

Figure S1, related to **Figure 1**. (**A**) The lollipop graph shows mutation profiles (missense, truncation, and inframe) in the *KMT2D* gene in the Pan-lung cancer TCGA dataset (n = 1144) in the cBioPortal (<u>http://www.cbioportal.org</u>). The percentage of truncating (loss-of-function) mutations in *KMT2D* was 48.7% (91/187). (**B and C**) KMT2D is among the most highly inactivated epigenetic modifiers in human lung cancer. Mutations in epigenetic modifiers in the lung adenocarcinoma (LUAD; n = 507) and lung squamous cell carcinoma (LUSC; n = 484) datasets were analyzed using the cBioPortal. Bar graphs show alterations in epigenetic modifiers containing more than 1% mutations in LUAD (**B**) and LUSC (**C**) samples. Other mutations represent missense and frame shift mutations. (**D**) Analysis of the TCGA LUAD and LUSC dataset in the cBioPortal showed that *KMT2D* mutations (p = 0.008, Chi-squared test) in human LUAD samples and with *TP53* mutations (p = 0.001, Chi-squared test) in human Pan-lung cancer and LUSC samples. Of the TCGA dataset (n = 1144), *KMT2D*-altered samples and some other samples are shown.

Figure S2, related to Figure 1: Kmt2d loss accelerates KRAS-driven LUAD tumorigenesis. (A) Our strategy to induce and monitor lung tumorigenesis using new genetically engineered mouse models. (B and **C**) Genotyping experiments using specific primers showed the generation of *Trp53^{n/n};Kmt2d^{n/n}* (**B**) and Kras^{LSL-G12D};Kmt2d^{#/#} (C) mice. (D) Pulmonary tumors were not observed in lung sections examined microscopically in Kmt2d^{#/#}, Trp53^{#/#}, Trp53^{#/#}; Kmt2d^{#/+}, and Trp53^{#/#};Kmt2d^{#/#} mice with adeno5 (Ad5)-CMV-Cre mediated gene deletion in the lungs. (E and F) Microscopic analysis of Ad5-CMV-Cre-infected lungs of Kras and Kras;Kmt2d^{-/-} mice showed that Kras;Kmt2d^{-/-} mice typically had a higher percentage of pulmonary parenchyma effaced by pulmonary adenocarcinoma(s) (E) and bronchioloalveolar hyperplasia (F) than did Kras mice. Tumors and epithelial hyperplasia were graded based on the percentage of the lung effaced by these lesions; higher grades indicate a larger percentage of the pulmonary parenchyma affected. (G) Immunohistological (IHC) staining of Kras and Kras;Kmt2d^{-/-} lung tumors showed that Kras; Kmt2d-/- lung tumors, like Kras lung tumors, were positive for the lung adenocarcinoma marker TTF-1 and had low levels of the lung squamous carcinoma marker Keratin 5. Scale bars, 100 µm. (H and I) Kaplan-Meier survival analysis showed that low KMT2D mRNA levels correlated with poorer survival in LUAD patients (H) but not in LUSC patients (I). The KM Plotter database (http://kmplot.com/analysis) was used for this analysis. For LUAD (H), the lower quartile was used as a cutoff to divide the samples into KMT2D-low (the lowest 25%) and KMT2D-high (the remaining 75%) groups. For LUSC (I), the auto cut-off function was used to divide samples into low and high KMT2D groups. KMT2D probe set, 227527_at. In (H and I), the statistical analysis was performed using the two-sided log-rank test. (J) Genome browser view of normalized signals of RNA-seq data at the Kmt2d locus of Kras and Kras;Kmt2d^{-/} lung tumor samples showed that Kras;Kmt2d^{-/} mice lost mRNA peaks at exons 16-19. Combined data of two biological replicates from each group are shown.

1	Sox9	41	Met	81	Prdx3	121	Cox8a	161	Bax	201	Fabp1
2	Fam162a	42	Slc16a3	82	Atp5o	122	Fh1	162	Hadha	202	Nsdhl
3	Chst4	43	Homer1	83	Retsat	123	Ndufb4	163	Mtrr	203	Gpd2
4	Mif	44	Hdlbp	84	Atp5g3	124	Atp1b1	164	Slc25a4	204	Cryz
5	Ak4	45	Cldn9	85	Ndufab1	125	Timm10	165	Ndufc1	205	Aldh9a1
6	Stc2	46	Bpnt1	86	Pdha1	126	Slc25a5	166	ldh3g	206	Ephx1
7	Dsc2	47	Mxi1	87	Timm13	127	Cox5a	167	Abcb7	207	H2afz
8	Tpi1	48	Elf3	88	Mtx2	128	Got2	168	Dld	208	Acads
9	Nt5e	49	Cd44	89	Ndufs6	129	Cyb5r3	169	Ndufa7	209	Abca5
10	Pgk1	50	Srd5a3	90	Maob	130	Gpx4	170	Atp5e	210	Gstk1
11	Sdc1	51	Cited2	91	Etfdh	131	Ndufa1	171	Ugdh	211	Bcar3
12	Egln3	52	Hmmr	92	Ndufa9	132	Cox7a2	172	Ccdc58	212	Ephx2
13	Glrx	53	Mdh2	93	Atp5j2	133	Atp6ap1	173	Pcbd1	213	Rxrg
14	Pcx	54	Sap30	94	Uqcrq	134	Sdhc	174	Suclg2	214	Gc
15	Gfpt1	55	Kif20a	95	Atp6v1e1	135	Decr1	175	Grhpr	215	Paox
16	Ldha	56	Мрі	96	Fxn	136	Timm8b	176	Ywhah	216	Nr3c2
17	Hspa5	57	Gpi1	97	Dlat	137	Aifm1	177	Acsl4	217	Rbp1
18	Eno1	58	Phb2	98	Tomm22	138	Etfa	178	Apex1	218	Pex7
19	Aldh7a1	59	Cycs	99	Atp5c1	139	Acat1	179	Hsd17b11	219	Pex26
20	Gale	60	Mgst3	100	Atp5f1	140	Lrpprc	180	Hsd17b4	220	Nedd4
21	Tsta3	61	Ndufa5	101	Slc25a3	141	Mrpl15	181	Gabarapl1	221	Slc22a18
22	Pfkp	62	Ndufa4	102	Mrpl34	142	Mrpl35	182	Alad	222	lsoc1
23	Hk2	63	Hspa9	103	Vdac2	143	Ndufs7	183	Cbr1	223	Nudt12
24	Sod1	64	Atp5d	104	Ndufb2	144	Atp5j	184	Acsl5		
25	Fkbp4	65	Hsd17b10	105	Pmpca	145	Timm17a	185	Erp29		
26	Pkp2	66	Suclg1	106	Ndufa2	146	Uqcr10	186	Car6		
27	Pygb	67	Cox6a1	107	Uqcrc2	147	Atp5g1	187	Acadl		
28	Slc25a13	68	Atp5b	108	Ndufa3	148	Ndufs8	188	Sms		
29	Hs2st1	69	Vdac1	109	Uqcrh	149	Aco2	189	S100a10		
30	Pgam1	70	Acadm	110	Atp5a1	150	Mrps12	190	ldi1		
31	Gys1	71	Immt	111	Timm50	151	Polr2f	191	Hsd17b7		
32	Me1	72	Uqcr11	112	Atp5g2	152	Atp6v0e	192	Adipor2		
33	ldh1	73	Cox6b1	113	Mrps15	153	Sdha	193	Срох		
34	P4ha1	74	Cox7c	114	Phyh	154	Por	194	Metap1		
35	Pam	75	Sdhd	115	Afg3l2	155	Grpel1	195	Cbr3		
36	Ak3	76	Cox7a2l	116	Cyc1	156	Cs	196	Ncaph2		
37	Slc37a4	77	Ndufa6	117	Ndufb5	157	Mrps30	197	Ostc		
38	Cdk1	78	Uqcrb	118	Ndufs4	158	Eci1	198	Urod		
39	Rars	79	Atp5h	119	Cox4i1	159	Ndufb6	199	Auh		
40	Mdh1	80	Cox6c	120	Atp6v1f	160	Pdk4	200	D2hgdh		

Metabolic pathway gene list

Table S1, related to Figure 2: Continued

Glycolysis gene list

1 Sox9 41 Met 2 Fam162a 42 Slc16a 3 Chst4 43 Home 4 Mif 44 Hdlbp 5 Ak4 45 Cldn9 6 Stc2 46 Bpnt1 7 Dsc2 47 Mxi1 8 Tpi1 48 Elf3 9 Nt5e 49 Cd44 10 Pgk1 50 Srd5a 11 Sdc1 51 Cited2 12 Egln3 52 Hmmr 13 Glrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	a3 r1 3 2 -
2 Fam162a 42 Slc16a 3 Chst4 43 Home 4 Mif 44 Hdlbp 5 Ak4 45 Cldn9 6 Stc2 46 Bpnt1 7 Dsc2 47 Mxi1 8 Tpi1 48 Elf3 9 Nt5e 49 Cd44 10 Pgk1 50 Srd5a 11 Sdc1 51 Cited2 12 Egln3 52 Hmmr 13 GIrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	a3 r1 3 2 -
3 Chst4 43 Home 4 Mif 44 Hdlbp 5 Ak4 45 Cldn9 6 Stc2 46 Bpnt1 7 Dsc2 47 Mxi1 8 Tpi1 48 Elf3 9 Nt5e 49 Cd44 10 Pgk1 50 Srd5a 11 Sdc1 51 Cited2 12 Egln3 52 Hmmr 13 Glrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	3 2 -) a
4 Mif 44 Hdlbp 5 Ak4 45 Cldn9 6 Stc2 46 Bpnt1 7 Dsc2 47 Mxi1 8 Tpi1 48 Elf3 9 Nt5e 49 Cd44 10 Pgk1 50 Srd5a 11 Sdc1 51 Cited2 12 Egln3 52 Hmmr 13 GIrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	3 2 -
5 Ak4 45 Cldn9 6 Stc2 46 Bpnt1 7 Dsc2 47 Mxi1 8 Tpi1 48 Elf3 9 Nt5e 49 Cd44 10 Pgk1 50 Srd5a 11 Sdc1 51 Cited2 12 Egln3 52 Hmmr 13 GIrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	3 2 -
6 Stc2 46 Bpnt1 7 Dsc2 47 Mxi1 8 Tpi1 48 Elf3 9 Nt5e 49 Cd44 10 Pgk1 50 Srd5a 11 Sdc1 51 Cited2 12 Egln3 52 Hmmr 13 GIrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	3 2 -
7 Dsc2 47 Mxi1 8 Tpi1 48 Elf3 9 Nt5e 49 Cd44 10 Pgk1 50 Srd5a 11 Sdc1 51 Cited2 12 Egln3 52 Hmmr 13 GIrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	3 2
8 Tpi1 48 Elf3 9 Nt5e 49 Cd44 10 Pgk1 50 Srd5a 11 Sdc1 51 Cited2 12 Egln3 52 Hmmr 13 Glrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	3 2 -
9 Nt5e 49 Cd44 10 Pgk1 50 Srd5a 11 Sdc1 51 Cited2 12 Egln3 52 Hmmr 13 GIrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	3 2 -) a
10 Pgk1 50 Srd5a 11 Sdc1 51 Cited2 12 Egln3 52 Hmmr 13 Glrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	3 2 -) a
11 Sdc1 51 Cited2 12 EgIn3 52 Hmmr 13 GIrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	2 -) a
12 Egln3 52 Hmmr 13 Glrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1)) a
13 GIrx 53 Mdh2 14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1) a
14 Pcx 54 Sap30 15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1) a
15 Gfpt1 55 Kif20a 16 Ldha 56 Mpi 17 Hspa5 18 Eno1	a
16 Ldha 56 Mpi 17 Hspa5 18 Eno1	
17 Hspa5 18 Eno1	
18 Eno1	
19 Aldh7a1	
20 Gale	
21 Tsta3	
22 Pfkp	
23 Hk2	
24 Sod1	
25 Fkbp4	
26 Pkp2	
27 Pygb	
28 Slc25a13	
29 Hs2st1	
30 Pgam1	
31 Gys1	
32 Me1	
33 Idh1	
34 P4ha1	
35 Pam	
36 Ak3	
37 Slc37a4	
38 Cdk1	
39 Rars	
40 Mdh1	

OXPHOS gene list

•••••					
1	Gpi1	41	Uqcrq	81	Atp6ap1
2	Phb2	42	Atp6v1e1	82	Sdhc
3	Cycs	43	Fxn	83	Decr1
4	Mgst3	44	Dlat	84	Timm8b
5	Ldha	45	Tomm22	85	Aifm1
6	Ndufa5	46	Atp5c1	86	Etfa
7	Ndufa4	47	Atp5f1	87	Acat1
8	Hspa9	48	Slc25a3	88	Lrpprc
9	Atp5d	49	Mrpl34	89	Mrpl15
10	Hsd17b10	50	Vdac2	90	Mrpl35
11	Suclg1	51	Ndufb2	91	Ndufs7
12	Cox6a1	52	Pmpca	92	Atp5j
13	Atp5b	53	Ndufa2	93	Timm17a
14	Vdac1	54	Uqcrc2	94	Uqcr10
15	Acadm	55	Ndufa3	95	Atp5g1
16	Immt	56	Uqcrh	96	Ndufs8
17	Uqcr11	57	Mdh2	97	Aco2
18	Cox6b1	58	Atp5a1	98	Mrps12
19	Cox7c	59	Timm50	99	Polr2f
20	Sdhd	60	Atp5g2	100	Atp6v0e
21	Cox7a2l	61	Mrps15	101	Sdha
22	Ndufa6	62	Phyh	102	Por
23	Uqcrb	63	Afg3l2	103	Grpel1
24	Atp5h	64	Cyc1	104	Cs
25	ldh1	65	Ndufb5	105	Mrps30
26	Cox6c	66	Ndufs4	106	Eci1
27	Prdx3	67	Cox4i1	107	Ndufb6
28	Atp5o	68	Atp6v1f	108	Pdk4
29	Retsat	69	Cox8a	109	Bax
30	Atp5g3	70	Fh1	110	Hadha
31	Ndufab1	71	Ndufb4	111	Mtrr
32	Pdha1	72	Atp1b1	112	Slc25a4
33	Timm13	73	Timm10	113	Ndufc1
34	Mtx2	74	Slc25a5	114	ldh3g
35	Mdh1	75	Cox5a	115	Abcb7
36	Ndufs6	76	Got2	116	Dld
37	Maob	77	Cyb5r3	117	Ndufa7
38	Etfdh	78	Gpx4	118	Atp5e
39	Ndufa9	79	Ndufa1		
40	Atp5j2	80	Cox7a2		

TCGA-97-8172-01A	high	TCGA-91-8496-01A	low
TCGA-86-7713-01A	high	TCGA-49-4514-01A	low
TCGA-78-7536-01A	high	TCGA-35-4123-01A	low
TCGA-44-7669-01A	high	TCGA-44-3398-01A	low
TCGA-MP-A4T6-01A	high	TCGA-91-A4BD-01A	low
TCGA-53-7626-01A	high	TCGA-05-5429-01A	low
TCGA-69-8254-01A	high	TCGA-55-6972-01A	low
TCGA-62-8398-01A	high	TCGA-50-5055-01A	low
TCGA-73-4662-01A	high	TCGA-75-5146-01A	low
TCGA-55-8206-01A	high	TCGA-64-5778-01A	low
TCGA-69-8255-01A	high	TCGA-49-4488-01A	low
TCGA-86-8056-01A	high	TCGA-05-5423-01A	low
TCGA-86-7954-01A	high	TCGA-67-3770-01A	low
TCGA-55-A490-01A	high	TCGA-38-4632-01A	low
TCGA-50-5946-01A	high	TCGA-05-5420-01A	low
TCGA-55-7994-01A	high	TCGA-64-1677-01A	low
TCGA-50-5066-02A	high	TCGA-05-5428-01A	low
TCGA-MP-A5C7-01A	high	TCGA-35-5375-01A	low
TCGA-86-7953-01A	high	TCGA-50-5068-01A	low
TCGA-55-7576-01A	high	TCGA-50-5066-01A	low
TCGA-38-4630-01A	high	TCGA-35-4122-01A	truncation mutant
TCGA-97-8171-01A	high	TCGA-69-7979-01A	truncation mutant
TCGA-69-7973-01A	high	TCGA-50-5931-01A	truncation mutant
TCGA-L9-A7SV-01A	high	TCGA-80-5607-01A	truncation mutant

<u>**Table S2**</u>, related to **Figure 2**: Human LUAD samples used for GSEA analysis

Figure S3, related to Figure 4. (A) The comparison between Kras and Kras:Kmt2d^{-/-} lung tumors revealed three major ChromHMM transitions in chromatin states from Kras to Kras;Kmt2d-- lung tumors: E2 (active enhancer) to E3 (weak active enhancer); E3 to E9 (low state = very low signal); and E5 (active enhancer containing low H3K4me1) to E7 (H3K27ac-lacking transcribed enhancer). ChromHMM state transitions in the 10-state ChromHMM model were calculated on the basis of six histone modification profiles between Kras;Kmt2d^{-/-} and Kras lung tumors. Heat maps show fold enrichment of transitions of chromatin states between Kras and Kras;Kmt2d-- lung tumors. The analysis was performed using two different biological replicates. T1, tumor 1; T2, tumor 2. (B-D) There was no significant difference in global H3K27me3 levels between Kras and Kras;Kmt2d^{-/-} lung tumors. Heat maps (B) and average intensity curves (C) of ChIP-Seq reads (RPKM) for H3K27me3 are presented in a 50-kb window centered on the middle of the H3K27me3 peaks in Kras and Kras;Kmt2d^{-/-} lung tumors. H3K27me3 signals (log₂RPKM) between Kras and Kras;Kmt2d^{-/-} lung tumors are presented in boxplots (D). (E-G) There was no obvious change in global H3K4me3 levels between Kras and Kras:Kmt2d-/- lung tumors. Heat maps (E) and average intensity curves (F) of ChIP-Seq reads (RPKM) for H3K4me3 are presented in a 5-kb window centered on the middle of H3K4me3 peaks in Kras and Kras;Kmt2d^{-/-} lung tumors. H3K4me3 signals (log₂RPKM) between Kras and Kras; Kmt2d^{-/-} lung tumors are presented in boxplots (G). (H) Immunofluorescence staining showed that Kmt2d loss downregulated enhancer signals (H3K27ac and H3K4me1) but not H3K4me3 in KRAS-induced mouse lung adenocarcinoma. Kras and Kras;Kmt2d^{-/-} mouse lung tumor tissues were analyzed. See "Quantification and statistical analysis" in the STAR Method for the description of the boxplots in (D) and (G). Yellow scale bars, 50 µm.

Figure S4, related to Figure 4: Kmt2d loss diminishes super-enhancer signals to a greater extent than typical enhancer signals and downregulates expression of lung-enriched, super-enhancer-associated genes in KRAS-induced lung adenocarcinoma. (A and B) Analysis of enhancers on the basis of H3K4me1 signals showed that Kmt2d loss diminishes more super-enhancers than typical enhancers. Shown are boxplots of H3K4me1 signals for typical enhancers and super-enhancers in Kras and Kras;Kmt2d^{-/-} lung tumors (A). Intensities of ChIP-Seq reads for H3K4me1 at the typical enhancer (left panel) and the super-enhancer (right panel) regions were compared between Kras and Kras;Kmt2d^{-/-} lung tumors (B). (<u>C</u> and <u>D</u>) Analysis of enhancers on the basis of H3K27ac signals showed that Kmt2d loss diminishes more super-enhancers than typical enhancers. Shown are boxplots of H3K27ac signals for typical enhancers and super-enhancers in Kras and Kras;Kmt2d-/- lung tumors (C). Intensities of ChIP-Seq reads for H3K27ac at the typical enhancer (left panel) and super-enhancer (right panel) regions were compared between Kras and Kras;Kmt2d^{-/-} lung tumors (D). (E) Venn diagram shows that super-enhancer-associated genes in Kras lung tumors substantially overlap with mouse lung super-enhancer genes defined by the dbSUPER database (http://bioinfo.au.tsinghua.edu.cn/dbsuper/). Super-enhancer-associated genes in Kras lung tumors were defined on the basis of H3K27ac signals. (E) Kmt2d loss reduced expression of 210 super-enhancer-associated genes in Kras lung tumors. See "Quantification and statistical analysis" in the STAR Method for the description of the boxplots in (A), (C), and (F). T1, Tumor 1; T2, tumor 2.

Figure S5, related to **Figure 5**: (<u>A</u> and <u>B</u>) There were tendencies of higher glucose uptake (A) and lactate excretion (**B**) in human LUAD cell lines bearing KMT2D-inactivating mutations (H1568, DV-90 and CORL105) than in human *KMT2D*-WT LUAD cell lines (A459, H1792, H1437, H23, and H358). (<u>C</u>) Heatmap showed that some metabolites associated with glycolysis and TCA pathway tended to be upregulated in *KMT2D*-mutant LUAD cell lines (H1568, DV-90 and CORL-105) as compared with *KMT2D*-WT LUAD cell lines (H1437, H23, H1792, and H358). G6P, Glucose-6-phosphate; F6P, Fructose-6-phosphate; GBP, Glucose-1,6-bisphosphate; G3P, Glycerol-3-phosphate; 3PG, 3-Phosphoglyceric acid; 2PG, 2-Phosphoglyceric acid; PEP, Phosphoenolpyruvate. (<u>D–G</u>) Dose response curves showed that none of AR-42 (**D**), Linodamine (**E**), Dinaciclib (**F**), and IACS-010759 (**G**) selectively inhibited cell confluency of *KMT2D*-mutant LUAD cell lines over *KMT2D*-WT LUAD cell lines. (<u>H</u>) Propidium Iodide (PI) staining in combination with FITC-Annexin V staining showed that cell death was largely increased in *KMT2D*-mutant LUAD cell lines as compared with *KMT2D*-WT LUAD cell lines. (<u>I</u> and <u>J</u>) Metabolic assays using Seahorse showed that 2-DG tended to inhibit ECARs of *KMT2D*-mutant LUAD cell lines to a greater extent than those of *KMT2D*-WT LUAD cell lines. A ECAR graph for H1568 cells is shown (**I**), and ECARs were compared between *KMT2D*-WT and *KMT2D*-mutant LUAD cell lines. (<u>J</u>). Oligo denotes Oligomycin. *, p < 0.05; **, p < 0.01; ***, p < 0.001 (two-tailed Student's t-test).

Figure S6, related to Figure 5: (A & B) Spheroid sizes of LKR-10 cells in a 3D-culture were increased by KMT2D knockdown (shKmt2d-1 and shKmt2d-3), and 2-DG treatment inhibited the spheroid growth of KMT2DdepletedLKR-10 cells. Representative images are shown (A). The boxplots present the relative sizes of spheroids in 3D-culture (B). shLuc-treated cells were used as a control. See "Quantification and statistical analysis" in the STAR Method for the description of the boxplots. Black scale bars, 200 µm. (C) The proliferation rates are shown for human KMT2D-WT LUAD cell lines (A549, H1792, H23, H1437, and H358) and human KMT2D-mutant LUAD cell lines (H1568, DV-90, and CORL105). (D and E) Koningic acid (KA) had a weak and insignificant effect on tumorigenic growth of H1568 cells bearing an KMT2D-truncatiing mutation (D) while having no effect on tumorigenic growth of H358 cells bearing WT KMT2D (E) in a mouse subcutaneous xenograft model. The mice were treated with KA (1 mg per kg body weight) every other day for 20 days. (F) Doxycycline (Dox)-induced expression of KMT2D decreased ECAR in H1568 LUAD cells (Center and right panel). H1568 cells bearing Dox-inducible KMT2D were generated, and Dox-induced KMT2D mRNA levels were measured (Left panel). Data are presented as the mean ± SEM (error bars) of at least three independent experiments or biological replicates. (G) Mouse subcutaneous xenograft results suggested that 2-DG selectively inhibited tumorigenic growth of KMT2D-inducible H1568 cells in Dox-untreated mice as compared with Dox-treated mice. Mice were treated with 2-DG (500 mg per kg body weight) or vehicle control every other day for 16 days. For Dox treatment, mice were fed with Dox-containing chow (200 mg Dox per kg of regular mouse chow). *, p < 0.05; **, p < 0.01; ***, p < 0.001 (two-tailed Student's t-test).

Cell line	Chr	Start Position	End Position	Variant Classification	Variant Type	Reference Allele	Tumor Seq Allele	Protein Change
A549	12	N/A	N/A	N/A				N/A
H1792	12	N/A	N/A	N/A				N/A
H23	12	N/A	N/A	N/A				N/A
H1437	12	N/A	N/A	N/A				N/A
H358	12	N/A	N/A	N/A				N/A
H1568	12	49445194	49445194	Nonsense mutation	SNP	с	A	p.E758*
DV-90	12	49435199	49435199	Frame_Shift_Del	DEL	G	-	p.Pro2118ProfsTer 25(p.P2118fs)
CORL-105	12	49434991	49434991	Frame_Shift_Del	DEL	G	-	p.Arg2188ProfsTer 74(p.R2188fs)

<u>Table S3</u>, related to **Figure 5**: Mutation status of the *KMT2D* gene in human lung cancer cell lines

Figure S7, related to **Figures 6 and 7H:** (<u>A</u>) Five different characteristics were analyzed for the top 14 genes identified as candidate repressors of glycolysis programs that were upregulated by *Kmt2d* loss. FC, fold change; sig, significant.; **, p < 0.01; ***, p < 0.001 (two-tailed Student's t-test). (<u>B</u>) Quantitative RT-PCR results showed that *Kmt2d* loss did not affect expression of *Dnmt3* and Ras activators (*Rasgrp1, Rasgrf1, Rasgrf2, Rapgef5*, and *Rgl1*) in *Kras* tumors. (<u>C</u>) *SHANK2*, *ACACB*, *NFASC*, and *CLCN6* mRNA levels were downregulated in lung adenocarcinoma tumor samples (n = 357) as compared with their adjacent normal tissue samples (n = 54) in the TCGA dataset. See "Quantification and statistical analysis" in the STAR Method for the description of the boxplots. (<u>D</u>–<u>G</u>) Kaplan-Meier survival analysis using the KM Plotter database (<u>http://kmplot.com/analysis</u>) showed that low *SHANK2* (D), *ACACB* (E), *NFASC* (F), and *CLCN6* (G) mRNA levels correlated with worse survival of human lung cancer patients. The lower quartile cutoff was used to divide samples into low and high groups. The statistical analyses were performed using the two-sided log-rank test. *SHANK2*, probe set 243681_at; *ACACB*, probe set 49452_at; *NFASC*, probe set 213438_at; *CLCN6*, probe set 203950_at. (<u>H</u>) Our analysis of six sets of public ChIP-seq data (GSM982733, GSM982734, GSM982735, GSM982736, GSM982737, and GSM982738) indicate that PER2 occupied the regions surrounding the transcription start sites. The red bars indicate PCR amplicons (related to Fig. 7H).

Figure S8: related to Figure 8.

(A) GSEA analysis of RNA-seq data showed that KMT2D knockdown increased tumor-promoting programs, such as glycolysis, OXPHOS, E2F targets, and MYC targets, in mouse LKR10 cells. shKmt2d represents a combination of two RNA-seq datasets of shKmt2d-1-treated cells and two RNA-seq datasets of shKmt2d-3treated cells. shLuc (shLuciferase) indicates a combination of two RNA-seq datasets of shLuc-treated cells. The MsigDB Gene Set was used as a reference. (B) Mass spectrometric analysis of metabolomics showed that KMT2D knockdown upregulated many glycolysis metabolites and certain TCA metabolites in mouse LKR-10 cells. G6P, Glucose-6-phosphate; F6P, Fructose-6-phosphate; GBP, Glucose-1,6-bisphosphate; FBP, Fructose-1,6-bisphosphate; G3P, Glycerol-3-phosphate; 3PG, 3-Phosphoglyceric acid; 2PG, 2-Phosphoglyceric acid; PEP, Phosphoenolpyruvate. (C) Metabolic assays using Seahorse showed that KMT2D knockdown in LKR10 cells increased ECAR but slightly augmented oxygen consumption rate. (D) Quantitative RT-PCR analysis demonstrated that KMT2D knockdown increased expression of the OXPHOS genes Ndufa4, Ndufa5, Ndufa7, and Pdha1 in mouse LKR-10 cells. (E) Dox-induced expression of KMT2D decreased spheroid sizes of H1568 cells bearing an KMT2D-inactivating mutation in a 3D culture. Representative images of spheroids are shown (left panel). The sizes of the spheroids were quantified (right panel). Dox-untreated cells were used as a control. Dox was used in a concentration of 10 µg/ml. Black scale bars, 200 µm. (F & G) PER2 knockdown increased ECARs (F) and expression of certain OXPHOS genes (G) in LKR10 cells. (H) Enzyme assays showed that KMT2D or PER2 knockdown upregulated ENO1 and GAPDH activities in LKR10 cells whereas KMT2D or PER2 overexpression reduced their activities in H1568 cells or LKR10 cells, respectively. The expression plasmid pLenti-PER2 was used for PER2 overexpression. (I) Exogenous PER2 expression reduced spheroid sizes of KMT2D-depleted LKR-10 cells in a 3D-culture. Representative images of spheroids are shown (left panel). The sizes of the spheroids were quantified (right panel). shLuc and pLenti-GFP viruses were used as controls. Black scale bars represent 200 µm. In (B-D) and (F-H), data are presented as the mean ± SEM (error bars) of at least three independent experiments or biological replicates. See "Quantification and statistical analysis" in the STAR Method for the description of the boxplots in **E** and I. *, p < 0.05; **, p < 0.01; ***, p < 0.001 (two-tailed Student's t-test).

Oligonucleo	otides	3							
Primers for	quar	ntitative RT-PCR (mouse)							
Gene		Sequence	Source	IDENTIFIER					
Kmt2d	F	GGC GTT GTG TGG AGT GTA TC	Integrated DNA	N/A					
	R	CAC AGT CAT CAC AGA GCA GC	Technologies						
Eno1	F	CAT GGG GAA GGG TGT CTC AC	Integrated DNA	N/A					
	R	GTG CCG TCC ATC TCG ATC AT	Technologies						
Pgk1	F	ATG TCG CTT TCC AAC AAG CTG	Integrated DNA	N/A					
	R	GCT CCA TTG TCC AAG CAG AAT	Technologies						
Pgam1	F	TCT GTG CAG AAG AGA GCA ATC C	Integrated DNA	N/A					
	R	CTG TCA GAC CGC CAT AGT GT	Technologies						
Gapdh	F	CATGGCCTTCCGTGTTCCTA	Integrated DNA	N/A					
	R	GCCTGCTTCACCACCTTCTT	Technologies						
Ldha	F	ACC TCG GTA TTA TTT TTC CAT TTC A	Integrated DNA	N/A					
	R	TGT AAT CTT GTT CTG GGG AGC C	Technologies						
Per2	F	GAA AGC TGT CAC CAC CAT AGA A	Integrated DNA	N/A					
	R	AAC TCG CAC TTC CTT TTC AGG	Technologies						
Cdk1	F	AGA AGG TAC TTA CGG TGT GGT	Integrated DNA	N/A					
	R	GAG AGA TTT CCC GAA TTG CAG T	Technologies						
Ndufa4	F	CGG CTT AGC GTG TGT CCT AA	Integrated DNA	N/A					
	R	GCC AAG CGC ATC ACA TAC AG	lechnologies						
Ndufa5	F	GAT TGA GCG GGC TTG GGA AA	Integrated DNA	N/A					
	R	AAC ATC TGG CTC CTC GTG TG	Technologies						
Ndufa7	F	CCGCTACTCGCGTTATCCAA	Integrated DNA	N/A					
	R	TTGGACAGCTTGTGACTGGG	lechnologies						
Pdha	F	GCA AAC TTG AAG CCA GCC ATC	Integrated DNA	N/A					
	R	TCC ACA CCT CTA CAC AGA GC	lechnologies						
Gpi1	F	TGG CAA ATC CAT CAC GGA CA	Integrated DNA	N/A					
	R	GGA AGT CTC AGG GGA CAA GC	Technologies						
Actin	F	GGC TGT ATT CCC CTC CAT CG	Integrated DNA	N/A					
	R	CCA GTT GGT AAC AAT GCC ATG T	Technologies						
18S	F	TAGAGGGACAAGTGGCGTTC	Integrated DNA	N/A					
	R	CGCTGAGCCAGTCAGTGT	rechnologies						
Primers for quantitative RT-PCR for enhancer RNAs									
Per2-E1	F	GIG GGI CCA ACC ICI CCA AG	Integrated DNA	N/A					
	R	AIG CIC GCC AIC CAC AAG AA	Technologies						
Per2-E2	F		Integrated DNA	N/A					
	R	GAG CTG GCT TCC CTT CTC AG	rechnologies						
Primers for genotyping									
Kmt2d""	F	AGAATGGACACTGGAGCTCC	Integrated DNA	N/A					
True CO fl/fl	ĸ	AGAAATCCCCAACCACAGC							
1 rp53 ""		GGI FAA ACC CAG CTT GAC CA	Integrated DNA	N/A					
K SI - G12D	ĸ	GGA GGC AGA GAC AGT TGG AG							
Kras		CIA GCC ACC ATG GCT TGA GT	Integrated DNA	N/A					
.	к	LICC GAA TTC AGT GAC TAC AGA TG	rechnologies						
Primers for									
Per2-A	F	AGC AGG GTC ATG TTG AGC ATT C		N/A					

Table S4, related to STAR Methods: Oligonucleotides

	R		Integrated DNA			
		AGG TTC TTG CCA TGA AGA AGG TA	Technologies			
Dor2 P	F	GGT GCA CAT CCA TAG AAC TGA GA	Integrated DNA	N/A		
Feiz-D	R	TGA ATG TCA TGA GTC CCT CAG C	Technologies			
Por2 C	F	ATT GAC GGC AAT GGT GGC TA	Integrated DNA	N/A		
1 612-0	R	TGC AGG CCA AAT GTA GAG CA	Technologies			
Per2 D	F	CTCCCGTCATTTCCTCTTCAC	Integrated DNA	N/A		
T 612-D	R	GTTAAGGAGCCAGAGACACAAG	Technologies			
Eno1	F	TAA CGA GCA GGA AAG GAA GAC	Integrated DNA	N/A		
Enor	R	AGG AGA GCC TTA AGG ACA GA	Technologies			
Pgk1	F	CAA CCG GCT CCG TTC TTT	Integrated DNA	N/A		
	R	GTG AGA CGT GCT ACT TCC ATT T	Technologies			
Pgam1	F	GTG GCA GAG ACA GGA AAT CT	Integrated DNA	N/A		
	R	GAC AGT CTC TCT GCG TAA CC	Technologies			
Idha	F	GCG GAG GAT CGA TGC ATT TC	Integrated DNA	N/A		
Luna	R	ACG ATG TCC CTG CAA GAG T	Technologies			
Gapdh			Active motif	Cat#: 71018		
Primers for cloning						
MLL4 into	F	GGGGACAACTTTGTACAAAAAGTTGGCa	Integrated DNA	N/A		
pInducer		tggacagccagaagctg	Technologies			
20	R	GGGGACAACTTTGTACAAGAAAGTTGGG				
		gttcatccatttccgacaattc				