Supplemental Online Content

- Supplemental Table 1. Genes used in Inflammatory, EMT, and IPRES signatures
- Supplemental Table 2. EMT Gene Lists from the Literature
- Supplemental Figure 1: PD-L1 gene expression and response
- Supplemental Figure 2: Comparison of markers of T cells and Macrophages with response
- Supplemental Figure 3: Innate PD-1 resistance score (IPRES) and chronic IFN activation score and response

Supplemental Figure 4: Markers of TGFβ signaling and response

Supplemental Table 1. Genes used in Inflammatory, EMT, and IPRES signatures

Inflammatory	EMT Genes	IPRES Genes			
Genes					
CCL5	Epithelial	ANGPT2			
CCR5	CDH1	AXL			
CD274 (PDL1)	CDH3	CCL13			
CD3D	CLDN4	CCL2			
CD3E	EPCAM	CCL7			
CD8A	ST14	CDH1			
CIITA	MAL2	FAP			
CTLA4		FLT1			
CXCL10	Mesenchymal	1L10			
CXCL11	VIM	LOXL2			
CXCL13	SNAI2	RORS			
CXCL9	ZEB2	TAGLN			
GZMA	FN1	TWIST2			
GZMB	MMP2	VEGFA			
HLA-DRA	AGER	VEGFC			
HKA.DRB1		WNT5A			
HLA-E					
IDO1					
IL2RG					
ITGAL					
LAG3					
NKG7					
PDCD1					
PRF1					
PTPRC					
STAT1					
TAGAP					

Genes	Ref 1 (lung)	Ref 2 (lung)	Ref 3 (lung)	Ref 4 (lung)	Ref 5 (lung)	Ref 6 (pan	Ref 7 EMT	Ref 8 (breast)	Avg gene	Notes
						tumor)	database		reads	
Epithelial										
CDH1	Х	Х	Х	Х	Х	х	Х	Х	45	
CDH3		Х	Х	Х		х			136	
CLDN4				Х			Х	Х	127	
EPCAM		Х	Х	Х		х	Х		158	
ST14		Х	Х	Х		х			202	
MAL2			Х			х			155	
Mesencyhmal										
VIM	Х	Х	Х	Х		х	Х	Х	326	
SNAI2	Х	Х		Х	Х		Х	Х	39	
ZEB2		Х		Х	Х		Х	Х	34	
FN1	Х		Х						71	
MMP2	Х		Х				Х		265	
AGER				Х			Х		33	
SNAI1	Х				Х		Х	Х	9	1
TWIST1	Х	Х		Х	Х			Х	9	1
ZEB1		Х	Х	Х	Х	х	Х	Х	8	1
FOXC1							Х	Х	5	1
TWIST2		Х			Х			Х	2	1
CDH2	Х			Х	Х			Х	2	1

Supplemental Table 2. EMT Gene Lists from the Literature

Notes.

1. Classic EMT gene, but expression level too low so not used

References:

Reference 1. Chae YK, Chang S, Ko T, et al: Epithelial-mesenchymal transition (EMT) signature is inversely associated with T-cell infiltration in non-small cell lung cancer (NSCLC). Sci Rep 8:2918, 2018

Reference 2. Schliekelman MJ, Tagiuchi A, Zhu J, et al. Molecular portraits of epithelial, mesenchymal and hybrid states in lung adenocarcinoma and their relevance to survival. Cancer Res. 75: 1789–1800, 2015.

Reference 3. Byers LA, Diao LX, Wang J, et al: An Epithelial-Mesenchymal Transition Gene Signature Predicts Resistance to EGFR and PI3K Inhibitors and Identifies Axl as a Therapeutic Target for Overcoming EGFR Inhibitor Resistance. Clinical Cancer Research 19:279-290, 2013

Reference 4. Tan ZT, Miow QH, Miki Y, et al. Epithelial-mesenchymal transition spectrum quantification and its efficacy in deciphering survival and drug responses of cancer patients. EMBO Mol Med 6: 1279–1293, 2014

Reference 5. Kuner R, Muley T, Meister M, et al: Global gene expression analysis reveals specific patterns of cell junctions in non-small cell lung cancer subtypes. Lung Cancer 63:32-38, 2009

Reference 6. Huang RY-J, Wong MK, Tan TZ, et al. An EMT spectrum defines an anoikis-resistant and spheroidogenic intermediate mesenchymal state that is sensitive to e-cadherin restoration by a src-kinase inhibitor, saracatinib (AZD0530)/ Cell Death and Disease (2013) 4, e915; 2013

Reference 7. Zhao M., Kong L, Liu Y. Qu, H. dbEMT: a literature-based resource for Epithelial-Mesenchymal Transition genes. Sci Rep. 11459. 2015: <u>http://dbemt.bioinfo-minzhao.org/index.html</u>

Reference 8. Taube JH, Herschkowitz JI, Komurov K, et al. Core epithelial-to-mesenchymal transition interactome gene-expression signature is associated with claudin-low and metaplastic breast cancer subtypes. Proc. Nat. Acad. Sci. 107:15449-15454, 2010.

Supplemental Figure 1: PD-L1 gene expression and response. (A) Number of counts of PD-L1 gene expression levels in responders and PD patients. (B) log2 z-scores of PD-L1 gene expression levels in responders and PD patients.

Supplemental Figure 2: Comparison of markers of T cells and Macrophages with response. (A) Expression levels (number of reads) of established macrophage associated genes (CD68, CD14, CD163, CSF1R) in responders and PD patients. (B) Expression levels of established T cell associated genes (CD4, CD8A, CD8B) in responders and PD patients.

A. Macrophage Genes

Supplemental Figure 3: Innate PD-1 resistance score (IPRES) and chronic IFN activation score and response. (A) Comparison of the log2 z-scores of the IPRES signature in responders and non-responders. The IPRES score was calculated with and without expression levels of CH1 (E-cadherin). (B) Comparison of a chronic interferon activation score in responders and non-responders. This score included 9 established genes involved in chronic interferon activation (STAT1, IFI44, IFIT1, IFIT3, OAS1, OAS2, MX1, IRF7, and ISG15).

Supplemental Figure 4. Markers of TGFβ signaling and response. Expression levels (reads) of 5 established genes involved in TGFβ signaling (TGFB1, TGFBR2, ACTA2, COL4A2, and TAGLN) in responders and non-responders.

