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1 Supplementary Figures

Figure S1: Escherichia coli: Time series forecasting. This is a time series only
dataset consisting of 15 time series. (A) Comparison of predicted gene expression using
OutPredict (grey dots) vs. actual expression (red line) at the left-out time point. The
accuracy of forecasting is measured by calculating the Mean Squared Error. (B) OutPredict
(OP and OP-Priors) improves (P < 0.01, based on a non-parametric paired test) the quality
of forecasting compared to Penultimate Value (15% improvement) and Dynamic Genie3
(40.5% improvement). For this data, there is no improvement using priors from gold-standard
edges compared with time series data by itself.
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Figure S2: Drosophila: Time series forecasting. This is a time series only dataset con-
sisting of one time series of 28 time-points. OutPredict (OP and OP-Priors) performs better
(P < 0.01, non-parametric paired test) than benchmark approaches including Penultimate
Value and Dynamic Genie3 (23% and 26.1% improvement, respectively). The incorporation
of priors from the gold-standard network does not improve forecasting compared to time
series alone.

Figure S3: DREAM4: Time series forecasting. This is a synthetic dataset. (A) Com-
parison of predicted gene expression using OutPredict (grey dots) vs. actual expression (red
line) at the left-out time point. (B) OutPredict (OP-TSonly, OP-TS+SS and OP-Priors)
outperforms (P < 0.05, non-parametric paired test) Penultimate Value and Dynamic Ge-
nie3 with 10% and 40.1% relative improvement, respectively. The incorporation of priors
together with the integration of steady-state data does not improve forecasting compared to
time series alone.
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Figure S4: - Bacillus Subtilis - Full Comparison of time series forecasting: Neural Network
from [Smith et al 2010] (NN) vs. Dynamic Genie3 (DynGenie3) vs. Penultimate Value
(Pen.Value) vs. OutPredict (OP-TSonly, OP-TS+SS and OP-Priors). The use of steady-
state data (OP-TS+SS) leads to a 6% significant improvement (P < 0.05, non-parametric
paired test) relative to time series data alone (OP-TSonly). OP-Priors uses gold standard
data (in addition to time series (TS) and steady-state (SS) integrated in a single random
forest), which is helpful compared to the model OP-TS+SS showing an 11% relative im-
provement (P<0.05, non-parametric paired test).

Figure S5: Gene Expression Change for all species. Generally, the average absolute difference
in expression (across all genes for each species) decreases over time. E. Coli may be an
exception because of the short lifespan of bacteria. The Time-Step model worked better for
B. subtilis and Drosophila. The Ordinary Differential Equation-log model worked better for
Arabidopsis, E. coli and DREAM4 (Supplementary Table S1).
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Figure S6: DREAM4 - Causality Inference Improvement with Steady-State data. The
DREAM4 dataset shows that steady-state data contributes to the inference of causality
more when there are few time series than when there is abundant time series data. (A) We
show the comparison of Area under Precision-Recall (AUPR) with and without steady-state
data in cases of different numbers of time series. The y-axis represent the AUPR average of
three different random sets of time series of size 1, 3, 5 respectively; x = 20 represents the
case of taking all 20 time series in the DREAM4 dataset. (B) The AUPR improvement of
using time steady-state data, relative to time series data alone, decreases as the number of
time series increases.

Figure S7: DREAM4 - Gene Expression Prediction Improvement with Steady-State data.
The DREAM4 dataset shows that steady-state data contributes to out-of-sample prediction
more when there are few time series than when there are many. (A) We show the comparison
of time series forecasting with and without steady-state data for different numbers of time
series. The y-axis represent the MSE (mean squared error) average for three different random
sets of time series of sizes 1, 3, 5 respectively; x = 20 represents the use of all 20 time series
in the DREAM4 dataset. (B) The out-of-sample predictions improvement of using time plus
steady-state data, relative to time series data alone, decreases as the number of time series
increases.
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Figure S8: DREAM4 - Gene Expression Prediction Improvement with Priors. The
DREAM4 dataset shows that Priors data contributes to out-of-sample predictions more
when there are few time series than when there are many. (A) We show the comparison of
time series forecasting with and without gold standard data for different numbers of time se-
ries. The y-axis represent the MSE (mean squared error) average for three different random
sets of time series of size 1, 3, 5 respectively; x = 20 represents the use of all 20 time series in
the DREAM4 dataset. (B) Therefore, when the gold standard as priors is used in addition
to time series data, the out-of-sample prediction improvement decreases as the number of
time series increases.

Figure S9: AUPR DREAM4 - OutPredict vs. Benchmarks for the inference of causal edges.
As for the Arabidopsis dataset (Figure 4 of the main paper), here we show the AUPR (Area
Under the Precision-Recall curve) for predicting causal edges in the ideal case of DREAM4
where the true gold standard is known. Outpredict without Priors (OP-TSonly) is clearly
better than random (p-value < 0.01, non-parametric paired test) in terms of Area under
Precision-Recall. Further, AUPR of OP-TSonly is 12% better than AUPR of DynGenie3
on time series data (p-value < 0.01, non-parametric paired test). This suggests that good
out-of-sample prediction leads to good causality models.
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Dataset Best OutPredict Model
B. subtilis Time-Step (7% better than ODE-log)
Arabidopsis ODE-log (22% better than Time-Step)
E. coli ODE-log (15% better than Time-Step)
Drosophila Time-Step (17% better than ODE-log)
DREAM4 ODE-log (5% better than Time-Step)

Table S1: Time-Step(TS) vs ODE-log model. For a given organism the table shows the best
model based on out-of-bag score. The relative performance of the two OutPredict techniques
Time-Step and ODE-log are very data dependent, with Time-Step performing better than
ODE-log on B. subtilis and Drosophila, while the opposite is observed on Arabidopsis, E.coli
and DREAM4. We determine this on the training data and then apply whichever method
is better on the test data.

Hyper-parameter Set of values tested
alpha (α) [1, 2e−1, 1e−1, 4e−2, 2e−2, 1e−2]
prior weights (True Positive) [2,exp(1), 5, 8, 15]

Table S2: Hyper-parameters: Set of values tested for the degradation term alpha (α) and
for the prior weights when calculating the out-of-bag score. As explained in the body of the
paper, when OP-Priors is set to True and gold standard data is given as priors, OutPredict
transforms the gold standard prior knowledge to prior weight, by assigning a value v (chosen
from the set of prior weights in the table) to all interactions where there is an edge in the
prior data and 1/v to the interactions where the existence of an edge is unknown.
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Dataset Neural Netwok MSE (StdDev) OutPredict Time-Series-only MSE (StdDev)
B. subtilis 3.75 (0.3) 1.33 (0.08)
E. coli 3.33 (0.27) 0.9044 (0.07)
DREAM4 0.0095 (0.0008) 0.0036(0.00017)

Table S3: Neural Network (NN) with one hidden layer [Smith et al 2010] vs. OutPredict
Time-Series-only (OP-TSonly). NN from [Smith et al 2010] is able to learn using time series
only datasets. The table shows that the mean squared error (MSE) for NN is significantly
higher than for OutPredict since there is a relatively small amount of data. Neural Networks
work best with much larger datasets. NN doesn’t converge for Arabidopsis and Drosophila
because the datasets are too small.

Transcription Factor Technology

CGA1/GNL(AT4G26150) Microarray-Agilent

GATA17(AT3G16870) Microarray-Agilent

GATA2(AT2G45050) Microarray-ATH1

LBD38(AT3G49940) Microarray-ATH1

LBD37(AT5G67420) Microarray-ATH1

PHR1(AT4G28610) Microarray-ATH1

NLP7(AT4G24020) Microarray-CATMA

HBI1(AT2G18300) RNA-seq

CRF4(AT4G27950) RNA-seq

GNC(AT5G56860) Microarray-Agilent
combined with RNA-seq experiment

SVP(AT2G22540) RNA-seq

Table S4: The Transcription Factor (TF) experiments used for the validation of OutPre-
dict’s Arabidopsis Model importance output. Regarding the Microarray experiments, the
genes not on chip were filtered from the predictions according to the microarray type. The
microarray elements for the different types were retrieved from the following public reposi-
tory: CATMA in arabidopsis.org ; ATH1 in arabidopsis.org ; Agilent in arabidopsis.org.
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ftp://ftp.arabidopsis.org/home/tair/Microarrays/CATMA/catma_array_elements-2010-12-20.txt.
https://www.arabidopsis.org/download_files/Microarrays/Affymetrix/affy_ATH1_array_elements-2010-12-20.txt
ftp://ftp.arabidopsis.org/Microarrays/Agilent/agilent_array_elements-2010-12-20.txt
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