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I. EFFECTIVE COMPRESSION MODULUS OF A THIN POROELASTIC LAYER

In the following, we estimate an effective bulk modulus of a fluid-filled elastic scaffold taking into account fluxes of
the fluid relative to the scaffold. We show that poroelastic effects likely affect compressibility of the actin cytoskeleton
only for frequencies significantly higher than 10 Hz.
For a poroelastic material consisting of a viscoelastic porous scaffold and an immersing fluid, we have in Cartesian
coordinates1

εii =
1

K

(σii
3

+ pH

)
, (1)

where pH is the hydrostatic pressure increment in the fluid, K is the bulk modulus of the scaffold material, and σij
and εij are the components of the stress and strain tensor of the elastic scaffold, respectively. Using Darcy’s law, one
obtains1

kperm
η

∆pH =
∂εii
∂t

, (2)

where kperm characterizes the permeability of the scaffold material, η is the viscosity of the immersing fluid and ∆
is the Laplace operator. Consider a flat horizontal layer of porous material with thickness tc. We choose the middle
layer of the layer to be at coordinate z = 0. Consider that oscillating opposing uniform forces are applied at the top
and the bottom of the layer by a porous slab such that a small time-periodic (sinusoidal) compression is achieved.
The edges of the layer are clamped such that displacement in x- and y-direction are prohibited. In this case, the trace
of the strain tensor is εii = εzz. Equivalently, σii = σzz, where σzz varies time-periodically but is spatially uniform
due to the force balance requirement ∂zσzz = 0. According to Eqn. (1) and (2), we have εzz = 1

K (σzz3 + pH) and

iωεzz =
kperm
η ∂2

zpH , where we identified the time-derivative with a multiplication by iω. We therefore obtain the

following partial differential equation in pH

iω

K

(σzz
3

+ pH

)
=
kperm
η

∂2
zpH . (3)

A special solution of Eq. (3) is pH = −σzz/3. The general solution of the corrsponding homogeneous equation reads

phH(z) = Ae
z
λ +Be−

z
λ , where λ =

√
Kkperm
iωη . Assuming that the porosity of the confining slabs is significantly larger

than the porosity of the poroelastic layer, we impose the boundary conditions1 pH(z = ±tc/2) = 0 and obtain the
full solution

pH(t, z) =
σzz(t)

3
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For the strain, we find
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(5)
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Accordingly, we obtain for the displacement component in z-direction

uz(t, z) =
σzzλ

3K

(e
z
λ − e− zλ )

(e
tc
2λ + e−

tc
2λ )

, (6)

For large λ, the displacement at the boundary z = tc/2 can be rewritten as

uz(z = t/2) =
σzz

3K
(

1 +
t2c

12λ2

) tc
2

+O(
1

λ4
), (7)

where O denotes the Landau symbol. Therefore, we may infer an effective compression modulus of the form

Keff = K

(
1 +

t2c
12λ2

)
=

(
K +

iωηt2c
12kperm

)
.

The absolute value of Keff grows with frequency reflecting a trend to approach an effective incompressibility in the
large frequency regime.

In the following, we will give a rough order of magnitude estimate of the dissipative term
iωηt2c

12kperm
inKeff for parameters

of the actin cortex layer in mitotic cells. Based on the Hagen-Poiseuille equation2, we estimate the permeability of the
actin cytoskeleton as d2

pore/32, where dpore is the diameter of a cytoskeletal pore which we assume to be ≈ 50 nm for

the mitotic cortex3. Furthermore, we estimate the cytoplasmic viscosity η inside the cortical pores to be ≈ 10−3Pa · s 4.
The length scale tc is approximated by the previously measured thickness of the cortex (200 nm) 5. We thus obtain
an estimate of the dissipative (imaginary) term of Keff of the cortex of ≈ 100 Pa at f = 10 Hz. This elastic modulus
is still more than an order of magnitude lower than the shear modulus of the mitotic cortex at 10 Hz which can be
inferred from6 to be ≈ 200 kPa. Thus, we expect that the dissipative, imaginary term of Keff gives a small, negligible
contribution at frequency f = 10 Hz and lower frequencies because K & G (provided that ν > 0).

II. INFLUENCE OF INTERNAL VISCOSITY ON CELL MECHANICAL RESPONSE

In the following section, we show that the force response of the liquid interior of a model cell adds ≤ 1% to the
effective modulus K of uniaxial compression for cytoplasmic viscosities of up to 1 Pa · s and is thus negligible for our
study.
In our simulations, we tested the influence of internal cytoplasmic viscosity on the force response of measured cells.
To this end, we simulated the time-periodic deformation of model cells, that were constituted by an elastic shell with
typical cell parameters and a viscous incompressible (pressurized) interior (Fig. 1). Typical values for the viscosity
of the non-cytoskeletal phase of the cytoplasm range between 10−3 − 10−2 Pa · s 4,7. From our simulations, we find
that the force contribution due to viscous friction generated by cyclic cytoplasmic deformation is negligible up to
frequencies of 10 Hz and viscosities of 1 Pa · s. There, the calculated effective elastic modulus of the model cell agrees
within 1% with the modulus obtained for the case of vanishing internal viscosity (Fig. 1). This finding suggests that
cytoplasmic viscosities give a negligible contribution to the mechanical response of cells during our cell-mechanical
probing, which is corroborated by earlier experimental findings6. At a probing frequency of 10 Hz, we start to see
notable changes of the elastic modulus for η = 10 Pa · s in simulations (Fig. 1).

III. UNIAXIAL COMPRESSION OF MODEL CELLS AND PHENOMENOLOGICAL LAWS

In the following section, we describe the parametrisation and analysis of model cell compression that were used
for generation of the data as presented in the main text, Fig. 2. Finally, we present phenomenological laws that
approximate the functional dependencies of effective modulus K and parameter α as found in simulations.
In our study, we performed simulations of a small uniaxial compression step (∆h = 0.5µm) of pressurized elastic
shells. Each shell has a thickness of 200 nm, cell volume of 4300µm3, an area bulk modulus KB = 25 mN/m and
an area shear modulus KS = 8.3, 10, 15, 20 or 25 mN/m. For each value of KS , we simulated compression from an
initial reference height of h0 = 15, 14, 13, 12, 11 or 10µm. This was repeated for different values of cortical tension
(γa = 0.5, 1, 1.5, 2, 2.5 and 3 mN/m). Therefore, in total 5× 6× 6 = 180 simulations have been performed to calibrate
the cellular response to uniaxial compression at different mechanical parameters of the cortex. (Furthermore, another
2 × 180 simulations were performed with equal parameters but deviating bending stiffness testing the influence of
changing cortex thickness. There, we assumed i) the absence of bending rigidity or ii) a twofold increased value of
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Figure 1. Effective shell moduli calculated from simulations in the presence of a viscous bulk of varying viscosity η. Mechanical
parameters of the model cell’s shell were KB = 25 mN/m, KS = 8.33 mN/m, γa = 1.5 mN/m, t = 200 nm. Up to a viscosity
of 1 Pa · s, the influence of the bulk viscosity is negligible. At η = 10 Pa · s, the bulk viscosity increases the calculated effective
modulus of the model cell.

bending rigidity, see Section VI.)
From each simulation, we extracted the force exerted on the elastic shell after compression Ftot and calculate the
effective elastic modulus of the cortical shell K as described in the main text (see Eqn.(1-4), main text).

We describe the height-dependence of the effective shell elastic modulus as K(h̃) ≈ KB(1 + α exp(h̃/λ)) (see Eq. 5,
main text). In this formula, the coefficient λ was determined from an exponential fit of simulated data by the function

KB(1+α exp(h̃/c)). We noted, that the fit parameter c varied only slightly in dependence of shell parameters K̃S and
γ̃a. To spare the characteristic height scale c as a fit parameter for our noisy experimental data, we used henceforth its
average value λ = 0.091081. In turn, we refitted the effective moduli of simulated data by KB(1 + α(K̃S) exp(h̃/λ))

for set values of KB ,KS and γa, providing α as a function of the dimensionless parameters K̃S = KS/KB and

γ̃a = γa/KB . For a given value of γ̃a, the dependence of α on K̃S is captured by a fit function C(γ̃a) ln[K̃S ] +D(γ̃a).
Finally, the dependence of the fit parameters C(γ̃a) and D(γ̃a) on the parameter γ̃a is captured through a polynomial
fit of third degree:

Cfit(γ̃a) = (1.09 · 10−4 + 1.071 · 10−4 γ̃a − 1.54 · 10−5 γ̃2
a + 1.08 · 10−6 γ̃3

a),

Dfit(γ̃a) = (9.418 · 10−6 − 5.874 · 10−5 γ̃a − 2.157 · 10−5 γ̃2
a + 4.44 · 10−6 γ̃3

a).

By construction, the resulting function Cfit(γ̃a) ln[K̃S ] +Dfit(γ̃a) makes excellent quantitative predictions about the

value of α in dependence of γ̃a and K̃S (Fig. 2d, main text).
For simulations with the alternative assumptions of i) twofold bending stiffness and ii) vanishing bending stiffness, we
obtain different fit polynomials. For i), we have

Cfit(γ̃a) = (1.59 · 10−4 + 1.09 · 10−4 γ̃a − 1.15 · 10−5 γ̃2
a + 4.4 · 10−8 γ̃3

a),

Dfit(γ̃a) = (−3.09 · 10−5 − 5.41 · 10−5 γ̃a − 3.68 · 10−5 γ̃2
a + 7.87 · 10−6 γ̃3

a).

For ii), we find

Cfit(γ̃a) = (4.22 · 10−5 + 1.5 · 10−4 γ̃a − 4.67 · 10−5 γ̃2
a + 6.34 · 10−6 γ̃3

a),

Dfit(γ̃a) = (8.62 · 10−5 − 1.65 · 10−4 γ̃a + 4.76 · 10−5 γ̃2
a − 8.42 · 10−6 γ̃3

a).

IV. CELL DEFORMATION SIMULATIONS

Simulations were performed using the finite element (FEM) toolbox AMDiS, developed at the Institute of Scientific
Computing TU Dresden8,9. We use an axisymmetric Arbitrary Lagrangian Eulerian (ALE) model with incompressible
Navier-Stokes equations for the viscous fluid inside the cell, where the two plates and the forces acting on the membrane
are implemented as boundary conditions.
We assume the cell to be in a stationary state initially, where elastic parameters have no influence on the force exerted
by the cell on the plates. The cell is then compressed by a prescribed sinusoidal decrease of the distance h between
the plates, while simultaneously calculating the force exerted on the upper plate.
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Using axisymmetry normal to the plates, we can perform calculations on a two dimensional domain describing half
of the cell’s cross-section. An example image of the simulation domain is shown in Fig. 2. The interior of the cell is
denoted by the computational domain Ω which is bounded by the cell cortex/membrane Γ and the symmetry axis. Γ
itself is subdivided into the area touching the plates Γp and the free surface area Γf . During compression a part of
the free surface will touch the plate, accordingly Γp and Γf are time-dependent:

Γp(t) = {x = (x0, x1) ∈ Γ : x1 = 0 ∨ x1 = h(t)} , Γf (t) = Γ/Γp(t). (8)

The interface curve of Γ for the initial meshes with h = h0 is given by a minimal surface calculated according to
equations described in10.
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Figure 2. (a) Example image for a simulation domain Ω. The plates here are on the top and bottom sides of the cell with the
boundary Γp (red dotted line). The free part of the boundary of the cell is Γf (blue line). (b) Example image for the mesh for
h0 = 12µm. The color scale indicates the areas of the triangles.

The system is governed by the axisymmetric Navier-Stokes equations11 together with the surface forces and contact
conditions for the plate,

ρ ∂•t v = ∇ ·S +
η

x0

(
2∂x0v0

∂x0v1 + ∂x1v0

)
+

2η

(x0)2

(
v0

0

)
, in Ω (9)

∇ ·v +
1

x0
v0 = 0, in Ω (10)

S = η
(
∇v +∇vT

)
− pI, in Ω (11)

S ·n = −∂Etension

∂Γ
− ∂Ebend

∂Γ
− ∂Estretch

∂Γ
, on Γf (12)

[S ·n]0 =

[
−∂Etension

∂Γ
− ∂Ebend

∂Γ
− ∂Estretch

∂Γ

]
0

, on Γp (13)

v1 = δx1>0 · ∂th, on Γp (14)

v0 = 0, on ∂Ω/Γ (15)

where ρ is the mass density of cytoplasm, ∂•t v denotes the material derivative of the velocity field v = (v0, v1) of the
cytoplasmic fluid, p is the pressure field, η the viscosity, n the outer unit normal of the domain on Γ, and S is the
bulk stress measured in N/m2. The first variation of the interfacial energies with respect to changes in Γ yields the
interfacial forces. We have12

∂Etension

∂Γ
= −2γaHn,

∂Ebend

∂Γ
= B

(
2∆ (H −H0) + 4

(
2H2 −KG

)
(H −H0)− 4H (H −H0)

2
)
n, (16)

where γa is the active surface tension, B is the bending stiffness of the cell cortex, H the mean curvature, H0 the
mean curvature in the initial state, and KG the gaussian curvature, respectively. Formulas for the calculation of the
curvatures of an axisymmetric surface grid can be found in13.
The formula for the elastic force involves the two principal stretches λ1 and λ2, that describe the relative change of
the surface length in lateral and rotational direction, respectively:

λ1 =
ds

ds|t=0
, λ2 =

x0

x0|t=0
, (17)
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where s is the arc length, x0 the distance to the symmetry axis, and s|t=0 and x0|t=0 are the corresponding quantities

at the same material point in the initial state. With this, we can write12

∂Estretch

∂Γ
= (2H n−∇Γ) [(KB +KS) (λ1 − 1) + (KB −KS) (λ2 − 1)]− 2KS (λ1 − λ2)

1

x0

(
1
0

)
. (18)

The discretization is done by an ALE method, where grid points at the cell surface Γ are moved with the velocity v.
Interior grid points in Ω are displaced by a harmonic field w calculated in every time step:

∆w = 0, in Ω

w = τv, on ∂Ω (19)

where τ is the time step size. Whenever a grid point of the free boundary, x = (x0, x1) ∈ Γf , reaches the lower or
upper plate, x1 ≤ 0 or x1 ≥ h, it is moved exactly onto the plate, i.e. x1 = 0 or x1 = h, respectively, and we mark
the point as a member of the discrete points set of Γp instead of Γf .
The position (and velocity) of the moving plate are prescribed by a cosine function

h(t) = h0 −
∆h

2
[1− cos (2πf · (t− t0))] , (20)

where f is the oscillation frequency. The compression starts at t = t0 and ends at t̃ = 1/(2f) + t0, where maximum
compression is reached. For t > t̃, we keep the cell in the compressed state, h(t) = h0 −∆h.
The force, exerted on the upper plate, is calculated in every time step using

Fplate = 2π

∫
Γ

a(x0, x1) ·x0 · [S ·n]1 dΓ . (21)

where the factor 2πx0 emerges due to axisymmetry, a: Γ→ R is the piecewise linear extension of an indicator function
for the upper plate:

a(x0, x1) =

{
1 if x1 ≥ h
0 else .

(22)

After compression, i.e. at height h0 −∆h, we have Fplate = Ftot, cf. Eq. (2) main text.
As shown in see Sec. II, we found that the contribution of interior viscosity to the force response is negligible. To
simulate the process without interior viscosity, one can take advantage of some simplifications. In this case, we do
not need a 2D mesh representing half of the cell’s cross section but only a 1D mesh representing the membrane Γ in
Fig. 2(a). Accordingly, the Navier-Stokes equations (9)-(13) are replaced by a set of equations that only determine
the velocity field on the surface Γ,

v = µ

[
−∂Etension

∂Γ
− ∂Ebend

∂Γ
− ∂Estretch

∂Γ
− pc(V − V0)n

]
, on Γf (23)

v =

(
µ
[
−∂Etension

∂Γ − ∂Ebend

∂Γ − ∂Estretch

∂Γ

]
0

δx1>0 · ∂th

)
, on Γp (24)

where V is the (3D) volume of the cell, V0 is the volume in the initial state and pc is a large constant to provide
the pressure to ensure volume conservation. In the absence of viscosity, the (inverse) coefficient of friction µ controls
the dynamics and must be chosen large enough to keep the system in an equilibrated state. Here we use µ =
1.25 · 10−7 m2s/kg. We verified numerically that this choice relaxes surface forces from elastic deformation on a time
scale much faster than the period of the prescribed height oscillations. In particular µ is large enough that simulation
results are invariant to a further increase in µ. Cell volume is conserved by a penalty approach. Being multiplied by
the normal vector, the term pc(V −V0) plays the role of a pressure. For large pc this term dominates equation (23) to
highest order which leads to V = V0. We have chosen pc = 1.2 · 105 N/m5 which is large enough to ensure the relative
change in volume is less than 0.01% for all times.
The interfacial forces are implemented explicitly, i.e. curvatures and principal stretches of the configuration in the
previous time step are used to calculate the force in the new time step. Therefore, the system is quite restrictive to
time step sizes. For the simulations with interior flow, a time step of 0.5µs is used. Hence, for an oscillation frequency
of 10Hz we need ≈ 200.000 time steps to simulate a full period of 0.1 s. The initial mesh is shown in Fig. 2(b) for
h0 = 12µm. A fine mesh at the membrane is necessary to produce highly accurate results for the membrane forces.
Hence, the triangle sizes amount from approximately 0.003µm2 at the interface to 0.4µm2 around the cell center.
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V. SCATTER OF ESTIMATED POISSON RATIOS AT DIFFERENT FREQUENCIES

In this section, we present histograms of experimentally measured values K̃S = KS/KB as well as associated Poisson
ratios for all frequencies measured (Fig. 3(a,b)). Furthermore, we discuss fitting of respective distributions and sources
of data scatter.
Histograms of K̃S are shown in have been fitted with the lognormal distribution of maximum likelihood (Fig. 3(a)).

Histograms of Poisson ratio ν are plotted with the distribution induced by the lognormal distribution of K̃S (Fig. 3(b)).

This induced distribution is calculated by the functional relationship ν = (1− K̃S)/(1 + K̃S).
In Fig. 3(c), we analyzed simulated data in the same way as experimental data, however not using the exact values for
cell volume and cell height. Instead, we drew the values of cell volume and cell height from a Gaussian distribution
with correct mean value and a standard deviation that matches our error estimate for cell volume and cell height (7.5%
and 0.5µm, respectively). We chose N = 55, similar to sample numbers measured in the experiments. The resulting
scatter in estimated Poisson ratios is shown in Fig. 3(c), where the horizontal lines indicate median, 25th percentile
and 75th percentile. While the median is close to actual values of the Poisson ratio, the resulting scatter is substantial,
in particular for ν = 0.25. We conclude that the large scatter of Poisson ratios observed in our experimental data does
not exclusively result from mechanical variations between cells but stems to a substantial amount from experimental
uncertainties.

VI. INFLUENCE OF CORTICAL THICKNESS AND BENDING STIFFNESS VARIATIONS ON POISSON RATIO
ESTIMATES

Cortical thickness in mitotic HeLa cells has previously been estimated to be ≈ 200 nm5. However, cells exhibit cell-
cell variations in cortical thickness and thus variations in cortical bending stiffness which will contribute to scatter
of Poisson ratio estimates in our analysis. In order to examine the influence of cell-cell variations in cortical bending
stiffness, we repeated our simulations of cell deformation with i) twofold increased bending stiffness (corresponding
to ≈ 40% relative increase in cortex stiffness) and ii) vanishing bending stiffness of the cortical shell. Using these
alternative simulations to calibrate cell mechanical response, we reanalyzed our data. Corresponding alternative
Poisson ratio estimates are presented in Fig. 4(b) and (c) where results of the original analysis from Fig. 4(c), main
text, are depicted again in Fig. 4(a) for direct comparison. We see that i) the assumption of higher bending stiffnesses
of the cortex would lead to consistently higher Poisson ratio estimates for cortical shells. Furthermore, we see that
ii) assuming vanishing bending stiffness would consistently lead to lower Poisson ratio estimates of cortical shells. In
both cases, the change in Poisson ratio estimates is particularly striking for Poisson ratio values substantially below
0.5. In summary, we conclude that i) an underestimation of cortical bending stiffness in our analysis of experimental
data would lead to a consistent underestimation of cortical Poisson ratios, while ii) an overestimation of cortical
bending stiffness in our analysis would lead to a consistent overestimation of cortical Poisson ratio in particular if
cortical Poisson ratio values are substantially below 0.5. Finally, independent of a possible under- or overestimation
of absolute values of the Poisson ratio, we find in all cases a significant trend of Poisson ratio increase with decreasing
frequency.

VII. THE TWO-DIMENSIONAL POISSON RATIO OF A THIN SHELL

In the following, we show that the two-dimensional Poisson ratio ν2D of a thin shell, made up of a thin layer of an
isotropic material, equals the respective three-dimensional Poisson ratio ν of the material.
For the surface energy density of stretching of a thin shell, one obtains in complete analogy to the three-dimensional
case16

F = KS(εij −
δij
2
εll)

2 +
1

2
KB(εll)

2, (25)

where KB and KS are the area bulk modulus and the area shear modulus of the shell and εij , (i, j = 1, 2) are in-plane
coefficients of the strain tensor. The corresponding stress-strain relationship reads

σij = 2KS(εij −
δij
2
εll) +KBδijεll. (26)

Correspondingly, the strain can be written as

εij =
1

2KS
(σij −

δij
2
σll) +

1

4KB
δijσll. (27)
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We will now determine the expression of the two-dimensional Poisson ratio of a thin shell as a function of KB and KS .
To this end, we consider the special case of a thin, flat, square-shaped patch of a shell subject to a uniform in-plane
stretch through opposite forces acting at the top and bottom edge and with free side edges. Correspondingly, the
only non-vanishing stress component is σyy. According to Eq. 27, the strain tensor is given as

ε =
1

2KS

(−σyy
2 0
0

σyy
2

)
+

1

4KB

(
σyy 0
0 σyy

)
. (28)

The two-dimensional Poisson ratio ν2D is defined as the ratio ν2D = −εxx/εyy. With the above relation (28), this
equates to ν2D = (KB − KS)/(KB + KS). Using the definitions KB = tcG(1 + ν)/(1 − ν) and KS = tcG for an
isotropic shell material with shear modulus G and Poisson ratio ν, we obtain ν2D = ν. If the constraint of isotropy
is released, the two-dimensional Poisson ratio may adopt values in the range [−1, 1].

Simulation of Poisson ratio scatter 
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Figure 3. a,b) Results of the analysis of experimental data. a) Histograms of estimated values for the ratio between area shear

modulus and area bulk modulus K̃S = KS/KB with fitted lognormal distributions (logarithmic mean and standard deviation:
f=10 Hz, µ = −0.31, σ = 0.92; f=1 Hz, µ = −0.7, σ = 0.82; f=0.1 Hz, µ = −1.03, σ = 0.8; f=0.02 Hz, µ = −1.5, σ = 0.8). b)
Histograms of estimated Poisson ratios with induced distributions. c) Poisson ratio estimates for simulated data including fake
errors of cell volume and cell height. Green data set, ν = 0.5: median: 0.48, IQR: 0.21; orange data set, ν = 0.43: median:
0.41, IQR: 0.25; blue data set, ν = 0.25: median: 0.20, IQR: 0.34, where IQR is the interquartile range, i.e. the distance
between 25th and 75th percentile. The sample size was N=55, each, and therefore similar to our experimental sample sizes.
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Figure 4. Poisson ratio estimates of the mitotic cortex of HeLa cells using different assumptions on cortical bending stiffness in
our analysis (sample sizes from left to right: N=36, N=59, N=59, N=58). a) Estimated Poisson ratios using the assumption
of an isotropic cortex with thickness of 200 nm as printed in Fig. 3f, main text. From left to right, median values: 0.66, 0.48,
0.34, 0.17, IQR: 0.26, 0.38, 0.48, 0.45. b) Estimated Poisson ratios using twofold bending stiffness as compared to the analysis
in the main text. From left to right, median values: 0.65, 0.5, 0.41, 0.28, IQR: 0.24, 0.33, 0.41, 0.36. c) Estimated Poisson
ratios using vanishing bending stiffness. From left to right, median values: 0.64, 0.45, 0.22, -0.013, IQR: 0.3, 0.43, 0.58, 0.57.
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