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1 A GREEN’S FUNCTION-BASED BI-DIMENSIONAL EMPIRICAL MODE
DECOMPOSITION

Empirical mode decomposition (EMD) (Huang et al., 1998; Zeiler et al., 2011) enables to locally extract
simple oscillatory components from any multi-variate signal, denoted as intrinsic mode functions (IMFs).
The obtained spatial oscillations represent characteristic textures of the given data. The process generating
these IMFs, is usually denoted as sifting, which results in pure oscillations with spatially and/or temporally
varying amplitude and frequency. Note that in contrary to classical filtering methods, EMD is a purely data
driven approach, which intrinsically adapts to the statistics of the data, and does not rely on a predefined
frequency range. Also IMFs are naturally ordered according to their characteristic (spatial)-frequencies.

The one-dimensional EMD can be extended to an image decomposition technique, denoted as
bi-dimensional EMD (BEMD). The process of extracting bi-dimensional IMFs (BIMFs) bj(x, y) is
summarized in the following steps (Al-Baddai et al., 2016a; Nunes et al., 2003):

Bi-dimensional empirical mode decomposition

1. Choose the number of intrinsic modes J and the number of sifting steps N and set r(x, y) = f(x, y)

2. Extract the j-th BIMF by repeating the sifting steps N times:
a. Identify all local maxima and minima of the array r(x, y)

b. Interpolate these local maxima to an upper envelope surface smax(x, y) and local minima to a lower
envelope surface smin(x, y) and calculate the mean between upper envelope surface and lower
envelope surface smean(x, y) = 0.5 (smax(x, y) + smin(x, y))

c. Update r(x, y) with r(x, y)← r(x, y)− smean(x, y)

d. If loop is finished, set bj(x, y) = r(x, y), otherwise repeat steps (a) - (d)

3. Subtract all calculated BIMFs b1...j from f(x, y) to obtain new r(x, y) = f(x, y)−
∑

j<j+1 bj(x, y)

4. If all J BIMFs are extracted, r(x, y) is the residuum, otherwise repeat step 2 to compute the next
BIMF bj+1

Interpolation schemes, which are used to describe the upper and lower envelope surface, usually suffer
from problems like computational load, boundary artefacts and over- and undershooting (Al-Baddai et al.,
2016b). Using a Green’s function-based interpolation scheme, local maxima or minima can be considered
as the known points of the envelope surface, which can be found with an 8-connected neighborhood strategy.
Then surface envelopes s(ru), at Cartesian coordinates ru = [xu, yu]T , are represented as a weighted sum
of Green’s functions (Wessel and Bercovici, 1998):

s(ru) =
N∑

n=1

vnΦ(ru, rn), (1)
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where Φ(ru, rn) represent the Green’s functions and vn the corresponding weights. Further ru denotes a
point where the surface is unknown and rn describes the n-th constraint, which corresponds to a local
extremum. The Green’s function, expressed in 2D-Cartesian coordinates, reads as:

Φ(ru, rn) = log(p|ru − rn|) +K0(p|ru − rn|) (2)

with K0(·) representing the modified Bessel function of the second kind and zero order and | · | the
Euclidean distance. Here p2 = T

D is related with tension T at the boundaries, and D describes the flexural
rigidity of the surface (Wessel and Bercovici, 1998). The estimation of the envelope surface is based on two
steps. In a first step weights vn can be estimated by taking the known values of local maxima (or minima)
as the values s(rn) = [s(r1), . . . , s(rN )]T in a total of N locations rn and solving a linear system of N
equations, described by equation 1. In a second step, if the weights vn are now obtained, the surface can be
estimated at any point ru.

To avoid mode mixing and boundary artifacts, a noise assisted ensemble version of the Green’s function
based BEMD (GiT-BEEMD) can be used (Al-Baddai et al., 2016a). Adding and subtracting noise η
from the original image f(x, y) leads to two noisy versions f̃(x, y)∗ : f̃+(x, y) = f(x, y) + η and
f̃−(x, y) = f(x, y)− η. Both versions f̃(x, y)∗ can now be decomposed into BIMFs. By computing the
mean as 0.5 (f̃+(x, y) + f̃−(x, y)) the original array f(x, y) could be reconstructed and therefore after
decomposing the two versions f̃(x, y)∗, the BIMFs of f(x, y) can be naturally obtained by averaging
BIMFs of the noisy versions. For this version of BEMD it is sufficient to use a few ensemble steps
only to improve the image quality significantly (Al-Baddai et al., 2016b), reducing computational load.
The two-dimensional image decomposition was applied to the slices of volumetric fMRI images in the
transverse anatomical plane.

2 NON-ORTHOGONAL CONSTRAINED EXTENDED INFOMAX

The objective function for ICA, based on Maximum Likelihood, can be derived as (Hyvärinen et al., 2001)

J(W) ≈ E
{ M∑

m=1

log(p(wT
mx))

}
+ log | det(W)| (3)

It is proposed a decoupling strategy for the second term of cost function resulting in a objective function
for each of the rows of the mixing matrix (Rodriguez et al., 2014)

J(wm) ≈ E
{

log(p(wT
mx))

}
+ log |(dT

mwm)|+ log (S) (4)

with S =

√
|det

(
W̃mW̃T

m

)
|, where W̃m is the de-mixing matrix without m− th row. The decoupling

vector is the vector W̃mdm = 0 and can be computed as

dm = (I− W̃T
m(W̃mW̃T

m)−1W̃m)v (5)

where v is a vector with Gaussian random values. The vector gradient of this function is then derived as

∇wmJ(wm) = E
{
fm(wT

mx)xT
}

+
dT
m

dT
mwm

(6)
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with so-called score functions defined as

fm(ym) =
∂ log p(ym)

∂ym
(7)

The extended Infomax algorithm defines these non-linearities fm(ym) differently for sub-Gaussian or
super-Gaussian components (Lee et al., 1999). The Lagrangian multipliers µm are updated by gradient
ascent

µm ← max{0, γmhm(ym, rm) + µm} (8)

For the algorithm a convergence metric like [(vec(∆W))T vec(∆W)] < τ can be adapted (Rodriguez et al.,
2014). Here ∆W is the element by element difference of W after each iteration, vec(·) stores all elements
of a matrix in a column vector and τ is the tolerance value. So the non-orthogonal constrained extended
Infomax can be summarized in the following steps:

Non-orthogonal constrained extended Infomax

1. Randomly initialize W and initialize µm, set γm and thresholds ςm

2. for weights wm, m = 1, . . . ,M do:
a. Compute the vector dm = (I− W̃T

m(W̃mW̃T
m)−1W̃m)v, with dm ⊥ wi 6=m. Here v is a Gaussian

random vector.

b. Compute ym = wT
mx

c. Update µm ← max{0, γmhm(ym, rm) + µm}

d. Let ∆wT
m ∝

dT
m

dT
mwm

+ E{fm(wT
mx)xT} − 1

2 µmE{h′m(ym, rm)xT}
and set fm(ym) = tanh(ym)− ym for sub-Gaussian sources and
fm(ym) = − tanh(ym)− ym for super-Gaussian sources.

e. Update wm ← wm + ∆wm

f. And normalize wm ← wm
‖wm‖

end for

3. Repeat step 2 until convergence.
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Nunes, J. C., Bouaoune, Y., Deléchelle, É., Niang, O., and Bunel, P. (2003). Image analysis by
bidimensional empirical mode decomposition. Image Vision Comput. 21, 1019–1026

Rodriguez, P. A., Anderson, M. Z., Li, X.-L., and Adalı, T. (2014). General non-orthogonal constrained
ICA. IEEE Transactions on Signal Processing 62, 2778–2786

Wessel, P. and Bercovici, D. (1998). Interpolation with splines in tension: A Green’s function approach 30,
77–93
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