Electronic Supporting Information

Strong Impact of Intramolecular Hydrogen Bonding on the Cathodic Path of [Re (3,3'dihydroxy-2,2'-bipyridine)(CO)₃Cl] and Catalytic Reduction of Carbon Dioxide

James O. Taylor¹, Gaia Neri², Liam Banerji², Alexander J. Cowan² and František Hartl^{1*}

¹Department of Chemistry, University of Reading, Reading, England, RG6 6AD, United Kingdom

²Department of Chemistry, Stephenson Institute for Renewable Energy, University of Liverpool, L69 7ZF, United Kingdom

Corresponding Author E-mail: f.hartl@reading.ac.uk

Figure S1: Cyclic voltammograms of [Re(3,3'-DHBPY)(CO)₃Cl] in THF/Bu₄NPF₆ in the region of R1. Experimental conditions: Pt microdisc, T = 298 K, scan rates v = 50 - 2000 mV s⁻¹.

Figure S2: Cyclic voltammograms of $[\text{Re}(3,3'-\text{DHBPY})(\text{CO})_3\text{Cl}]$ in THF/Bu₄NPF₆ across the full cathodic region. Experimental conditions: Pt microdisc, T = 298 K, scan rates v = 50 - 2000 mV s⁻¹.

Figure S3: Cyclic voltammograms of [Re(3,3'-DHBPY)(CO)₃Cl] in THF/Bu₄NPF₆ across the cathodic potential region. Experimental conditions: Pt microdisc, T = 195 K, scan rates v = 50 - 2000 mV s⁻¹.

Figure S4: Cyclic voltammograms of $[\text{Re}(3,3'-\text{DHBPY})(\text{CO})_3\text{Cl}]$ in THF/Bu₄NPF₆ up to R1*. Experimental conditions: Pt microdisc, T = 195 K, scan rates v = 50 - 2000 mV s⁻¹.

Figure S5. Chemical deprotonation of $[Re(3,3'-DHBPY)(CO)_3Cl]$ to $[Re(3,3'-DHBPY-H^+)(CO)_3Cl]^-$ in THF caused by the addition of 1 equiv. NaHMDS.

Figure S6. (a) IR and (b) UV-VIS spectroelectrochemistry of $[\text{Re}(3,3'-\text{DHBPY})(\text{CO})_3\text{Cl}]$ (\downarrow) in PrCN/Bu₄NPF₆ at 298 K as it is converted by reductive deprotonation at R1 to $[\text{Re}(3,3'-\text{DHBPY-H}^+)(\text{CO})_3\text{Cl}]^-$ (\uparrow) in an OTTLE cell. (c) IR spectroelectrochemistry of $[\text{Re}(3,3'-\text{DHBPY-H}^+)(\text{CO})_3\text{Cl}]^-$ (\downarrow) as it undergoes, 1e⁻ reduction at the onset of R2' and ETC conversion to $[\text{Re}(3,3'-\text{DHBPY-H}^+)(\text{CO})_3\text{Cl}]^-$ (\downarrow). The latter radical anion is further reduced on scanning through R2', forming the 6-coordinate redox couple $[\text{Re}(3,3'-\text{DHBPY-2H}^+)(\text{CO})_3(\text{PrCN})]^{n-}$ (n = 2, 3) (\uparrow) existing in redox equilibrium (cf. Figure 11). (d) $\text{Re}(3,3'-\text{DHBPY-2H}^+)(\text{CO})_3(\text{PrCN})]^{2-}$ (\downarrow) continues to reduce by a small negative potential shift, generating mainly 5-coordinate $[\text{Re}(3,3'-\text{DHBPY-2H}^+)(\text{CO})_3]^{3-}$ (\uparrow) in equilibrium with 6-coordinate $[\text{Re}(3,3'-\text{DHBPY-2H}^+)(\text{CO})_3]^{3-}$ (\uparrow) in equilibrium with 6-coordinate $[\text{Re}(3,3'-\text{DHBPY-2H}^+)(\text{CO})_3]^{3-}$ (\uparrow).

Figure S7. Cathodic IR spectroelectrochemistry of $[\text{Re}(3,3'-\text{DHBPY})(\text{CO})_3(\text{PrCN})]^+$ in PrCN/Bu₄NPF₆ at 223 K. (a) 1e⁻ reduction of the parent complex (\downarrow) at R1 producing deprotonated $[\text{Re}(3,3'-\text{DHBPY-H}^+)(\text{CO})_3(\text{PrCN})]$ (\uparrow). (b) Subsequent reduction of $[\text{Re}(3,3'-\text{DHBPY-H}^+)(\text{CO})_3(\text{PrCN})]$ (\downarrow) at R2' to give a mixture of products with dominating $[\text{Re}(3,3'-\text{DHBPY})(\text{CO})_3(\text{PrCN})]$ ($\uparrow\downarrow$) formed in an ETC step. The small band labelled with • may belong to marginal reductively double-deprotonated $[\text{Re}(3,3'-\text{DHBPY-2H}^+)(\text{CO})_3(\text{PrCN})]^-$. Its 1e⁻ and 2e⁻ reduced forms, $[\text{Re}(3,3'-\text{DHBPY}^--2\text{H}^+)(\text{CO})_3(\text{PrCN})]^{2-}$ (\uparrow) and $[\text{Re}(3,3'-\text{DHBPY}^{2-}-2\text{H}^+)(\text{CO})_3(\text{PrCN})]^{3-}$ (\bullet), terminate the cathodic path. The label \blacktriangle denotes an unassigned reduced intermediate (see also Figure 11b).

Figure S8. Charge vs time plot following the CPE of 3 mM [Re(3,3'-DHBPY)(CO)₃Cl] in CO₂-saturated 0.5 M THF/Bu₄NPF₆. The catalytic electrode potential was held at - 2.6 V vs Fc/Fc⁺ for 3 h, using a Pt microdisc electrode (diameter of 2 mm).

Figure S9. Charge vs time plot following the CPE of 3 mM [Re $(3,3'-DHBPY)(CO)_3Cl$] in CO₂-saturated 0.5 M THF/Bu₄NPF₆. The catalytic electrode potential was held at - 2.6 V vs Fc/Fc⁺ for 3 h, using a Pt foil electrode (surface area of 2× 0.96 cm²).

Figure S10. Charge vs time plot following the CPE of 3 mM [Re(3,3'-DHBPY)(CO)₃Cl] in CO₂-saturated (black) and Ar-saturated (red) 0.5 M THF/Bu₄NPF₆. The catalytic electrode potential was held at - 2.6 V vs Fc/Fc⁺ for 1 h, using a Pt foil electrode (surface area of 2× 0.96 cm²).