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1 Population with a single type of microorganisms

1.1 Master equation

Let us first consider the simple case of a microbial population with a carrying capacity K comprising a single type
of microorganisms. These microorganisms have a fitness and a death rate denoted by f and g, respectively. Let j be
the number of individuals in the population at time t, satisfying 0 ≤ j ≤ K. The master equation describing the
evolution of this population reads for all j:

dPj(t)

dt
= f

(
1− j − 1

K

)
(j − 1)Pj−1(t) + g(j + 1)Pj+1(t)−

(
f

(
1− j

K

)
+ g

)
jPj(t) . (S1)

Indeed, recall that f(1− j/K) is the division rate in the logistic model. We can write this system of equations as
Ṗ = RP, where R is the transition rate matrix:

d

dt


P0

P1

P2

...
PK

 =



0 g 0 · · · 0

0 −g − f(1− 1/K) 2g (0)
...

0 f(1− 1/K) −2g − 2f(1− 2/K)
. . . 0

... (0)
. . .

. . . Kg
0 · · · 0 f(1− (K − 1)/K)(K − 1) −Kg




P0

P1

P2

...
PK

 . (S2)

This Markov chain has a single absorbing state, namely j = 0, which corresponds to the extinction of the microbial
population.

1.2 Average spontaneous extinction time

Let us study the average time it takes for the population to spontaneously go extinct, i.e. the mean first-passage
time τS(j0) to the absorbing state j = 0, starting from j0 microorganisms at t = 0. It can be expressed using

the inverse of the reduced transition rate matrix R̃, which is identical to R except that the row and the column
corresponding to the absorbing state j = 0 are removed [1, 2]:

τS(j0) = E[τ̂FP | j0] = −
K∑
i=1

(R̃−1)i j0 . (S3)

Note that more generally, all the moments of the first-passage time can be obtained using the reduced transition
rate matrix R̃:

E[τ̂nFP | j0] = n!(−1)n
K∑
i=1

(R̃−n)i j0 . (S4)

Here, the elements of the inverse of the reduced transition matrix read for all 1 ≤ j ≤ K,

(R̃−1)i j =


−
i−1∑
k=0

(
f

g

)i−k−1
Kk+1−i(K − k − 1)!

i g (K − i)!
if i ≤ j ,

−
j−1∑
k=0

(
f

g

)i−k−1
Kk+1−i(K − k − 1)!

i g (K − i)!
if i > j .

(S5)

Substituting Eq. S5 in Eq. S3 yields

τS(j0) =
1

g

 j0∑
i=1

i−1∑
k=0

(
f

g

)i−k−1
Kk+1−i(K − k − 1)!

i (K − i)!
+

K∑
i=j0+1

j0−1∑
k=0

(
f

g

)i−k−1
Kk+1−i(K − k − 1)!

i (K − i)!

 . (S6)

If f = 0, e.g. in the presence of a biostatic antimicrobial that perfectly prevents all microorganisms from growing,
Eq. S6 simplifies to:

τS(j0) =
1

g

j0∑
i=1

1

i
. (S7)
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Note the formal analogy between Eq. S7 and the unconditional fixation time with biostatic antimicrobial (f = 0) in
the Moran process, which corresponds to the extinction of the sensitive microbes in a population of fixed size [1].
Both situations involve the extinction of microorganisms that do not grow. Formally, the master equation of a Moran
process describing a microbial population of fixed size N with two types of individuals A and B whose respective
fitnesses are fA = 0 and fB = 1, reads:

dPl(t)

dt
=
l + 1

N
Pl+1(t)− l

N
Pl(t) , (S8)

where l denotes the number of A individuals. The master equation for a logistic growth of a population with a single
type of individuals (see Eq. S1) with f = 0 is equivalent under the transformation 1/N ← g.

Fig. I shows how τS(10) depends on the death rate g and the carrying capacity K. In particular, it shows
that when g < f , average extinction times become very long for large values of K, while they are short for all K
when g > f . In a deterministic description (valid for very large population sizes), g = f indeed corresponds to the
transition between a population that decays exponentially and a population that reaches a steady state size. For
finite-sized populations, stochasticity makes this transition smoother.
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Fig I. Average spontaneous extinction time of the microbial population. A: Mean first-passage time
τS(10) to the absorbing state j = 0, i.e. average extinction time, starting from j0 = 10 microorganisms, as a
function of the fitness f for different carrying capacities K, with g = 0.1. B: Average extinction time τS(10) as a
function of the carrying capacity K for different fitnesses f , with g = 0.1. C: Average extinction time τS(10) as a
function of the death rate g for different carrying capacities K, with f = 1. D: Average extinction time τS(10) as a
function of the carrying capacity K for different death rates g, with f = 1.
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1.3 Initial growth of the population

1.3.1 Deterministic approximation and rise time

In the deterministic regime, for a population with only one type of microorganisms and a carrying capacity K, the
number N of individuals at time t follows the logistic ordinary differential equation:

dN(t)

dt
= N(t)

[
f

(
1− N(t)

K

)
− g
]
, (S9)

where f represents fitness and g death rate. For f 6= g, the solution reads:

N(t) =
KN0 e

(f−g)t (1− g/f)

K (1− g/f) +N0 (e(f−g)t − 1)
, (S10)

where N0 = N(0) is the initial number of individuals in the population. Note that we recover the usual law of
logistic population growth for f > 0 and g = 0 (or for f > g by setting f ← f − g):

N(t) =
KN0 e

f t

K +N0 (ef t − 1)
. (S11)

For f > g, the long-time limit of Eq. S10 is K(1− g/f). This equilibrium population size can also be found as the
steady-state solution of Eq. S9, and corresponds to the birth and death rates being equal. The rise time tr(α), at
which a fraction α of this equilibrium population size is reached, is given by:

tr(α) =
1

f − g
ln

(
αK(1− g/f)− αN0

(1− α)N0

)
. (S12)

Hence, the initial growth of the population is governed by the timescale 1/(f − g), and features a weaker dependence
on carrying capacity K and initial population size N0, as illustrated by Fig. II.

0 5 10 15 20

Time t

100

102

104

P
o

p
u

la
ti
o

n
 s

iz
e

 N

K=10
1

K=10
2

K=10
3

K=10
4

K=10
5

K=10
6

100 102 104

Initial population size N
0

5

10

15

20

R
is

e
 t

im
e

 t
r(0

.9
9

)

K=10
1

K=10
2

K=10
3

K=10
4

K=10
5

K=10
6

A B

Fig II. Deterministic evolution of the population size and rise time. A: Population size N as function of
time t for different carrying capacities K. B: rise time tr(0.99) as function of the initial number of individuals N0 for
different carrying capacities K. Results are obtained from Eqs. S10 and S12. Parameter values: f = 1 and g = 0.1.

1.3.2 Probability of rapid initial extinction

A microbial population starting with few individuals may go extinct quickly due to stochastic fluctuations, before
reaching a substantial fraction of its equilibrium size K(1 − g/f). Formally integrating the master equation
Ṗ = RP with the initial condition j = j0 allows to express the probability P0(t) that a population starting from j0
microorganisms at t = 0 is extinct at time t:

P0(t) = (eRt)0j0 . (S13)
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Fig. III shows the probability P0(tr) that the microbial population goes extinct before the rise time tr versus g for
f = 1. We notice that P0(tr) ∼ g/f for small g and/or large K. This result can be proved analytically by assuming
that the number of individuals is very small compared to the carrying capacity K and thus grows exponentially,
which is relevant when rapid initial extinctions occur. One can then neglect the impact of the carrying capacity K
in the master equation Eq. S1, yielding:

dPj(t)

dt
= f(j − 1)Pj−1(t) + g(j + 1)Pj+1(t)− (f + g) jPj(t) . (S14)

The solution of this master equation is given by [3]:

Pj(t) = e(f−g)t
(

1− g/f
e(f−g)t − g/f

)2(
e(f−g)t − 1

e(f−g)t − g/f

)j−1
. (S15)

In particular, we thus obtain:

P0(t) =
g

f

(
e(f−g)t − 1

e(f−g)t − g/f

)
→

t→+∞

g

f
if f > g . (S16)
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Fig III. Rapid initial extinction. A: Probability P0(tr) that extinction occurs before the rise time tr(0.99) (see
Eq. S12), when starting from a single microorganism, j0 = 1, as function of the death rate g with f = 1 for different
carrying capacities K. Results come from a numerical computation of Eq. S13. Solid black line: g/f . B:
Probability of rapid initial extinction P0(100) as a function of the initial number of microorganisms j0, for different
carrying capacities K. Data points correspond to numerical computations of Eq. S13. Parameter values: fS = 1
and gS = 0.1. Time t = 100 was chosen to evaluate P0 because it is larger than typical rise times for the parameter
values considered (see Fig. II), but not too long, and thus captures rapid initial extinctions but not long-term ones
(see Fig. I).
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2 Supplementary results on extinction probabilities and extinction
and fixation times

2.1 Perfect biostatic antimicrobial
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Fig IV. Periodic presence of a biostatic antimicrobial that fully stops growth, including long
periods. A: Probability p0 that the microbial population goes extinct before resistance gets established versus
alternation period T , for various carrying capacities K. Markers: simulation results, with probabilities estimated
over 102 − 103 realizations. Horizontal solid colored lines: analytical predictions from Eq. 1. Horizontal solid black
line: average spontaneous valley crossing time τV = (fS − fR)/(µ1µ2gS) (see main text). B: Average time text to
extinction versus alternation period T for various carrying capacities K. Data shown if extinction occurred in at
least 10 realizations. C: Average time tfix to fixation of the C microorganisms versus alternation period T for
various carrying capacities K. Data shown if resistance took over in at least 10 realizations. Horizontal solid lines:
analytical predictions for very small T , using the self-averaged fitness f̃S (see main text). In panels B and C,
markers are averages over 102 − 103 simulation realizations, error bars (often smaller than markers) represent 95%
confidence intervals, and the oblique black line corresponds to T/2. In all panels, colored dashed lines correspond to
T/2 = τS , while black dashed lines correspond to T/2 = τV . Parameter values: fS = 1 without antimicrobial,
f ′S = 0 with antimicrobial, fR = 0.9, fC = 1, gS = gR = gC = 0.1, µ1 = 10−5 and µ2 = 10−3. All simulations start
with 10 S microorganisms.
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2.2 Biocidal antimicrobial
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Fig V. Periodic presence of a biocidal antimicrobial above the MIC, including long periods. A:
Probability p0 that the microbial population goes extinct before resistance gets established versus alternation period
T , for various carrying capacities K. Markers: simulation results, with probabilities estimated over 102 − 103

realizations. Horizontal solid lines: analytical predictions from Eq. 4. B: Average time text to extinction versus
alternation period T for various carrying capacities K. Data shown if extinction occurred in at least 10 realizations.
C: Average time tfix to fixation of the C microorganisms versus alternation period T for various carrying capacities
K. Data shown if resistance took over in at least 10 realizations. Horizontal solid colored lines: analytical
predictions for very small T , using the self-averaged death rate g̃S (see below). Horizontal solid black line: average
spontaneous valley crossing time τV = (fS − fR)/(µ1µ2gS) (see main text). In panels B and C, markers are
averages over 102 − 103 simulation realizations, error bars (often smaller than markers) represent 95% confidence
intervals, and the oblique black line corresponds to T/2. In all panels, colored dashed lines correspond to T/2 = τS ,
while black dashed lines correspond to T/2 = τV . Parameter values: fS = 1, fR = 0.9, fC = 1, gS = 0.1 without
antimicrobial, g′S = 1.1 with antimicrobial, gR = gC = 0.1, µ1 = 10−5 and µ2 = 10−3. All simulations start with 10
S microorganisms.

Here, in the limit of very fast alternations, we expect an effective averaging of death rates, with g̃S = 0.6 for S
microorganisms. Then, an R mutant that will fix in the population appears after an average time t̃aR = 1/(Ñµ1g̃S p̃SR)
where Ñµ1g̃S represents the total mutation rate in the population, with Ñ = K(1−g̃S/fS) the equilibrium population

size, and where p̃SR = [1− fSgR/(fRg̃S)]/[1− (fSgR/(fRg̃S))Ñ ] is the probability that a single R mutant fixes in a
population of Ñ microorganisms where all other microorganisms are S. Subsequently, C mutants will appear and
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fix, thus leading to the full evolution of resistance by the population. The corresponding average total time tfix of
resistance evolution [1] agrees well with simulation results for T/2� τS (see Fig. VC).

2.3 Population size dependence of the extinction transition
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Fig VI. Finite size effect on the extinction transition. Value of the ratio R = (g′S − f ′S)/g′S such that
taR = τS , plotted versus the carrying capacity K. This value of R marks the transition between large and small
extinction probability p0 when T/2 > τS (see main text and Fig. 5). Red markers: numerical solutions of the
equation taR = τS . Black dashed line: expected transition in the large population limit (R = 0, i.e. f ′S = g′S).
Parameter values: µ1 = 10−5, fS = 1, fR = 0.9, gS = gR = 0.1. Here, results are shown in the biostatic case, and f ′S
was varied, keeping g′S = 0.1, but the biocidal case yields the exact same results (see main text).
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2.4 Dependence of the extinction time on population size and antimicrobial mode
of action
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Fig VII. Dependence of the average extinction time on population size and antimicrobial mode of
action. Average extinction time text versus the ratio R = (g′S − f ′S)/g′S with biostatic or biocidal antimicrobial, for
different carrying capacities K, either in the small-period regime, with T = 102.5 (A and B) or in the large-period
regime, with T = 105 (C). Markers: simulation results, calculated over the realizations ending in extinction of the
population, if their number is at least 10, among 103 realizations total per marker. Error bars: 95% confidence
intervals. Vertical dashed lines: predicted extinction thresholds, i.e. values of R such that T/2 = τS (A and B) or
taR = τS (C). Horizontal dashed lines: text = T/2. Parameter values (same as in Fig. 6): µ1 = 10−5, µ2 = 10−3,
fS = 1, fR = 0.9, fC = 1, gS = gR = gC = 0.1, and g′S = 0.1 (biostatic) or f ′S = 1 (biocidal). All simulations start
with 10 S microorganisms.
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3 Rescue by resistance

3.1 Number of resistant mutants when antimicrobial is added: pcR(i)

Let pcR(i) be the probability that exactly i R microorganisms are present when antimicrobial is added, provided that
a lineage of R mutants then exists. It can be calculated in the framework of the Moran model, provided that the
population size is stable around N = K(1− gS/fS) before antimicrobial is added, which is correct for T/2� tr,
where tr is the rise time (see section 1.3.1). Specifically, pcR(i) can be expressed as a ratio of the sojourn time in
state i to the total lifetime of the lineage in the absence of antimicrobial:

pcR(i) =
τdR,i
τdR

, (S17)

where τdR is the average lifetime without antimicrobial of the lineage of a resistant mutant, assuming that it is
destined for extinction, and τdR,i is the average time this lineage spends with exactly i R individuals before going

extinct. They satisfy τdR =
∑N−1
i=1 τdR,i. Note that we consider lineages destined for extinction in the absence of

antimicrobial, because we focus on timescales much shorter than the spontaneous valley crossing time. In fact, in
this regime, considering unconditional times yields nearly identical values for pcR(i).

Employing the master equation Ṗ = RP that describes the time evolution of the number of R mutants within
the Moran model [1, 4], where R is the transition rate matrix, we obtain

τdR,i =
πi
π1

∫ ∞
0

Pi(t)dt = − πi
π1

(R̃−1)i 1 , (S18)

where πi is the probability that the R mutants go extinct, starting from i R mutants [1, 4], while R̃ is the reduced
transition rate matrix, which is identical to the transition rate matrix R, except that the rows and the columns
corresponding to the absorbing states i = 0 and i = N are removed [1]. Here, we take N = K(1− gS/fS), which
corresponds to the deterministic equilibrium population size. Finally, we obtain

pcR(i) =
πi(R̃

−1)i 1∑N−1
k=1 πk(R̃−1)k 1

. (S19)

3.2 Probability of fast extinction of the resistant mutants: peR(i)

Let us consider the beginning of the first phase with antimicrobial, and take as our origin of time t = 0 the beginning
of the phase with antimicrobial. Here, we consider the general case of an antimicrobial that may modify both the
division rate and the death rate of sensitive microorganisms. Provided that some resistant microorganisms are
present at t = 0, how likely is it that they will undergo a rapid stochastic extinction and not rescue the microbial
population and lead to the establishment of resistance? Denoting by i > 0 the number of resistant microorganisms
at t = 0, let us estimate the probability peR(i) that the lineage of R mutants then quickly goes extinct. As explained
in the main text, we approximate the reproduction rate of the R microorganisms by

fR(t) = fR

(
1− S(t) +R(t)

K

)
≈ fR

(
1− S(t)

K

)
, (S20)

where S(t) and R(t) are the numbers of S and R individuals at time t. This is appropriate because early extinctions
of R mutants tend to happen shortly after the addition of antimicrobials, when S(t)� R(t). Thus motivated, we
further employ the deterministic approximation to describe the decreasing number S(t) of S microorganisms:

S(t) =
K(1− g′S/f ′S)S0e

(f ′S−g
′
S)t

K(1− g′S/f ′S) + S0(e(f
′
S−g′S)t − 1)

, (S21)

where S0 = K(1 − gS/fS) is the number of sensitive microorganisms when antimicrobial is added. Note that if
f ′S = 0 and g′S = gS , i.e. in the perfect biostatic case, we obtain

S(t) = K

(
1− gS

fS

)
e−gSt , (S22)
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for the decay of the number of S microorganisms with antimicrobial. However, we retain a stochastic description for
the rare R mutants, and employ the probability generating function

φi(z, t) =

∞∑
j=0

zjP (j, t|i, 0) , (S23)

where i is the initial number of R microorganisms. Indeed, noticing that

peR(i) = lim
t→∞

P (0, t|i, 0) = lim
t→∞

φi(0, t) (S24)

will enable us to calculate peR(i) [5, 6].
The probability P (j, t|i, 0) of having j R mutants at time t, starting from i R mutants at time t = 0, satisfies the

master equation

∂P (j, t|i, 0)

∂t
= fR(t) (j − 1)P (j − 1, t|i, 0) + gR (j + 1)P (j + 1, t|i, 0)− (fR(t) + gR) j P (j, t|i, 0) . (S25)

Here, we neglect mutants that appear after the addition of antimicrobial, and we deal with them in the calculation
of paR and pe

′

R . The generating function defined in Eq. S23 satisfies the partial differential equation

∂φi(z, t)

∂t
− (z − 1)(fR(t)z − gR)

∂φi(z, t)

∂z
= 0 . (S26)

This first-order nonlinear partial differential equation can be solved using the method of characteristics. For this, we
rewrite it as:

~v.~∇φi = 0 , (S27)

where ~v = (1, −(z − 1)(fB(t)z − gB))t and ~∇φi = (∂φi/∂t, ∂φi/∂z)t. A characteristic curve ~r(s) satisfies d~r/ds =
~v(~r(s)), which entails

dφi
ds

=
d~r

ds
.~∇φi = ~v.~∇φi = 0 , (S28)

implying that φi is constant along a characteristic curve. Since dφi/ds = (∂φi/∂t)(dt/ds) + (∂φi/∂z)(dz/ds), we
obtain the following system of ordinary differential equations along a characteristic curve:{

dt
ds = 1 ,
dz
ds = −(z − 1)(fR(t)z − gR) .

(S29)

We choose to integrate it as {
t = s ,
dz
dt = −(z − 1)(fR(t)z − gR) .

(S30)

The second ordinary differential equation can be solved by introducing y = 1/(z − 1), which yields

eρ(t)

z − 1
−
∫ t

0

fR(u)eρ(u)du =
1

z0 − 1
, (S31)

with

ρ(t) =

∫ t

0

(gR − fR(u)) du , (S32)

where we have employed Eqs. S20 and S22. Eq. S31 is the equation of the characteristic line going through the point
(0, z0). Because φi is constant along this line (see Eq. S28), we have φi(z, t) = φi(z0, 0) = zi0 along this line, where
we have used Eq. S23. Furthermore, for any (z, t) we can find the appropriate z0 using Eq. S31. This yields the
following expression for the generating function:

φi(z, t) =

[
1 +

(
eρ(t)

z − 1
−
∫ t

0

fR(u)eρ(u)du

)−1]i
, (S33)

where ρ(t) is given by Eq. S32 and fR(t) by Eq. S20.
We can now express the probability peR(i) from Eqs. S24 and S33:

peR(i) = lim
t→∞

[
gR
∫ t
0
eρ(u)du

1 + gR
∫ t
0
eρ(u)du

]i
. (S34)
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3.3 Predicting the extinction probability p0

Here, we test the analytical predictions for each term involved in the extinction probability p0 of the population
above the MIC, both in the perfect biostatic case (see Eq. 1) and in the biocidal case (see Eq. 4), by comparing
them to numerical simulation results. To estimate the probability pR that at least one R mutant is present when
antimicrobial is added, and to study the number of R mutants that are then present (Fig. VIIIA-B), simulations
are run starting from j0 = 10 S microorganisms (and no R) as in the rest of our work. We let the population
evolve until a specific time, in practice t = 500, when population size is well-equilibrated around the deterministic
stationary value K(1 − gS/fS) without antimicrobial, and we analyze population composition at this time. To
estimate the probability peR of rapid extinction of the R lineage (Figs. VIIIC and XA), we start from a population
with i R microorganisms and K(1− gS/fS)− i sensitive microorganisms, and we let it evolve with antimicrobial
until extinction of the S microorganisms. All these simulations are run with 2 types of microorganisms, S and R (no
compensation). In Figs. VIIIC and XA, we note that peR does not seem to depend on K. In fact, our analytical
estimate for peR is fully independent of K because it only involves the ratio S(t)/K (see Eqs. S34, S32 and S20),
whose deterministic dynamics is independent of K (see Eq. S9 with N(t)← S(t)).
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Fig VIII. Perfect biostatic antimicrobial: test of analytical predictions for each term involved in p0
(Eq. 1). A: Probability pR that at least one R mutant is present when antimicrobial is added, plotted versus
carrying capacity K. Markers: simulation results, with probabilities estimated over 104 realizations. Red solid line:
analytical prediction, pR = tappR /τdR = Nµ1gSτ

d
R (see main text). B: Probability pcR that exactly i R microorganisms

are present when antimicrobial is added, provided that at least one R mutant is present, plotted versus the number i
of R mutants, for various carrying capacities K. Markers: simulation results, estimated over 104 realizations. Solid
lines: analytical prediction in Eq. S19. Analytical prediction lines for K = 104 and K = 105 are confounded; note
that the prediction holds in the weak mutation regime Kµ1 � 1, and thus fails for K = 105 here. C: Probability peR
of rapid extinction of the R lineage, plotted versus the number i of R mutants present when adding antimicrobial,
for various different carrying capacities K. Markers: simulation results, with probabilities estimated over 104

realizations. Black solid line: analytical prediction from Eq. 2 (see main text). Parameter values: fS = 1 without
antimicrobial, f ′S = 0 with antimicrobial, fR = 0.9, gS = gR = 0.1 and µ1 = 10−5 (A-B) or µ1 = 0 (C).

April 1, 2020 12/18



The probability paR that resistance appears in the presence of antimicrobial involves the number of divisions
Ndiv and the mean time to extinction τS of a population of S microorganisms in the presence of antimicrobial (see
main text). To estimate these two intermediate quantities, simulations only involving S microorganisms in the
presence of antimicrobial, starting from K(1− gS/fS) sensitive microorganisms, are performed (Fig. IXA-B). For paR
itself (Fig. XB), simulations with S and R microbes (no compensation), also starting from K(1− gS/fS) sensitive
microorganisms in the presence of antimicrobial, are performed. The time of appearance of R mutants (Fig. IXC-D)
and the number of different lineages that appear during the decay of this population (Fig. XC) are also studied.
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Fig IX. Biocidal antimicrobial: test of analytical predictions for intermediate quantities involved in
the calculation of p0 (see Eq. 4). A: Average time τS to extinction of a population of S microorganisms in the
presence of antimicrobial, plotted versus the carrying capacity K. Markers: simulation results, with probabilities
estimated over 104 realizations. Red solid line: analytical prediction from Eq. S6, with j0 = K(1− gS/fS). B:
Number Ndiv of individual division events that occur between the addition of antimicrobial and the extinction of
the population of S microorganisms, plotted versus carrying capacity K. Red markers: simulation results, with
probabilities estimated over 104 realizations. Red solid line: analytical prediction from Eq. 5. C and D: Probability
density function ℘aR(t) of the time t of appearance of an R mutant, under the assumption that exactly one R mutant
appears between the addition of antimicrobial and the extinction of the population of S microorganisms, for
K = 103 (C) and K = 104 (D). Histograms: simulation results, with 103 realizations. Black solid lines: analytical
prediction from Eq. 9. Parameter values: fS = 1, gS = 0.1 without antimicrobial, g′S = 1.1 with antimicrobial, and
in panels C and D, fR = 0.9, gR = 0.1 and µ1 = 10−5.
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Fig X. Biocidal antimicrobial: test of analytical predictions for each term involved in p0 (see Eq. 4).
Note that pR and pcR are the same as in Fig. VIIIA-B. A: Probability peR of rapid extinction of the R lineage,
plotted versus the number i of R mutants present when adding antimicrobial, for various different carrying
capacities K. Markers: simulation results, with probabilities estimated over 104 realizations. Black solid line:
analytical prediction from Eq. S34. B: Probability paR that resistance appears in the presence of antimicrobial,
plotted versus the carrying capacity K. Red markers: simulation results, with probabilities estimated over 104

realizations. Red solid line: analytical prediction, paR = Ndivµ1 with Ndiv in Eq. 5. C: Probability that i distinct
lineages of R mutants appear in the presence of antimicrobial, provided that at least one appears, plotted versus the
carrying capacity K. Markers: simulation results, with probabilities estimated over 103 realizations. Parameter
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3.4 A perfect biostatic antimicrobial yields a larger p0 than a perfect biocidal antimi-
crobial

For a perfect biostatic antimicrobial, the extinction probability p0 upon the first addition of drug is given by Eq. 1:

p0 = 1− pR
N−1∑
i=1

pcR(i)(1− peR(i)) , (S35)

while for a biocidal antimicrobial, the extinction probability p̃0 upon the first addition of drug is given by Eq. 4:

p̃0 =

[
1− pR

N−1∑
i=1

pcR(i)(1− p̃eR(i))

] [
1− paR(1− pe

′

R)
]
< 1− pR

N−1∑
i=1

pcR(i)(1− p̃eR(i)) . (S36)

In Eq. S36 we have employed tilde symbols to denote the quantities that differ compared to Eq. S35. Recall that pR
and pcR(i) are the same in both cases. Indeed, these quantities characterize the state of the population when the
antimicrobial is added, and thus do not depend on the type of treatment subsequently added.

The perfect biocidal antimicrobial corresponds to g′S →∞. Let us prove that limg′S→∞ p̃0 < p0. From Eqs. S35
and S36 it is apparent that it suffices to prove that limg′S→∞ p̃eR(i) < peR(i) for all i. The expression of both peR(i)
and p̃eR(i) is given in Eq. S34, but it involves the decaying number S(t) of S microorganisms once antimicrobial is
added, which is different in these two cases, and is given respectively by Eq. S21 with f ′S = fS in the biocidal case
and by Eq. S22 in the perfect biostatic case.

Taking the limit g′S → ∞ in Eq. S34 yields limg′S→∞ p̃eR(i) = (gR/fR)i, which corresponds to the extinction
probability of a population that starts from i R microorganisms, in the absence of any other microorganisms [7].
But for a perfect biostatic antimicrobial,

ρ(t) =

∫ t

0

[
gR − fR

(
1− S(u)

K

)]
du >

∫ t

0

[gR − fR] du = (gR − fR)t , (S37)

which, using Eq. S34, entails that peR(i) > (gR/fR)i, i.e. limg′S→∞ p̃eR(i) < peR(i) for all i. Therefore, we have shown
that limg′S→∞ p̃0 < p0: the extinction probability p0 is larger for a perfect biostatic antimicrobial than for a perfect
biocidal antimicrobial.

Importantly, our proof does not rely on the appearance of resistant microorganisms while antimicrobial is present,
which cannot happen with a perfect biostatic antimicrobial, and whose probability tends to zero when g′S →∞ with
a biocidal antimicrobial. What makes the perfect biostatic antimicrobial more efficient than the perfect biocidal one
is that S microorganisms survive for a longer time, thereby reducing the division rate of R microorganisms due to
the logistic term, and favoring their extinction. Such a competition effect is realistic if S microorganisms still take
up resources (e.g. nutrients) even while they are not dividing.
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4 Fixation probability of a mutant in a population of constant size

In the main text, in our discussion of sub-MIC concentrations of antimicrobials, we employed the fixation probability
pSR of an R mutant in a population of S individuals with fixed size N :

pSR =
1− fSgR/(fRgS)

1− [fSgR/(fRgS)]N
. (S38)

Here, we briefly justify this formula.
Consider a birth-death process in which, at each discrete time step, one individual is chosen with a probability

proportional to its fitness to reproduce and another one is chosen with a probability proportional to its death
rate to die. Note that at each time step, the total number of individuals in the population stays constant. This
model is a variant of the Moran model with selection both on division and on death. Let i be the number of R
microorganisms and N − i the number of S microorganisms. At a given time step, the probability T+

i that the
number of R individuals increases from i to i+ 1 satisfies:

T+
i =

fRi

fRi+ fS(N − i)
gS(N − i)

gRi+ gS(N − i)
, (S39)

and similarly, the probability T−i that i decreases by 1 is given by:

T−i =
fS(N − i)

fRi+ fS(N − i)
gRi

gRi+ gS(N − i)
. (S40)

The probability pSR that the R genotype fixes in the population, starting from 1 R microorganism, then satisfies [8]:

pSR =
1

1 +
∑N−1
k=1

∏k
j=1 γj

, (S41)

where

γi =
T−i
T+
i

=
fSgR
fRgS

. (S42)

We thus obtain the result announced in Eq. S38.
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5 Detailed simulation methods

In this work, the evolution of microbial populations are simulated using a Gillespie algorithm [9,10]. Let us denote
by jS , jR and jC the respective numbers of S, R and C individuals. The elementary events that can happen are
division with or without mutation and death of an individual microbe of either type:

� S
k+S−−→ 2S: Reproduction without mutation of a sensitive microbe with rate k+S = feS(1−(jS+jR+jC)/K)(1−µ1),

with feS = fS if no antimicrobial is present in the environment or feS = f ′S if antimicrobial is present in the
environment.

� S
kSR−−→ S+R: Reproduction with mutation of a sensitive microbe with rate kSR = feS(1− (jS + jR+ jC)/K)µ1.

� S
k−S−−→ ∅: Death of a sensitive microbe with rate k−S = geS , with geS = gS if no antimicrobial is present in the

environment or geS = g′S if antimicrobial is present in the environment.

� R
k+R−−→ 2R: Reproduction without mutation of a resistant microbe with rate k+R = fR(1− (jS + jR+ jC)/K)(1−

µ2).

� R
kRC−−−→ R+C: Reproduction with mutation of a resistant microbe with rate kRC = fR(1−(jS+jR+jC)/K)µ2.

� R
k−R−−→ ∅: Death of a resistant microbe with rate k−R = gR.

� C
k+C−−→ 2C: Reproduction of a resistant-compensated microbe with rate k+C = fC(1− (jS + jR + jC)/K).

� C
k−C−−→ ∅: Death of a resistant-compensated microbe with rate k−C = gC .

The total rate of events is given by ktot = (k+S + kSR + k−S )jS + (k+R + kRC + k−R)jR + (k+C + k−C )jC .

Simulation steps are as follows:

1. Initialization: The microbial population starts from jS = 10 sensitive microorganisms, jR = 0 resistant mutant
and jC = 0 resistant-compensated mutant at time t = 0 without antimicrobial. The next time when the
environment changes is stored in the variable tswitch, which is initialized at tswitch = T/2, the first time when
antimicrobial is added.

2. The time increment ∆t is sampled randomly from an exponential distribution with mean 1/ktot, and the next
event that may occur is chosen randomly, proportionally to its probability k/ktot, where k is its rate. For
instance, division of a sensitive microorganism without mutation is chosen with probability k+S jS/ktot.

3. If t+ ∆t < tswitch, time is increased to t+ ∆t and the event chosen at Step 2 is executed.

4. If t+ ∆t ≥ tswitch, the event chosen at Step 2 is not executed, because an environment change has to occur
before. The environment change is performed: time is incremented to t = tswitch, and the fitness and death
rate of the sensitive microbes are switched from fS to f ′S and from gS to g′S or vice-versa. In addition, tswitch
is incremented to tswitch + T/2, and thus stores the next time when the environment changes.

5. We go back to Step 2 and iterate until the total number of microbes is zero (jS + jR + jC = 0) or there are
only resistant-compensated mutants (jS = 0, jR = 0 and jC 6= 0).

Note that Step 4 introduces an artificial discretization of time, because environment changes occur at fixed times
and not with a fixed rate. However, because the total event rate is large unless the population size is very small, the
“jump” in time induced by Step 4 is usually extremely small, and the discarded events constitute a tiny minority
of events. The resulting error is thus expected to be negligible. The very good agreement between our simulation
results and our analytical predictions, in particular for short periods, corroborates this point.
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