SUPPLEMENTARY MATERIAL

Early colonization of weathered polyethylene by distinct bacteria in marine coastal seawater

Gabriel Erni-Cassola,^{1*} Robyn J. Wright,¹ Matthew I. Gibson,^{2,3} Joseph A. Christie-Oleza^{1*}

¹School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK.

² Department of Chemistry, University of Warwick, Coventry CV4 7AL, UK.

³ Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.

*corresponding authors at: School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK. g.ernicassola@warwick.ac.uk/gabriel.ernicassola@gmail.com and J.Christie-Oleza@warwick.ac.uk

This file contains 11 pages (cover page included), containing 4 figures, 4 tables and on page S9 specific 16S rRNA gene sequences used in BLAST searches:

Table S1: 16S rRNA gene primer pairs tested for OHCB coverage.

Figure S1: Principal coordinate analysis (PCoA; Bray-Curtis distance) plot of the full 16S rRNA gene sequencing data.

Figure S2: Rarefaction curves for bacterial communities

Figure S3: Bar chart showing dominant bacterial phyla

Figure S4: Bar chart showing dominant bacterial orders

Table S2: Statistical summary of PERMANOVA tests on UniFrac ordinations of 16S rRNA data

from polyethylene communities.

Table S3: Contrast summaries of generalized linear model results for Shannon diversity of bacterial

communities (16S rRNA gene) colonizing PE and glass at two different time points.

Table S4: Details for most abundant ASVs from figure 4.

Primer name	Sequence	Reference
515F-Y(*) 926R(*)	GTGYCAGCMGCCGCGGTAA CCGYCAATTYMTTTRAGTTT	Parada <i>et al.</i> [1] Quince <i>et al.</i> [2]
515F 806R	GTGCCAGCMGCCGCGGTAA GGACTACHVGGGTWTCTAAT	Oberbeckmann <i>et al.</i> [3]
341F 805R	CCTACGGGNGGCWGCAG GACTACHVGGGTATCTAATCC	De Tender et al. [4]
518F 1046R	CCAGCAGCYGCGGTAAN CGACAGCCATGCANCACCT	Zettler et al. [5]
341F 785R	CCTACGGGNGGCWGCAG GACTACHVGGGTATCTAATCC	Kirstein et al. [6]
343F 908R	TACGGRAGGCAGCAG CGTCAATTCMTTTGAGTT	Berry and Gutierrez [7]
343F 908R	TACGGRAGGCAGCAG CGTCAATTCMTTTGAGTT	Berry and Gutierrez [

 Table S1. 16S rRNA gene primer pairs tested for OHCB coverage.

Note: (*) indicates primer pair used in this study.

Figure S1. Principal coordinate analysis (PCoA; Bray-Curtis distance) plot of the full 16S rRNA gene sequencing data. Note that controls (Kitome, blank), as well as Sea water samples cluster separately from bulk experimental samples (nw PE, w PE and Glass). (*): experimental samples that were excluded from downstream analysis due to clustering with controls.

Treatment: — w PE — nw PE — Glass **Figure S2.** Rarefaction curves for bacterial communities (16S rRNA genes) colonizing weathered polyethylene (w PE), non-weathered PE (nw PE), and glass after 2 and 9 days of incubation in coastal Mediterranean seawater.

Figure S3. Bar chart showing dominant bacterial phyla (16S rRNA genes) in microbial communities colonizing weathered polyethylene (w PE), non-weathered PE (nw PE), and glass after 2 and 9 days of incubation in coastal Mediterranean seawater.

Figure S4. Bar chart showing dominant bacterial orders (16S rRNA gene) in microbial communities colonizing weathered polyethylene (w PE), non-weathered PE (nw PE), and glass after 2 and 9 days of incubation in coastal Mediterranean seawater. (*) denotes genus *Oceanospirillales*

16S rRNA gene						
UniFrac: weighted	Df	Sums of Sqs	Mean Sqs	F Model	\mathbb{R}^2	Pr(>F)
treatment	2	1.450	0.725	5.916	0.147	0.001
timepoint	1	4.588	4.588	37.453	0.466	0.001
treatment:timepoint	2	1.108	0.554	4.522	0.113	0.003
Residuals	22	2.695	0.123		0.274	
UniFrac: unweighted						
treatment	2	0.153	0.077	1.304	0.084	0.077
timepoint	1	0.239	0.239	4.074	0.131	0.001
treatment:timepoint	2	0.147	0.074	1.255	0.080	0.098
Residuals	22	1.291	0.059		0.705	

Table S2. Statistical summary of PERMANOVA tests on UniFrac ordinations of 16S rRNA gene data from polyethylene communities.

Note: significant p-values are denoted in bold.

Compared conditions	Estimate	Std. Error	z value	Pr(> z)	
glass, day 2 - non-weathered PE, day 2	-0.005	0.014	-0.354	0.999	
weathered PE, day 2 – non-weathered PE, day 2	0.094	0.014	6.861	<0.001	
non-weathered PE, day 9 - non-weathered PE, day 2	-0.023	0.014	-1.649	0.563	
glass, day 9 - non-weathered PE, day 2	-0.001	0.012	-0.089	1.000	
weathered PE, day 9 - non-weathered PE, day 2	-0.022	0.012	-1.811	0.455	
weathered PE, day 2 – glass, day 2	0.100	0.015	6.467	<0.001	
non-weathered PE, day 9 - glass, day 2	-0.018	0.015	-1.145	0.861	
glass, day 9 – glass, day 2	0.004	0.014	0.289	1.000	
weathered PE, day 9 – glass, day 2	-0.017	0.014	-1.207	0.832	
non-weathered PE, day 9 – weathered PE, day 2	-0.117	0.015	-7.852	<0.001	
glass, day 9 – weathered PE, day 2	-0.096	0.013	-7.196	<0.001	
weathered PE, day 9 – weathered PE, day 2	-0.116	0.013	-8.692	<0.001	
glass, day 9 – non-weathered PE, day 9	0.022	0.013	1.631	0.575	
weathered PE, day 9 – non-weathered PE, day 9	0.001	0.013	0.064	1.000	
weathered PE, day 9 –glass, day 9	-0.021	0.011	-1.809	0.457	

Table S3. Contrast summaries of generalized linear model results for Shannon diversity of bacterial communities (16S rRNA gene) colonizing PE and glass at two different time points.

Note: significant p-values are denoted in bold.

Table S4. Details for most abundant ASVs from figure 4.

ASV	Abundance on wPE at	Closest relative	Identity score
	day2 [%]		
ASV3 ¹	26.9	Thalassococcus halodurans	99.73%
ASV10 ²	6.1	Marivivens niveibacter	98.66%
ASV23 ³	0.6	Boseongicola aestuarii	97.31%
ASV28 ⁴	2.1	Oleiphilus mesinensis	94.41%
ASV34 ⁵	0.8	Oleiphilus mesinensis	95.48%
ASV47 ⁶	1.3	Oceanospirillum nioense	94.39%
ASV52 7	0.9	Aestuariibacter aggregatus	97.33%
ASV123 ⁸	0.4	Aestuariibacter aggregatus	97.33%
ASV2019 ⁹	0.01	Aestuariibacter aggregatus	98.40%

References

- Parada AE, Needham DM, Fuhrman JA. 2016 Every base matters: Assessing small subunit rRNA primers for marine microbiomes with mock communities, time series and global field samples. *Environ. Microbiol.* 18, 1403–1414. (doi:10.1111/1462-2920.13023)
- Quince C, Lanzen A, Davenport RJ, Turnbaugh PJ. 2011 Removing Noise From Pyrosequenced Amplicons. *BMC Bioinformatics* 12, 38. (doi:10.1186/1471-2105-12-38)
- Oberbeckmann S, Kreikemeyer B, Labrenz M. 2018 Environmental factors support the formation of specific bacterial assemblages on microplastics. *Front. Microbiol.* 8, 2709. (doi:10.3389/FMICB.2017.02709)
- De Tender C, Devriese LI, Haegeman A, Maes S, Vangeyte J, Cattrijsse A, Dawyndt P, Ruttink T. 2017 Temporal Dynamics of Bacterial and Fungal Colonization on Plastic Debris in the North Sea. *Environ. Sci. Technol.* **51**, 7350–7360. (doi:10.1021/acs.est.7b00697)
- Zettler ER, Mincer TJ, Amaral-zettler LA. 2013 Life in the "Plastisphere": Microbial Communities on Plastic Marine Debris. *Environ. Sci. Technol.* 47, 7137–7146.
- Kirstein I V., Wichels A, Krohne G, Gerdts G. 2018 Mature biofilm communities on synthetic polymers in seawater Specific or general? *Mar. Environ. Res.* 142, 147–154. (doi:10.1016/j.marenvres.2018.09.028)
- Berry D, Gutierrez T. 2017 Evaluating the detection of hydrocarbon-degrading bacteria in 16S
 rRNA gene sequencing surveys. *Front. Microbiol.* 8, 1–6. (doi:10.3389/fmicb.2017.00896)