1 \times 10^{-5}, 1 \times 10^{-4}$ | | S1D | 0.0008 | 0.16 | 0.006 | 0.12 | 128 | 128 | 20 | 6e4 | $SA^2 \to SA^2(1 + 0.1B^2)^{-1}$ in Equation 1a,b; 4a,b | | S2A | 0.002 | 0.039 | 0.0011 | 0.0219 | 5 | 50 | 10 | -> | T = 12e4, 3.5e4, 1e4 from left to right | | S2B | 0.0024 | 0.048 | 0.0018 | 0.036 | 5 | 50 | 10 | 20e4 | $h_A^{DC} = 0.0.0004, 0.0006, h_B^{DC} = 0.005$ | ## Figure S1 - (A) In the dot-forming system, dots (red) form in antiphase with holes (green). - (B) In the stripe-forming system, stripes (blue) form in-phase with other stripes (orange). - (C) Varying the degradation rate of A outside the domain (k_{deg}) changes joint orientation. An intermediate value is required to get stereotypical joint morphology. - (D) A more general model, involving mutual repression between the dot- and stripesystems, generates patterns that are qualitatively similar to the simpler model in Fig. 1. - (E,F) Schematic of parameters describing digit geometry and growth. time time B Figure S2 time (A) Changing the speed of patterning modulates the precise location of newly forming joints. Left: fast patterning results in joints that divide the distal phalanx (arrowhead). Middle: slower patterning results in joint specification at the growing tip (asterisk). Right: if patterning is too slow, the system fails to self-organize. (B) Modelling boundary effects can affect the precise location of newly forming joints. Left and Right: Both weak and strong boundary effects can cause joints to divide existing phalanges (arrowhead). Middle: intermediate boundary effects bias joints to form near the distal tip (asterisk). close to dot centre far from dot centre B - Figure S3 - (A) Simulating the stripe system for uniform values of *A* and *S*, chosen to mimic being at different distances from a dot-centre in Fig. 4A. - (B) Simulating the stripe system for a one-dimensional gradient in the values of *A* and *S*, again chosen to mimic being at different distances from a dot-centre in Fig. 4A. - (C) Direct comparison of simulated joint patterns with the voronoi tessellation of Fig. 4A. only *h* depends on dots both h and a depend on dots ## Figure S4 - (A) Simulation of the generic dot-stripe system (Equations 7-8) with *h*-coupling only generates holes. - (B) Simulation of the generic dot-stripe system (Equations 7-8) with *a*-coupling only generates misoriented stripes. - (C) Simulation of the generic dot-stripe system (Equations 7-8) with both h- and a-coupling generates a polygonal lattice of joints.