
Supplementary Material 
 

1. Comparison of methods for the estimation of enrichment in genetic variance partitioning. 

 
We can estimate the significance of the difference in variance captured by an individual partition against a                 
model where each SNP captures exactly the same amount of variance. In this latter case, the amount of                  
variance captured by each partition should be directly proportional to the number of SNPs it contains. 
 
We first aimed to assess the statistical significance of the partition enrichment using a permutation test as                 
in Toro et al. (2015) and a derivation of statistical significance obtained from the covariance matrix of                 
variance estimates reported by GCTA. 
 
In the permutation test, SNPs were randomly selected to build the partitions, keeping the same number of                 
SNPs as in the original partition. For each set of random partitions, the same linear mixed-effects model                 
as before was fitted (including age, sex, centre and 10 PCs). We tested whether any of these partitions                  
captured more variance than what could be expected given its number of SNPs. Briefly, a Z-score was                 
computed by comparing the SNP-set genetic estimated variance of partition i to the SNP-set genetic        V Gi         
variance  expected under no enrichment:f i · V Gtot  
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V −f ·VGi i Gtot

√V ar(V −f ·V )Gi i tot
 

 
where  is the fraction of the SNPs included in partition i.  The p-value of enrichment was computed byf i  
comparing the observed Z score to those obtained from 1,000 permutations. 
 
One limitation of this approach is that it does not preserve the local LD relationships among SNPs. We                  
observed that the standard errors of the genetic variance estimates reported by the permutation approach               
were systematically larger than those computed from the covariance matrix of variance estimates. To              
better preserve the original LD, we tried an alternative permutation method in which we permuted blocks                
of contiguous SNPs. For the partitioning based on genic status, the standard errors of the simulated                
partitions estimates were compatible with the standard error of the original partitions (Fig. S1). However,               
this alternative permutation method did not reduce the gap with the theoretical values for the partitioning                
by MAF since they depend only on the frequency of the individual SNPs, and not on their contiguity over                   
the genome (Fig. S2). Because of this, and because the permutation approach was much more               
demanding in terms of computation, we decided to use only the theoretical derivation of enrichment test:                
We evaluated whether was statistically significantly positive with a one-sided Z-test,   V Gi − f i · V Gtot          
considering that in the null hypothesis of no enrichment, each genomic partition should carry an amount                
of variance proportional to its number of SNPs. We estimated the variance of the observed enrichment                
using this equation: 
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Figure S1. Simulation of partitioning the genetic variance between genic, near genic and non genic regions. Upper                 
panel: Density of standard errors reported by GCTA in permutation vs standard error reported by GCTA in the                  
original partition. SNPs. Lower panel: Density of genic region enrichment for permutations in the null hypothesis of                 
no enrichment computed as the difference between and . The observed value is the reported        V Gi   (V )  E Gi

= V Gtot
· f i        

value for the real partition. Permutations were made for UK biobank dataset with 1000 iterations. permutations:                
permutations by SNPs. permutations_bins: permutations by blocks of contiguous SNPs. 



 
Figure S2. Simulation of partitioning the genetic variance in function of MAF (0.05-0.20, 0.20-0.35, 0.35-0.5). Upper                
panel: Density of standard errors reported by GCTA in permutation vs standard error reported by GCTA in the                  
original partition. SNPs. Lower panel: Density of low MAF enrichment for permutations in the null hypothesis of no                  
enrichment computed as the difference between and . The observed value is the reported       V Gi   (V )  E Gi

= V Gtot
· f i        

value for the real partition. Permutations were made for UK biobank dataset with 1000 iterations. permutations:                
permutations by SNPs. permutations_bins: permutations by blocks of contiguous SNPs. 



2. Genetic variance estimates in UK Biobank with different set of covariates 

 
We compared the estimations of genetic variance for volumes measured using Freesurfer and FIRST in               
the UK Biobank project obtained by including or not the 10 first principal components of the genetic                 
relationship matrix, and by including or not brain volume (BV) as a covariate in the linear model. The                  
results with an without the top 10 PCs are included in supplemental table S2. 
 
We observed that VG/VP estimates diminished when no covariate was included, meaning that covariates              
globally capture more environmental variability. The inclusion of brain volume as a covariate did not seem                
to have a large impact on the estimations. 
 

 
Figure S3. Fraction of phenotypic variance (VP) accounted for by genetic variance(VG), computed from all               
genotyped SNPs for the UK Biobank dataset. VG/VP estimates were computed using GCTA REML unconstrained               
method, for total volumes estimated using either FIRST (A) or FreeSurfer (B). The bar plots also include estimates of                   
VG/VP for height and fluid intelligence. The colors represent results obtained with four different sets of covariates (BV                 
denotes the brain volume, PCs the top 10 principal components).  
 
  



3. Correlation among the phenotypes studied, and comparison between volume measurement           
tools. 
 
We computed the raw correlation matrix of all the phenotypes studied. Figure S3 shows regional volumes                
computed using Freesurfer, with left and right volumes of each region plot separately. Figure S4 shows                
the correlation of the volume measurements obtained with Freesurfer and FIRST, with left and right               
volumes of each structure combined. We observed that patterns of correlations differed across structures,              
with accumbens and amygdala displaying less correlation than the other structures between their left and               
right parts. Correlation between volumes measured by either FIRST or FreeSurfer were different across              
structures, the lowest consistency being found for amygdala (r = 0.621).  

Figure S4. Pairs plot of the volumes of the left and right hemispheres of the subcortical structures measured using 
FreeSurfer (Acc : Accumbens, Amy : Amygdala, Cau : Caudate, Hip : Hippocampus, Pal : Pallidum, Put : Putamen, 
Th : Thalamus). 
 



 
Figure S5. Scatter plots of total volumes (sum of left and right hemispheres) measured by FIRST (x-axis) and 
FreeSurfer (y-axis). 
 
4. Comparison of genetic variance estimates with those of previous studies of the UK Biobank 
and ADNI projects by Elliott et al (2018) and Zhao et al (2018). 
 
Several recent studies have used the UK Biobank data to estimate genetic variance of regional brain 
volumes. The reported estimates vary across studies, with subcortical volumes, in particular the volume of 
the amygdala, showing the largest differences. We compared our genetic variance estimates with those 
obtained by two recent studies (Elliott et al. 2018; Zhao et al. 2018). Zhao et al. (2018) used GCTA to 
compute VG/VP estimates of the left and right volumes of various subcortical structures on a smaller 
sample of 9,031 subjects from the UK Biobank project. Regional brain volumes were quantified using 
ANTs (Advanced Normalization Tools software (Avants et al. 2014) together with the MindBoggle-101 
atlas (Klein and Tourville 2012). Elliott et al. (2018) reported genetic variance estimates for thousands of 
phenotypes on 8,411 subjects, using SBAT (Sparse Bayesian Association Test (Elliott et al. 2018)). 
These phenotypes included the volumes of subcortical structures that we report here. Elliott et al. (2018) 
provide VG/VP estimates obtained from measurements of subcortical structures performed using FSL’s 
FIRST (FMRIB’s Integrated Registration and Segmentation Tool (Patenaude et al. 2011)) and FreeSurfer. 
In previous study of the IMAGEN data we reported only total volumes (left plus right) computed using 
FIRST. For the sake of comparison, we computed VG/VP estimates in the UK Biobank data for the left and 
right volumes separately, using both FIRST and FreeSurfer (Table S2). 



The largest difference of hemispheric variance estimates was observed for the amygdala and the nucleus               
accumbens (Fig. S6a), which were the smallest structures of those we studied. These structures also               
displayed the lowest correlation between right and left volumes (Fig. S4) and between FIRST and               
FreeSurfer measurements (Fig. S5), which suggests that their measurement may be less precise than for               
larger structures. A similar discrepancy between left and right amygdala volume was observed by both               
Zhao et al. (2018) and Elliott et al. (2018) (Fig. S6a). Discrepancies between VG/VP estimates were more                 
important when comparing different methods to estimate subcortical volumes (FreeSurfer, FIRST, or            
MindBoggle/ANTs) than when comparing different methods to estimate genetic variance (GCTA or            
SBAT). The inclusion of the brain volume as a covariate did not change noticeably our variance estimates                 
and thus could not fully explain the differences observed with the study of Zhao et al. (2018) (Fig. S6b). In                    
all cases, however, 95% CIs built from the standard errors of each study contained the estimates of the                  
other studies. 

We also compared our VG/VP estimates for the ADNI project with those obtained by Zhao et al. (2018).                  
After filtering and merging of the non-imputed genotypes across the two ADNI sub-projects, we included               
982 subjects and 210,543 SNPs; Zhao et al. (2018) included 1,023 subjects and 7,368,446 SNPs (after                
imputation). Despite both analyses using the same covariates, the VG/VP estimates showed differences             
ranging from 7% to 99%. These differences are not surprising, however, given the small sample size, and                 
thus the large standard errors of the estimates (Fig. S6b). 

 
In conclusion, when comparing heritability estimates reported by different studies, the method used to              
measure volumes had a larger impact on the estimation of genetic variance than the method used for the                  
estimation of heritability. The smallest subcortical structures such as the nucleus accumbens, the             
amygdala and the pallidum seemed to be the most difficult to segment accurately. Large volume               
differences both between manual and automated segmentation and between FreeSurfer and FIRST            
segmentations have been previously reported, in particular for the amygdala (Morey et al. 2009;              
Schoemaker et al. 2016). 
 
  



a. 

 
b. 

 
Figure S6. (a) Comparison of our estimates of genetic variance (VG/VP) in the UK Biobank project with two recent                   
studies: Elliot et al. (2018) and Zhao et al. (2018). VG/VP estimates were computed for brain, intracranial volume                  
(ICV), and subcortical volumes of the right and left hemispheres measured using different methods (FreeSurfer, or                
MindBoggle/ANTs, FIRST) represented by the shapes of the dots. In yellow are represented the estimates of VG/VP                 
we computed using GCTA REML unconstrained method, the other VG/VP estimates were published by Elliott et al.                 
2018 (green) and Zhao et al. 2018 (orange). Age, sex, center, and the top 10 principal components were included as                    
covariates. The error bars show the standard errors of the VG/VP estimates. (b) Fraction of phenotypic variance (VP)                  
accounted for by genetic variance (VG), computed from all genotyped SNPs for the volumes of six subcortical                 
structures in the ADNI dataset. We observed that the sample size was too small to get reliable estimations. Estimates                   
published by Zhao et al., 2018 are shown in violet, estimates we obtained using GCTA REML constrained method                  
with covariates similar to the ones used by Zhao et al. (age, sex, center, 10 top principal components, brain volume,                    
ADNI phase) are shown in yellow. 

  



5. Comparison of phenotypic and genetic correlations 

 
We computed matrices of phenotypic correlations (rP in Fig. S7, left panel) and genetic correlations (rG in                 
Fig. S7, right panel). The correlations among pairs of phenotypes were computed using GCTA. We used                
Ward hierarchical clustering based on euclidean distance to cluster the phenotypes. 
 
Additionally, we computed environmental correlations which are the environmental counterpart of genetic            
correlations (Fig. S8, left panel). They represent the correlation between the environmental effects of two               
traits. They were computed using the environmental variances of each trait and the environmental              
covariance between the two traits output by GCTA ( ). Standard errors were computed        rE = Cov(E , E )tr1 tr2

√V ar(E )·V ar(E )tr1 tr2
     

with the delta method. The concordance between genetic and environmental correlation was medium (R2              
= 0.47) (Fig S8, right panel). 
 
Correlations were overall strong and significant, especially between the left and right parts of the same                
structure. Figure S9 shows the values of the differences between genetic and environmental correlations              
(rG - rE, left panel) and genetic and phenotypic (rG - rP, right panel) are shown in the lower triangular part                     
of the matrix. Differences between genetic and environmental correlations were larger than the             
differences between genetic and phenotypic correlations. Statistical significance was assessed using a            
Z-test to determine whether the differences were non null (Benjamini Yekutieli FDR adjusted *P<0.05,              
**P<0.01, ***P<0.001). Table S5 provides the values of the genetic, phenotypic, and environmental             
correlations and the results of their comparison.  
 

 
Figure S7. Heat maps of phenotypic correlations (rP, left panel) and genetic correlation (rG, right panel) values                 
computed with GCTA. The following phenotypes are represented: the left and right hemisphere volumes of               
accumbens (Acc_L and Acc_R), amygdala (Amy_L and Amy_R), caudate (Cau_L and Cau_R), hippocampus (Hip_L              
and Hip_R), pallidum (Pa_L and Pa_R), putamen (Pu_L and Pu_R), and thalamus (Th_L and Th_R) ; brain volume                  
(BV), intracranial volume (ICV), height and fluid intelligence (FI) are also represented. Ward hierarchical clustering               
based on euclidean distance was used to cluster the phenotypes. 



 
Figure S8. Left: values of environmental correlations are shown in the lower triangular part of the matrix. Circles’s                  
diameter is proportional to the strength of the correlation, and a thickness proportional to the size of the confidence                   
interval. Right: scatter plot of environmental versus genetic correlations. Genetic and environmental correlations were              
adjusted for age, center, sex, and the top 10 principal components of the genetic relationship matrix. 

    
Figure S9. Values of the differences between genetic and phenotypic correlations (rG - rP, left) and genetic and                  
environmental correlations (rG - rE, right) are shown in the lower triangular part of the matrix. Circles’ diameter is                   
proportional to the difference and a thickness proportional to the size of the confidence interval. Stars indicate                 
statistical significance from a Z-test testing if the differences are non null (Benjamini Yekutieli FDR adjusted *P<0.05,                 
**P<0.01, ***P<0.001). The following phenotypes are represented: the left and right hemisphere volumes of              
accumbens (Acc_L and Acc_R), amygdala (Amy_L and Amy_R), caudate (Cau_L and Cau_R), hippocampus (Hip_L              
and Hip_R), pallidum (Pa_L and Pa_R), putamen (Pu_L and Pu_R), and thalamus (Th_L and Th_R) ; brain volume                  
(BV), intracranial volume (ICV), height and fluid intelligence (FI) are also represented. 



 
 
 
Accounting for the effect of phenotypic measurement error  
 
Let x and y be two measured phenotypes, they can be decomposed into their real values  and  andx′ y′  
their measurement errors  and :  and .εx εy  x = x′ + εx y = y′ + εy  
 
The correlation between the two measured phenotypes can be expressed like this: 
rx,y = cov(x, y)

√var(x) var(y)
= cov(x+ε , y +ε )′ x ′ y

√var(x+ε ) var(y +ε )′ x ′ y
(Eq. 3) 

 
Considering that there is no correlation between measurement errors and the real values, one can 
develop the following formula: 
rx,y = cov(x , y )+cov(ε , ε )′ ′ x y

√(var(x )+var(ε ))(var(y )+var(ε ))′ x ′ y
 

. . .  = cov(x , y )′ ′

√var(x )var(y )′ ′ cov(x , y )′ ′
cov(x , y )+cov(ε , ε )′ ′ x y √ var(x )′

var(x )+var(ε )′ x √ var(y )′
(var(y )+var(ε ))′ y

            (Eq. 4) 

 
 and  can be estimated as being the intraclass correlation coefficient (ICC)var(x )′

var(x )+var(ε )′ x

var(y )′
var(y )+var(ε )′ y

 
respectively for x and y (called rx  and ry ).  
 
We used a generalised version of the intraclass correlation coefficient to estimate  (calledcov(x , y )′ ′

cov(x , y )+cov(ε , ε )′ ′ x y
 

rc): When x and y are measured for N different subjects with k repeated measurements, 

where  and  are the respective means for all x and y(x )(y )rc = 1
k(k−1)Nc ∑

k

i=1
∑
k

j=1,j=i/
∑
N

n=1
n,i − x n,j − y x y  

measurements,  and .(x )(y )c = 1
kN ∑

k

i=1
∑
N

n=1
n,i − x n,i − y  

 
We were thus able to obtain an estimation of the phenotypic correlation adjusted for measurement errors: 
rx , y′ ′ = rx, y

rc
√r  rx y

 (Eq. 5). 

 
Values of are available in the second sheet of Table S5, values of , , and are available in the  rx , y′ ′             rx  ry   rc     
third sheet of Table S5. The estimates of VG/VP adjusted for measurement errors using the ICC values of                  
each phenotype are shown in Figure S10. 
 
 
 



 
Figure S10. Adjusted proportion of variance captured by common genotyped variants (VG/VP) for brain regions, 
height and intelligence score. 
 

           rG - rP’     rG - rE’ 

   
Figure S11. Values of the differences between genetic and corrected phenotypic correlations (rG - rP’, left panel), and                  
between genetic and corrected environmental correlations (rG - rE’, right panel) are shown in the lower triangular part                  
of the matrix. Circles’ diameter is proportional to the difference and a thickness proportional to the size of the                   
confidence interval. Stars indicate statistical significance from a Z-test testing if the differences are non null                
(Benjamini Yekutieli FDR adjusted *P<0.05, **P<0.01, ***P<0.001). The following phenotypes are represented: the             
left and right hemisphere volumes of accumbens (Acc_L and Acc_R), amygdala (Amy_L and Amy_R), caudate               
(Cau_L and Cau_R), hippocampus (Hip_L and Hip_R), pallidum (Pa_L and Pa_R), putamen (Pu_L and Pu_R), and                
thalamus (Th_L and Th_R) ; brain volume (BV), intracranial volume (ICV), height and fluid intelligence (FI) are also                  
represented. 



6. Distribution of VG/VP estimates for simulated phenotypes for different sample sizes 
 
We studied how the distribution of heritability estimates differed from their theoretical distribution as a               
function of sample size. VG/VP estimates were obtained from 1,000 simulated phenotypes with a heritability               
of VG/VP = 50% for sub-samples of N = 800, N = 400, N = 200 and N = 100 subjects.  
Figure S12 show simulations based on the ADNI project and Figure S13 show simulations based on the                 
UK Biobank project.  
 

  
Figure S12. Distribution of estimated values for VG/VP of simulated phenotypes for different sub-sample sizes in ADNI                 
dataset, compared with the expected (theoretical) distribution. 

 Figure 
S13. Distribution of estimated values for VG/VP of simulated phenotypes for different sub-sample sizes in UK Biobank 
dataset, compared with the expected (theoretical) distribution. 



7. Comparison between meta-analysis and mega-analysis 

 
Fig. S14 shows the difference in standard errors obtained when a single group is analysed (labelled as                 
“merging”) versus a meta-analytic approach combining several small groups (labelled as “meta-analysis”).            
The plot represents the change in standard error after including an additional dataset for GREML               
analysis. 

    
Figure S14. Resulting standard error after addition of another dataset for GREML analysis. The x-axis represents                
relative size of the added dataset compared with the initial dataset. The y-axis represents relative standard error of                  
the combinated estimate compared with the standard error obtained only with the first dataset. Meta-analysis:               
resulting standard error computed as . Merging: resulting standard error computed as . 1

√1+f raction2
1
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8. Genome-wide polygenic scores 

Figure S15. Variance captured by genome-wide polygenic scores (coefficient of determination R2) for each              
phenotype. The analyses were performed on the residuals of the linear regression including the effects of age, sex,                  
imaging centre, and the 10 first principal components of the GRM as covariates. Error bars represent the 95%                  
confidence intervals. 
 



 
Figure S16. For each phenotype, two plots are shown: a scatter plot of the phenotype residuals (after covarying by                   
age, sex, imaging centre and genetic principal components) as a function of the genome-wide polygenic scores                
(GPS), and boxplots showing the distribution of the phenotype residuals of the individuals located more than minus                 
(low_gps) or plus (high_gps) two standard deviations away from the average GPS. Units are cm3 for volumes and cm                   
for height. The variance captured by genome-wide polygenic scores (coefficient of determination R2) and the p-value                
of the Fisher test testing whether R2 is different from zero are given for the scatter plots. The t-value and p-value of                      
the Student test comparing the individuals with low and high GPS are given for the boxplots. 
 
 



 
Figure S17. Comparison of the prediction of height with genome-wide polygenic scores using as base dataset the                 
MRI cohort of UK Biobank (n = 13,086, top panel) and the whole UK Biobank cohort without subjects included in the                     
target dataset (n = 277,756, bottom panel). The additional MRI cohort of UK Biobank (n = 6,189) was used as target                     
dataset. 
 
For each base dataset, two plots are shown: a scatter plot of the phenotype residuals (after covarying by                  
age, sex, imaging centre and genetic principal components) as a function of the genome-wide polygenic               
scores (GPS), and boxplots showing the distribution of the phenotype residuals of the individuals located               
more than minus (low_gps) or plus (high_gps) two standard deviations away from the average GPS. Units                
are cm3 for volumes and cm for height. The variance captured by genome-wide polygenic scores               
(coefficient of determination R2) are given for the scatter plots. The t-value and p-value of the Student test                  
comparing the individuals with low and high GPS are given for the boxplots. 

 

  



9. Supplementary Table Legends 

 
Table S1: SNP-heritability results.  
Sheet1: SNP-heritability computed with the GCTA GREML method (including age, sex, centre and the top               
10 PCs of the GRM as covariates) for each of the studied phenotypes in UK Biobank and five ENIGMA                   
cohorts. 
Sheet2: SNP-heritability estimates obtained by averaging across the six cohorts using the inverse 
variance-weighted average method. 
 
 
Table S2: SNP-heritability computed with GCTA GREML for UK Biobank (including age, sex, centre),              
with (Table S2.1) and without (Table S2.2) including the top 10 principal components of the GRM matrix                 
as covariates. 
 
Table S3: SNP-heritability and enrichment results for several partitions using the UK Biobank 
project data.  
Table S3.1 provides data on four partitions based on genic status. The first set includes all SNPs within                  
the 66,632 RefSeq gene boundaries of the hg19 assembly (“genic-margin0”), the two further sets include               
also SNPs 0 to 20 kbp (“updown-margin20“) and 20kbp to 50 kbp upstream and downstream of each                 
gene (“updown-margin20-50”), and a last set includes the SNPs not located in regions less than 50 kbp                 
upstream or downstream of genes (nongenic-margin50).  
Table S3.2 provides data on four partitions based on minimum allele frequency (MAF): from 0.1 to 5%,                 
from 5 to 20%, from 20 to 35% and from 35 to 50%.  
Table S3.3 provides data on three partitions (genic in gene set region, genic not in gene set region,                  
non-genic) based on preferential central nervous system (CNS) gene expression (Raychaudhuri et al.             
2010; Lee, DeCandia, et al. 2012) using ± 50 kbp as gene boundaries. 
Table S3.4 provides data on three partitions (genic in gene set region, genic not in gene set region,                  
non-genic) based on markers of brain cell types from the scRNA-Seq study of Skene et al. (2018) (PMID:                  
29785013). We used the specificity metric, provided by the authors in R datafiles at              
http://www.hjerling-leffler-lab.org/data/scz_singlecell/, for each gene across 24 brain cell types. In order to            
obtain a partition with a sufficient number of SNPs, we built a gene set (using ± 20 kbp as gene                    
boundaries) of brain cell types markers by taking the union of the genes with the top 1% specificity scores                   
for each cell type.  
Table S3.5 provides data on three partitions (genic in gene set region, genic not in gene set region,                  
non-genic) based on markers of brain cell types from the scRNA-Seq study of Li et al. (2018) (PMID:                  
30545854). The union of the genes in the Table S6 of the manuscript were used to build the gene set                    
(using ± 20 kbp as gene boundaries). 
Table S3.6 provides data on three partitions (genic in gene set region, genic not in gene set region,                  
non-genic) based on markers of different time periods of human brain development from the scRNA-Seq               
study of Li et al. (2018) (PMID: 30545854). The union of the genes in the Table S7 of the manuscript were                     
used to build the gene set (using ± 20 kbp as gene boundaries). 
For each partition i, enrichment was computed using a Z-score comparing the estimated genetic variance               
VGi of the SNP set i to the SNP-set genetic variance fi*VGi expected under no enrichment, the                 
corresponding enrichment p-value comparing this Z-score to zero with a Z-test, the number of individuals,               
the p-value of the likelihood ratio test output by GCTA. 
 

https://www.zotero.org/google-docs/?y6cO9G
http://www.hjerling-leffler-lab.org/data/scz_singlecell/


 
Table S4. Meta-Analysis of the genetic partitioning of SNP-heritability  across the six datasets. 
The partitioning of SNP-heritability estimates were averaged across the six datasets using the inverse              
variance-weighted average method.  
Table S4.1 provides four partitions based on genic status. 
Table S4.2 provides four partitions based on minimum allele frequency (MAF).  
Table S4.3 provides two partitions based on preferential central nervous system (CNS) gene expression              
(Raychaudhuri et al. 2010; Lee, DeCandia, et al. 2012) using ± 50 kbp as gene boundaries. 
For each partition i, the following results are provided: fi the average fraction of SNPs belonging to the                  
SNP set i, the average values of VGi/VP and VGi/VG/fi and the associated standard errors, the enrichment                 
p-value of the Z-test comparing VGi/VG/fi  to 1. 
 
Table S5: Genetic, phenotypic, and environmental correlations in UK Biobank.  
Table S5.1 provides the values of the genetic, phenotypic, and environmental correlations, together with              
their standard errors. Differences between rG and rE (column dr_rGrE), and rG and rP (column dr_rGrP) were                 
computed and their associated standard errors (column dr_rGrE_SE and column dr_rGrP_SE) was            
estimated using the delta method using the output of the GCTA REML bivariate method. A Z-test was                 
used to compare these differences to zero, the p-values are available in columns p.dr_rGrE and p.dr_rGrP.                
The column nind contains the number of individuals available with both annotated phenotypes.  
Table S5.2 provides the same values as for Table S5.1 but for phenotypic and environmental correlations                
values that were corrected for measurement error (as described in the 5. of this supplementary               
document). 
Table S5.3 provides the values used to correct the phenotypic correlations for measurement errors (see               
equation Eq. 5  of this supplementary document). 
 
Table S6: Distribution of estimated values for VG/VP of simulated phenotypes for different sub-sample              
sizes in ADNI dataset. For four sample sizes, 1000 sub-sampling were performed without replacement.              
nb_ind: number of sub-sampled individuals, nb_conv: number of times GREML converged and an             
estimate was given, th_mean: theoretical mean for estimates (equal to the simulated VG/VP), obs_mean,              
obs_mean_se: observed mean of estimates and standard error, p_mean: p value for difference between              
theoretical and observed mean (z-test), th_sd: theoretical standard deviation of estimates (computed as             
the mean of standard errors reported by GCTA), obs_sd, obs_sd_se: observed standard deviation of              
estimates and standard error, p_sd: p value for difference between theoretical and observed standard              
deviation (z-test), D_ks, p_ks: effect size and p-value of Kolmogorov-Smirnov test of concordance             
between theoretical normal distribution and observed distribution. 
 
Table S7: Distribution of estimated values for VG/VP of simulated phenotypes for different sub-sample              
sizes in UK Biobank dataset. 
 
Table S8: Proportion of captured phenotypic variance by genome-wide polygenic scores and covariates.             
mean_pheno: mean value of the raw phenotype, sd_pheno: standard deviation of the raw phenotype,              
Rsq_age_only: proportion of the raw phenotype captured by age, Rsq_pca_only: proportion of the raw              
phenotype captured by genetic principal components, Rsq_sex_only: proportion of the raw phenotype            
captured by sex, Rsq_centre_only: proportion of the raw phenotype captured by imaging centre,             
Rsq_gps_only: proportion of the raw phenotype captured by genome-wide polygenic score, sd_resid:            
standard deviation of residual phenotype after covarying by age, pca, sex and centre, Rsq: proportion of                
residual phenotype captured by polygenic score, SErsq: standard error of R2, LCL: lower 95% confidence               
interval limit, UCL: upper 95% confidence interval limit. 

https://www.zotero.org/google-docs/?y6cO9G


 
 


