Unusual Secondary Metabolites of the Aerial Parts of *Dionysia diapensifolia* Bioss. (Primulaceae) and Their Anti-Inflammatory Activity

Mostafa Alilou ^{1,2}, Stefania Marzocco ^{3,*}, Hossein Batooli ⁴, Jakob Troppmair ², Stefan Schwaiger ^{1,*} and Hermann Stuppner ¹

- ¹ Institute of Pharmacy, Pharmacognosy, Center for Molecular Biosciences (CMBI), University of Innsbruck, 6020 Innsbruck, Austria; mostafa.alilou@student.uibk.ac.at (M.A.); hermann.stuppner@uibk.ac.at (H.S.)
- ² Daniel-Swarovski Research Laboratory, Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innrain 66, 6020 Innsbruck, Austria; jakob.troppmair@i-med.ac.at
- ³ Department of Pharmacy, University of Salerno, Via Giovanni Paolo II 132, I-84084 Fisciano SA, Italy
- ⁴ Kashan Botanical Garden, Research Institute of Forests and Rangelands; Agricultural Research, Education and Extension Organization (AREEO), 193951113 Tehran , Iran; ho_batooli@yahoo.com
- 4
- * Correspondence: smarzocco@unisa.it (S.M.); stefan.schwaiger@uibk.ac.at (S.S.); Tel.: +39-089-969250 (S.M.); +43-512-507-58406 (S.S.)

INDEX

Figure S1. ¹ H-NMR (600.19 MHz, CHCl ₃ -d) of compound 1
Figure S2. ¹ H-NMR (600.19 MHz, CHCl ₃ - d) of compound 1 (insert δ 8.0 – 6.5 ppm)5
Figure S3. COSY spectrum (600.19 MHz, CHCl ₃ - <i>d</i>) of compound 1 6
Figure S4. HSQC spectrum (600.19/150.91 MHz, CHCl ₃ -d) of compound 1
Figure S5. HSQC spectrum (600.19/150.91 MHz, CHCl ₃ - d) of compound 1 (insert δ 8.0 – 6.5 ppm)8
Figure S6. HMBC spectrum (600.19/150.91 MHz, CHCl ₃ - <i>d</i>) of compound 1 9
Figure S7. HSQC spectrum (600.19/150.91 MHz, CHCl ₃ - d) of compound 1 (insert δ 8.0 – 4.0 ppm). 10
Figure S8. ¹³ C-NMR spectrum (150.91 MHz, CHCl ₃ -d) of compound 111
Figure S9. IR spectrum of compound 112
Figure S10. HRLCESIMS spectrum of compound 1
Figure S11. ¹ H-NMR (600.19 MHz, CHCl ₃ - <i>d</i>) of compound 2 14
Figure S12. ¹ H-NMR (600.19 MHz, CHCl ₃ - <i>d</i>) of compound 2 (insert δ 8.2 – 6.7 ppm)15
Figure S13. COSY spectrum (600.19 MHz, CHCl ₃ - <i>d</i>) of compound 2 16
Figure S14. COSY spectrum (600.19 MHz, CHCl ₃ - <i>d</i>) of compound 2 (insert δ 8.2 – 6.7 ppm)17
Figure S15. HSQC spectrum (600.19/150.91 MHz, CHCl ₃ - <i>d</i>) of compound 2
Figure S16. HSQC spectrum (600.19/150.91 MHz, CHCl ₃ - <i>d</i>) of compound 2 (insert δ 8.2 – 5.4 ppm).
Figure S17. HMBC spectrum (600.19/150.91 MHz, CHCl ₃ - <i>d</i>) of compound 2 20
Figure S18. HMBC spectrum (600.19/150.91 MHz, CHCl ₃ -d) of compound 2 (insert δ 11.7 – 5.5
ppm)

Figure S19. ¹³ C-NMR (600.19/150.91 MHz, CHCl ₃ -d) of compound 2	22
Figure S20. IR spectrum of compound 2	23
Figure S21. HRLCESIMS spectrum of compound 2	24
Figure S22. ¹ H-NMR (600.19 MHz, CHCl ₃ -d) of compound 3	25
Figure S23. COSY spectrum (600.19 MHz, CHCl ₃ -d) of compound 3	26
Figure S24. HSQC spectrum (600.19, 150.91 MHz, CHCl ₃ - <i>d</i>) of compound 3	27
Figure S25. HMBC spectrum (600.19, 150.91 MHz, CHCl ₃ -d) of compound 3	28
Figure S26. ¹³ C-NMR (150.91 MHz, CHCl ₃ -d) of compound 3	29
Figure S27. ¹ H-NMR (600.19 MHz, CHCl ₃ -d) of compound 4	
Figure S28. ¹³ C-NMR (150.91 MHz, CHCl ₃ -d) of compound 4	31
Figure S29. ¹ H-NMR (600.19 MHz, CHCl ₃ -d) of compound 5	32
Figure S30. ¹³ C-NMR (150.91 MHz, CHCl ₃ -d) of compound 5	33
Figure S31. ¹ H-NMR (600.19 MHz, CHCl ₃ -d) of compound 6	34
Figure S32. ¹³ C-NMR (150.91 MHz, CHCl ₃ -d) of compound 6	35
Figure S33. ¹ H-NMR (600.19 MHz, CHCl ₃ -d) of compound 7	36
Figure S34. ¹³ C-NMR (150.91 MHz, CHCl ₃ -d) of compound 7	
Figure S35. ¹ H-NMR (600.19 MHz, CHCl ₃ -d) of compound 8	
Figure S36. ¹³ C-NMR (150.91 MHz, CHCl ₃ -d) of compound 8	
Figure S37. ¹ H-NMR (600.19 MHz, MeOH-d ₄) of compound 9	40
Figure S38. ¹³ C-NMR (150.91 MHz, MeOH-d4) of compound 9	41
Figure S39. ¹ H-NMR (600.19 MHz, DMSO-d ₆) of compound 10	
Figure S40. ¹³ C-NMR (150.91 MHz, DMSO- <i>d</i> ₆) of compound 10	43
Figure S41. ¹ H-NMR (600.19 MHz, MeOH-d ₄) of compound 11	44
Figure S42. ¹³ C-NMR (150.91 MHz, MeOH-d4) of compound 11	45
Figure S43. ¹ H-NMR (600.19 MHz, MeOH-d ₄) of compound 12	46
Figure S44. ¹³ C-NMR (150.91 MHz, MeOH-d4) of compound 12	47
Figure S45. ¹ H-NMR (600.19 MHz, MeOH-d ₄) of compound 13	
Figure S46. ¹³ C-NMR (150.91 MHz, MeOH-d4) of compound 13	49
Figure S47. 1H-NMR (600.19 MHz, Acetone-d6) of compound 14	50
Figure S48. ¹³ C-NMR (150.91 MHz, Acetone-d ₆) of compound 14	51
Figure S49. ¹ H-NMR (600.19 MHz, DMSO-d ₆) of compound 15	52
Figure S50. ¹³ C-NMR (150.91 MHz, DMSO- <i>d</i> ₆) of compound 15	53
Figure S51. ¹ H-NMR (600.19 MHz, DMSO-d ₆) of compound 16	54
Figure S52. ¹³ C-NMR (150.91 MHz, DMSO- <i>d</i> ₆) of compound 16	55
Figure S53. 1H-NMR (600.19 MHz, CHCl3-d) of compound 17	56

Figure S54. ¹³ C-NMR (150.91 MHz, CHCl ₃ - <i>d</i>) of compound 17	57
Figure S55. 1H-NMR (600.19 MHz, CHCl3-d) of compound 18	58
Figure S56. ¹³ C-NMR (150.91 MHz, CHCl ₃ -d) of compound 18	59
Figure S57. ¹ H-NMR (600.19 MHz, DMSO- <i>d</i> ₆) of compound 19	60
Figure S58. ¹³ C-NMR (150.91 MHz, DMSO- <i>d</i> ₆) of compound 19	61
Figure S59. ¹ H-NMR (600.19 MHz, DMSO- <i>d</i> ₆) of compound 20	62
Figure S60. ¹³ C-NMR (150.91 MHz, DMSO- <i>d</i> ₆) of compound 20	63
Figure S61. ¹ H-NMR (600.19 MHz, MeOH- <i>d</i> ₄) of compound 21 6	64
Figure S62. ¹³ C-NMR (150.91 MHz, MeOH- <i>d</i> ₄) of compound 21 6	65
Figure S63. ¹ H-NMR (600.19 MHz, CHCl ₃ - <i>d</i>) of compound 22 6	66
Figure S64. ¹³ C-NMR (150.91 MHz, CHCl ₃ -d) of compound 22	67
Figure S65. ¹ H-NMR (600.19 MHz, Acetone-d ₆) of compound 23	68
Figure S66. ¹³ C-NMR (150.91 MHz, Acetone- <i>d</i> ₆) of compound 23	69
Figure S67. 1H-NMR (600.19 MHz, MeOH-d4) of compound 24	70
Figure S68. ¹³ C-NMR (150.91 MHz, MeOH- <i>d</i> ₄) of compound 24	71
Figure S69. 1H-NMR (600.19 MHz, DMSO-d6) of compound 25	72
Figure S70. ¹³ C-NMR (150.91 MHz, DMSO- <i>d</i> ₆) of compound 25	73
Table S1. Anti-proliferative activity of selected compounds isolated from diethyl ether subfraction of the methanolic extract of <i>D. diapensifolia</i> in MTT assay after 24 h shown as % cellular inhibition (MEAN±SEM) of n = 3. ***, **, * denote $p < 0.001$, $p < 0.01$, $p < 0.05$ vs. control	74
Figure S71. HPLC-DAD chromatogram of <i>D. diapensifolia n</i> -butanol subfraction and rutin standard	1. 75
Figure S72. Low energy conformers of compound 1 . Conformer generation was done on MacroModel 09 (Schrödinger Ltd.), using OPLS-3 as forcefield in gas phase. Conformers occurring in energy window of 5 kcal.mol ⁻¹ were further optimized in DFT/6-31G(d,p) level in the gas phase using Gaussian 16 v. A3 software [1]	3 76
Table S2. Experimental chemical shifts and Boltzmann-averaged shielding tensors of two	
diastereomers of 1 , used for DP4+ chemical shift calculation	77
Figure S73. The result sheet of DP4+ chemical shift probability calculation of two diastereomers of compound 1 . Calculation of shift tensors were done using GIAO/mpw1pw91/6-311+(d,p)/CPCM in CHCl ₃ in Gaussian 16 A.3 [Ref]. DP4+ probability calculation was done using the method originall published by Grimblat et. al [2]	n ly 78
References	79

Figure S1. ¹H-NMR (600.19 MHz, CHCl₃-*d*) of compound 1.

Figure S2. ¹H-NMR (600.19 MHz, CHCl₃-d) of compound 1 (insert δ 8.0 – 6.5 ppm).

Figure S3. COSY spectrum (600.19 MHz, CHCl₃-*d*) of compound 1.

Figure S4. HSQC spectrum (600.19/150.91 MHz, CHCl₃-*d*) of compound 1.

Figure S5. HSQC spectrum (600.19/150.91 MHz, CHCl₃-d) of compound 1 (insert δ 8.0 – 6.5 ppm).

Figure S6. HMBC spectrum (600.19/150.91 MHz, CHCl₃-d) of compound 1.

Figure S7. HSQC spectrum (600.19/150.91 MHz, CHCl₃-d) of compound 1 (insert δ 8.0 – 4.0 ppm).

Figure S8. ¹³C-NMR spectrum (150.91 MHz, CHCl₃-*d*) of compound 1.

Figure S9. IR spectrum of compound 1.

Mass Spectrum SmartFormula Report

Analysis Info Analysis Name Method Sample Name Comment	D:\Data\Pharmakogno screen_neg_2019.m Drev_48-51_F7_prep- #7 - oeliger A. 120078 Aceton	osie\Mostafa\pure_comp -2-pos 84/0	ounds_LCMS\D	Acquisition Date 2/7/2020 10:20:03 PM S\Drev_48-51_F7_prep-2-pos_62_01_26122.d Operator Simon Instrument / Ser# micrOTOF-Q 10202					
Acquisition Par	ameter								
Source Type ESI Focus Not active Scan Begin 100 m/z Scan End 1500 m/z		lon Polarity Set Capillary Set End Plate Offset Set Collision Cell RF	Negative 3500 V -500 V 452.4 Vpp	Set Nebulize Set Dry Hea Set Dry Gas Set Divert Va	1.6 Bar 220 °C 6.0 l/min Source				
Intens.						-MS, 11.6min	<i></i> #1385		
3000-									
2000-	269.0828								
1000-									
0	430.9807	7	944.	2718					
2	400	600	800	1000	1200	1400	m/z		
Meas. m 237.057	/z # Formula S 77 1 C 15 H 9 O 3 1	Score m/z err [n 00.00 237.0557	nDa] err [ppm] -2.0 -8.5	mSigma rdb 277.2 11.5	e [—] Conf even	N-Rule ok			

Figure S10. HRLCESIMS spectrum of compound 1.

Figure S11. ¹H-NMR (600.19 MHz, CHCl₃-d) of compound 2.

Figure S12. ¹H-NMR (600.19 MHz, CHCl₃-*d*) of compound 2 (insert δ 8.2 – 6.7 ppm).

Figure S13. COSY spectrum (600.19 MHz, CHCl₃-*d*) of compound 2.

Figure S14. COSY spectrum (600.19 MHz, CHCl₃-*d*) of compound 2 (insert δ 8.2 – 6.7 ppm).

Figure S15. HSQC spectrum (600.19/150.91 MHz, CHCl₃-*d*) of compound 2.

Figure S16. HSQC spectrum (600.19/150.91 MHz, CHCl₃-*d*) of compound 2 (insert δ 8.2 – 5.4 ppm).

Figure S17. HMBC spectrum (600.19/150.91 MHz, CHCl₃-d) of compound 2.

Figure S18. HMBC spectrum (600.19/150.91 MHz, CHCl₃-d) of compound 22 (insert δ 11.7 – 5.5 ppm).

Figure S19. ¹³C-NMR (600.19/150.91 MHz, CHCl₃-*d*) of compound 2.

Figure S20. IR spectrum of compound 2.

Mass Spectrum SmartFormula Report

Analysis Info Analysis Name D:\Data\Pharmakognosie\Mostafa\pure_compounds_LCMS Method screen_pos_2019.m Sample Name F8PS9_THF_pos Comment #7 - oeliger A. 1200784/0 Aceton Aceton					Acqui IS\F8PS9_1 Opera Instru	Acquisition Date 1/10/2020 8:39:13 PM F8PS9_THF_pos_45_01_26091.d Operator Simon Instrument / Ser# micrOTOF-Q 10202					
Acquisition Par Source Type Focus Scan Begin Scan End	ramete E N 1	r SI lot active 00 m/z 500 m/z	lon Polari Set Capill Set End F Set Collis	ty ary Plate Offset ion Cell RF	Positive 4500 V -500 V 452.4 Vpp		Set Nebuliz Set Dry Hea Set Dry Gas Set Divert V	er ater S /alve	1.6 E 220 ° 6.0 I/ Sour	ar C min ce	
Intens. x10 ⁵ 1.5 1.0 0.5	29	5.0573							+MS	, 10.3min #	ŧ1220
0.0	200	400	600		800	1000	· · · · · · · · · · · · · · · · · · ·	1200		1400	m/z
Meas. m 295.05	n/z # 73 1 2	Formula C 15 H 12 Na O 5 C 13 H 13 Na 2 O 5	Score 100.00 28.64	m/z 295.0577 295.0553	err [mDa] 0.4 -2.0	err [ppm] 1.3 -6.9	mSigma 8.3 20.9	rdb 9.5 6.5	e [—] Conf even even	N-Rule ok ok	

Figure S21. HRLCESIMS spectrum of compound 2.

Figure S22. ¹H-NMR (600.19 MHz, CHCl₃-*d*) of compound 3.

Figure S23. COSY spectrum (600.19 MHz, CHCl₃-*d*) of compound 3.

Figure S24. HSQC spectrum (600.19, 150.91 MHz, CHCl₃-d) of compound 3.

Figure S25. HMBC spectrum (600.19, 150.91 MHz, CHCl₃-d) of compound 3.

Figure S26. ¹³C-NMR (150.91 MHz, CHCl₃-d) of compound 3.

Figure S27. ¹H-NMR (600.19 MHz, CHCl₃-*d*) of compound 4.

Figure S28. ¹³C-NMR (150.91 MHz, CHCl₃-d) of compound 4.

Figure S29. ¹H-NMR (600.19 MHz, CHCl₃-d) of compound 5.

Figure S30. ¹³C-NMR (150.91 MHz, CHCl₃-d) of compound 5.

Figure S31. ¹H-NMR (600.19 MHz, CHCl₃-d) of compound 6.

Figure S32. ¹³C-NMR (150.91 MHz, CHCl₃-d) of compound 6.

Figure S33. ¹H-NMR (600.19 MHz, CHCl₃-*d*) of compound 7.

Figure S34. ¹³C-NMR (150.91 MHz, CHCl₃-*d*) of compound 7.

Figure S35. ¹H-NMR (600.19 MHz, CHCl₃-*d*) of compound 8.

Figure S36. ¹³C-NMR (150.91 MHz, CHCl₃-d) of compound 8.

Figure S37. ¹H-NMR (600.19 MHz, MeOH-*d*₄) of compound 9.

Figure S38. ¹³C-NMR (150.91 MHz, MeOH-d₄) of compound 9.

Figure S39. ¹H-NMR (600.19 MHz, DMSO-*d*₆) of compound 10.

Figure S40. ¹³C-NMR (150.91 MHz, DMSO-*d*₆) of compound 10.

Figure S41. ¹H-NMR (600.19 MHz, MeOH-*d*₄) of compound 11.

Figure S42. ¹³C-NMR (150.91 MHz, MeOH-*d*₄) of compound 11.

Figure S44. ¹³C-NMR (150.91 MHz, MeOH-d₄) of compound 12.

Figure S45. ¹H-NMR (600.19 MHz, MeOH-*d*₄) of compound 13.

Figure S46. ¹³C-NMR (150.91 MHz, MeOH-d₄) of compound 13.

Figure S48. ¹³C-NMR (150.91 MHz, Acetone-d₆) of compound 14.

Figure S50. ¹³C-NMR (150.91 MHz, DMSO-*d*₆) of compound 15.

Figure S52. ¹³C-NMR (150.91 MHz, DMSO-*d*₆) of compound 16.

Figure S53. ¹H-NMR (600.19 MHz, CHCl₃-*d*) of compound 17.

Figure S54. ¹³C-NMR (150.91 MHz, CHCl₃-*d*) of compound 17.

Figure S56. ¹³C-NMR (150.91 MHz, CHCl₃-d) of compound 18.

Figure S57. ¹H-NMR (600.19 MHz, DMSO-*d*₆) of compound 19.

Figure S58. ¹³C-NMR (150.91 MHz, DMSO-d₆) of compound 19.

Figure S59. ¹H-NMR (600.19 MHz, DMSO-*d*₆) of compound 20.

Figure S60. ¹³C-NMR (150.91 MHz, DMSO-d₆) of compound 20.

Figure S61. ¹H-NMR (600.19 MHz, MeOH-*d*₄) of compound 21.

Figure S62. ¹³C-NMR (150.91 MHz, MeOH-d₄) of compound 21.

Figure S63. ¹H-NMR (600.19 MHz, CHCl₃-*d*) of compound 22.

Figure S64. ¹³C-NMR (150.91 MHz, CHCl₃-*d*) of compound 22.

Figure S66. ¹³C-NMR (150.91 MHz, Acetone-*d*₆) of compound 23.

Figure S67. ¹H-NMR (600.19 MHz, MeOH-*d*₄) of compound 24.

Figure S68. ¹³C-NMR (150.91 MHz, MeOH-d₄) of compound 24.

Figure S69. ¹H-NMR (600.19 MHz, DMSO-*d*₆) of compound 25.

Figure S70. ¹³C-NMR (150.91 MHz, DMSO-*d*₆) of compound 25.

Compound	50 μg/mL μΜ	10 µg/mL µM	5 μg/mL μM	
1	0.00±0.00	0.67±0.67	3.33±2.40	
2	0.13±0.13	0.00±0.00	4.72±2.48	
3	2.40±2.40	2.27±2.27	0.50±0.50	
4	1.93±1.93	0.03±0.03	0.70±0.70	
6	69.43±0.18***	0.00±0.00	0.00±0.00	
8	0.36±0.36	0.66±0.66	1.40±0.91	
9	12.63±0.24*	6.23±3.24	3.80±3.10	
10	40.33±0.88	1.00±0.58	0.00±0.00	
11	3.90±1.17	6.73±1.34	8.03±1.14	

Table S1. Anti-proliferative activity of selected compounds isolated from diethyl ether subfraction of the methanolic extract of *D. diapensifolia* in MTT assay after 24 h shown as % cellular inhibition (MEAN±SEM) of n = 3. ***, **, * denote p < 0.001, p < 0.01, p < 0.05 vs. control.

Figure S71. HPLC-DAD chromatogram of *D. diapensifolia n*-butanol subfraction and rutin standard.

Analysis condition: stationary phase: Phenomenex Aqua C18 5 μ m, 150 × 4.6 mm; mobile Phase: A = H₂O + 0.02% TFA, B = acetonitrile; gradient: 0 min: B=2%; 20 min: B=50%; 40 min: B=98%, 50 min B=98%; temp.: 35°C; flow: 1 mL/min; butanol subfraction: 1 mg/mL, inj. vol. 10 μ L; rutin standard: 2 mg/mL, inj. vol. 10 μ L.

Figure S72. Low energy conformers of compound 1. Conformer generation was done on MacroModel 09 (Schrödinger Ltd.), using OPLS-3 as forcefield in gas phase. Conformers occurring in energy window of 5 kcal.mol⁻¹ were further optimized in DFT/6-31G(d,p) level in the gas phase using Gaussian 16 v. A3 software [1].

Atom	δexp (ppm)	Isomer 1	Isomer 2	
С	119	53.423	52.492	
С	121.6	62.683	54.439	
С	159	23.372	13.689	
С	126.7	63.755	64.914	
С	136.7	44.001	44.863	
С	122	58.970	58.636	
С	187.5	-9.164	0.477	
С	56.2	117.895	114.574	
С	84.8	97.934	89.100	
С	140.8	47.319	51.255	
С	125.9	55.482	52.460	
С	129.1	52.892	53.108	
С	129.2	51.508	50.935	
С	129.1	52.892	53.111	
С	125.9	55.481	52.463	
Н	4.22	28.148	23.798	
Н	6.74	23.319	24.089	
Н	8.00	24.147	23.760	
Н	7.35	23.703	24.298	
Н	7.00	24.193	27.547	
Н	7.58	23.723	23.978	
Н	7.39	23.883	24.077	
Н	7.35	23.875	24.012	
Н	7.39	23.883	24.077	
Н	7.58	23.723	23.978	

Table S2. Experimental chemical shifts and Boltzmann-averaged shielding tensors of two diastereomers of **1**, used for DP4+ chemical shift calculation.

Figure S73. The result sheet of DP4+ chemical shift probability calculation of two diastereomers of compound 1. Calculation of shift tensors were done using GIAO/mpw1pw91/6-311+(d,p)/CPCM in CHCl₃ in Gaussian 16 A.3 [Ref]. DP4+ probability calculation was done using the method originally published by Grimblat et. al [2].

1	Functional	Solvent?		Basis Set		Type of Data	
2	mPW1PW91	РСМ		6-311+G(d,p)		Shielding Tensors	
3							
4		Isomer 1 I	somer 2	Isomer 3	Isomer 4	Isomer 5	Isomer 6
5	sDP4+ (H data)	100.00% 📶	0.00%	-	-	-	-
6	sDP4+ (C data)	4 99.99% 4	0.01%	-	-	-	-
7	sDP4+ (all data)	100.00%	0.00%	-	-	-	-
8	uDP4+ (H data)	79.58%	20.42%	-	-	-	-
9	uDP4+ (C data)	100.00%	0.00%	-	-	-	-
10	uDP4+ (all data)	100.00% 📶	0.00%	-	-	-	-
11	DP4+ (H data)	100.00%	0.00%	-	-	-	-
12	DP4+ (C data)	100.00% 📶	0.00%	-	-	-	-
13	DP4+ (all data)	100.00%	0.00%	-	-	-	-

References

- (1) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, J. A. J.; Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian 16, Revision A.03, Gaussian, Inc.: Wallingford, CT, USA 2016.
- Grimblat, N.; Zanardi, M. M.; Sarotti, A. M. Beyond DP4: An Improved Probability for the Stereochemical Assignment of Isomeric Compounds Using Quantum Chemical Calculations of NMR Shifts. *J. Org. Chem.* 2015, 80 (24), 12526–12534.https://doi.org/10.1021/acs.joc.5b02396.