
1

Supplementary Material (Online only)

1 Custom Enzyme Class Datasets EC40 and EC50
As discussed in the main text, in addition to the original DEEPre and
ECPred datasets, we recreated datasets for the similarity threshold 40%
and 50% by combining best practices from both [Li et al., 2018] and
[Dalkiran et al., 2018]. The corresponding dataset with similarity threshold
40% relying on clusters from a prior CD-HIT [Fu et al., 2012] run is termed
EC40. Compared to DEEPre, we slightly adapted their dataset generation
procedure by clustering Swiss-Prot all at once with CD-HIT, instead of
clustering enzymes and non-enzymes separately, as this mimics the way
UniRef50 clusters are constructed, albeit for a similarity threshold 40%
in this case. The dataset using a similarity threshold of 50% by using
UniRef50-clusters is termed EC50. In both cases, we do not balance the
number of enzymes and non-enzymes and restrict ourselves to proteins
with a single EC-label.

Table 1 summarizes all datasets used for our experiments, namely the
original data from [Li et al., 2018] and [Dalkiran et al., 2018] in the first
two columns, and our replica in the last two columns.

Table 1. EC Prediction Datasets Overview

EC class DEEPre ECPred EC40 EC50
Oxidoreductase 3341 8242 3781 8244
Transferase 8517 20133 9137 20139
Hydrolase 5917 16018 7987 16020
Lyase 1532 3475 1401 3475
Isomerase 1193 2883 1160 2834
Ligase 1666 4429 2165 4429
Enzymes 22166 55180 25631 55141
Non-Enzymes 22142 25333 32387 49799
Total 44336 80513 58018 104940

The EC50 and EC40 EC classification datasets are constructed
according to the following procedure:

1. Acquire Swiss-Prot (2016_08 for EC40 and 2017_03 for EC50).
2. Cluster Swiss-Prot with CD-HIT (40% similarity cutoff) for EC40 or

acquire UniRef50 (2017_03) for EC50 and apply it to Swiss-Prot.
3. Remove non-enzymes which have not enough experimental evidence

in order to avoid misleading false negatives (annotated evidence is
greater or equal to 4).

4. Remove proteins which are annotated as fragments.
5. Remove enzymes with multiple enzymatic annotations in order to

obtain a single-label classification problem.
6. Filter proteins by length to include only proteins with more than 50

and less than 5000 amino acids.
7. Split by clusters into 80% training and 10% validation and 10% test

set.
8. For test and validation set, we select only representatives (from CD-

HIT or UniRef50 clustering) or alternatively the first member of the
cluster in the case where the representative was excluded by filtering
rules. Optionally a similar reduction is applied to the training set to
obtain a set of non-redundant sequences.

9. Use the predefined cluster assignments of the previous step and
similarly distribute all remaining Swiss-Prot clusters onto training,
validation and test dataset according to split ratios 90%, 5% and 5%,
respectively, to obtain a clean train-test-split on the whole Swiss-Prot

dataset consistent with chosen clusters for the downstream classifica-
tion task. Again, we keep only representatives for validation and test
set.

The last step is important for suitable database creation for PSI-BLAST
for the experiments in Section 3.2.2 and Appendix 6. One thing can already
be anticipated, as a result, for significantly more sequences from the test
dataset PSI-BLAST returned empty queries resulting in less informative
features for the test set.

2 AWD-LSTM Parameters
Table 2 lists the AWD-LSTM hyperparameters used for language modeling
and classifier finetuning.

Table 2. AWD-LSTM Parameters

Parameter Value
Joint parameters

Number of hidden units 1150
Number of layers 3
Embedding dimension 400
Backpropagation through time (bptt) 70
Gradient clipping 0.25
Weight decay 1e-7

Language-model-specific parameters
Dropout (po,ph,pi,pe,pw) 0.5 · (0.25,0.1,0.2,0.02,0.15)

Classifier-specific parameters
Dropout (po,ph,pi,pe,pw) 0.5 · (0.4,0.2,0.6,0.1,0.5)
Max. length (context size) 1024
Number of hidden units (head) 50

3 Detailed Discussion of Language Model
Performance

We present language model results using AWD-LSTM language models
trained on Swiss-Prot using 90% / 5% / 5% splits based on clusters for
training, validation and test set, respectively. We train using redundant
sequences and evaluate on a reduced dataset with a single representative
sequence for each cluster. As performance metrics, we report the perplexity
(as natural exponential of the test loss) and the prediction accuracy. We
tokenize on the amino acid level, the resulting vocabulary comprises the
following additional tokens in addition to the 20+2 canonical amino acids:
X (unknown), B (either D or N),Z (either E or Q),<BOS> (marks beginning
of new protein). We stress that we do not specifically aim to optimize
the language model performance, which could be easily improved using
appropriate postprocessing techniques [Grave et al., 2016], since it only
serves as pretraining objective in this context.

At this point a comment on the different training dataset sizes is ap-
propriate. For random splits we disregard any cluster information and
distribute samples according to the ratios 90% / 5% / 5%, which obviously
results in the largest training dataset. In cases where cluster information is
used the splits are performed by clusters, where we sort the clusters by the
number of members and distribute them onto the three sets consecutively.
Finally, we also report results for a dataset, where the train-test-split used
for the language model respects those of a chosen downstream classifica-
tion task, in this case level 1 EC prediction on the EC50 dataset described
below. This construction avoids potential data leakage from using implicit
knowledge about test and validation sets that is contained in the language



2 Strodthoff et al.

Table 3. Language model performance on Swiss-Prot 2017_03 data. The down-
stream classification task is level 1 EC prediction on the EC50 dataset as
described below.

LM Downstream
Split # Train Perpl. Acc. Acc.
UniRef50 316K 11.37 0.254 0.956
UniRef50 (clean) 322K 11.75 0.244 0.954
Random(64% train) 316K 7.40 0.385 0.955
Random(fwd) 499K 6.88 0.409 0.960

model representations in the actual downstream classification task, see
Section 3.2.2 for a detailed discussion.

The results on language modeling are compiled in Table 3. As expected,
the best language model performance is reached on random dataset splits
with perplexities of around 7. It is the coverage of the whole dataset in
terms of included clusters that is most important for language model per-
formance. This is apparent from the comparison of (1) the language model
trained on a random split, where we artificially restricted the training set
to 64% of the original training set compared to (2) the UniRef50 runs. In
both cases, the size of the training set is comparable but the former (1)
reaches a perplexity comparable to that of the model trained on the full
dataset with random splits, whereas the latter (2) only reaches a perplexity
of around 11.

Even more important than the language model performance itself is,
however, in our present context its impact on downstream classification
tasks. This is illustrated exemplarily for the EC level 1 classification
performance on the EC50 dataset as described below. Table 3 lists the
downstream performance for all language models pretrained on the respec-
tive Swiss-Prot version. Interestingly, all fine-tuned classification models
show a comparable performance and it is not possible to discriminate be-
tween different language models used for pretraining. The same pattern
was observed across all considered classification tasks. In particular, it
shows that the data leakage from inconsistent splits between pretraining
and classification task is presumably small in the context of language mod-
eling. We also experimented with the use of byte-pair-encoding to form
subword units [Sennrich et al., 2015]. The language model metrics are
obviously not comparable for different vocabulary sizes. Therefor, the
downstream classification performance is the only meaningful metric to
compare both approaches in this case. However, we did not see any sig-
nificant performance improvements compared to the baseline models with
single amino acids as tokens. In addition, if one tokenizes using subword
units, sequence annotation tasks such as secondary structure prediction are
less straightforward to handle.

Key insights from results presented in this section are the following:
First, the results demonstrate that language modeling on amino acid se-
quence data is indeed meaningful and represents a potentially interesting
domain of application for language model methods from NLP. Prediction
accuracies of 40% (random split) or 25% (UniRef50 clusters) document
a solid understanding of the general structure of proteins. However, the
section also highlights crucial differences compared to language model
evaluation in NLP. Whereas in NLP sequence similarity between train
and test sequences is barely considered, it has crucial implications in pro-
teomics. Here, it is the dataset coverage in terms of clusters rather than
the nominal size of the training set, which most crucially determines the
language model performance. Second, however, the different language
models show no significant differences in terms of downstream classifi-
cation performance. This iterates a general insight from NLP in the sense
that improved language model performance does not necessarily imply
improved downstream task performance.

In Table 4 we investigate the language model performance in an ab-
lation study varying the dependence on the number of LSTM layers and

Table 4. Ablation study on language model performance on Swiss-Prot 2017_03
data (random split) in analogy to Table 3. The downstream classification task
is level 1 EC prediction on the EC50 dataset. The first line corresponds to the
setup used throughout the main text of the manuscript.

Architecture LM Downstream
nl nh emb_sz Perpl. Acc. Runtime Acc. Runtime
3 1150 400 7.199 0.394 33:21 0.956 17:18
3 575 200 9.907 0.295 12:48 0.946 8:38
3 288 100 12.807 0.213 5:52 0.910 4:32
1 1150 400 13.956 0.185 4:45 0.877 3:54

the size of the hidden units. The dependence on the size of the training set
was already investigated exemplarily in Table 3. In all cases the language
model was trained for 30 instead of 60 epochs in the main text, which
leads to a marginally worse language model performance but has no no-
ticeable impact on the downstream performance. The first line in Table 4
corresponds to the model used in the main text. The runtime measurements
refer to training on a single NVIDIA Tesla P100 GPU and should only be
used as a rough orientation as for example the batch size was not adapted
for smaller models, which would have lead to further speedups. The re-
sults signify that both a reduction of the size of the hidden units as well
as a reduction of the number of layers leads to a considerable decrease in
both language model as well as downstream performance. However, it is
worth stressing again that even in the case of the full model the required
time for pretraining is still very moderate and also amenable for a smaller
computational budget.

400 200 0 200 400
400

300

200

100

0

100

200

300

400

L

A

G

V

E

S

I

K
R

D

T

P

N

Q

F
YM

H

C

W

_bos_

X

B

U

Z

O

arom
atic

alip
hat

ic

tin
y

sm
all

p
o
si
ti
vecharged

Figure 1: The t-SNE visualization of the embedding layer superimposed
by clusters from [Taylor, 1986] illustrates that the amino acid embed-
dings learned via self-supervised pretraining align with physio-chemical
properties relevant for protein properties.

4 Insights into Learned Language Model
Representations

There are several levels at which one can gain further insights into the
language model results from Section 3.1. As a consistency check, one can



3

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

EC1
EC2
EC3
EC4
EC5
EC6

(a) After language model pretraining.

80 60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

80 EC1
EC2
EC3
EC4
EC5
EC6

(b) After language model pretraining and finetuning.

60 40 20 0 20 40 60 80

60

40

20

0

20

40

60

EC1
EC2
EC3
EC4
EC5
EC6

(c) After training from scratch.

Figure 2: t-SNE visualization of the output of the model’s encoder passed through a concat pooling layer to achieve a representation that is independent
of the sequence length.

investigate the amino acid embeddings learned during self-supervised pre-
training in comparison to known physio-chemical properties. Interestingly
and in qualitative agreement with the findings of [Rives et al., 2019] for a
transformer model, the embeddings visualized via t-SNE align very well
with known groups of amino acids based on physio-chemical properties
[Taylor, 1986].

This is a non-trivial and reassuring observation but leverages only a
small fraction of the learned weights of the language model. To gain fur-
ther details into the learned representations, we analyze the output of the
model’s language model encoder after passing it through the concat pooling
layer in order to obtain a representation that is independent of the sequence
length. For simplicity, we base our analysis on the EC level 1 classification
task on the EC50 dataset. We compare the t-SNE projections of samples
from the validation set and color them by their respective enzyme class to
guide the eye. In Figure 2, we show the result after LM pretraining (Fig-
ure 2a), after finetuning on EC classification with LM pretraining and after
training on EC classification from scratch. Interestingly, LM pretraining al-
ready leads to a local clustering of similar proteins according to the enzyme
class without accessing the label information. The higher classification per-
formance of the finetuned model with LM pretraining compared to a model
trained from scratch is also understandable on an intuitive level based on
the respective outputs visualized in Figure 2b and Figure 2c. LM pretrain-
ing seems to lead to a more efficient encoder that leads to more clearly
separated clusters even after the concat pooling layer i.e. already before
passing it to the actual classification head. This result is in line with class-
wise F1-scores of (0.955,0.956,0.952,0.930,0.954,0.991) for finetuning
with LM pretraining compared to (0.934,0.950,0.930,0.905,0.930,0.980)
for training from scratch, which suggest that the EC classes 1, 4 and 5 that
show the largest relative increases in class-wise F1-scores, profit from a
more effective encoder as suggested by Figure 2b compared to Figure 2c.

5 Evaluation Procedure for Comparison to
DEEPre and ECPred

For DEEPre, the reported accuracies derived from a 5-fold-cross-
validation are straightforward to compute. For ECPred, however, we
reproduced the evaluation scheme of the authors, which is tailored to bi-
nary one-vs-all-classifiers opposed to multi-class-classifiers. The scheme
requires to evaluate binary classifiers that distinguish a particular EC class
from other EC classes as well as non-enzymes. Finally, the mean F1-score

is reported across the six datasets. We adopt their evaluation procedure
in order to be able to compare directly to their reported results. However,
we decided to fit a seven-class categorical classifier (non-enzymes and
six main enzyme classes) both on the concatenated training set for all EC
classes. In our experiments, the performance of these classifiers was com-
parable or even better than the corresponding score obtained by training
six independent classifiers on EC-class-specific training sets and the pro-
cedure is more in line with our approach. At this point we would like to
stress that the evaluation procedure is tailored specifically to hierarchical
classifiers and rather inconvenient to apply for multi-class classifiers.

6 Dependence of Data Leakage on BLAST
Database Size

In this section, we investigate the data leakage effect discussed in Sec-
tion 3.2.2 and Appendix 3 in more detail with focus on PSSM features.
The aim is to illustrate that the overestimation of the model generalization
performance by computing PSSM features on the whole dataset is not only
a theoretical issue but has practical implication for downstream classifi-
cation performance at least in the cases where the corresponding BLAST
database is small.

For pretraining using language modeling, this issue did not have sig-
nificant impact on the downstream performance. This finding is obviously
a desirable property as it would otherwise require to pretrain on large
datasets with train-test splits consistent with the downstream task, which
defeats the purpose of using pretraining as a universal step unspecific to the
choice of the downstream task. However, data leakage is always a potential
issue in this context and deserves further research from our perspective to
understand the practical implications for different classification tasks.

To highlight the importance of using an appropriate train-test-split also
for the database on which PSI-BLAST is performed, we conducted the fol-
lowing experiment, where we compared two sets of features (as already
described in Section 3.2.2) both trained with the same model and hyper-
parameters: (1) PSSM features based on the whole Swiss-Prot database
(including test sequences) and (2) PSSM features on a database consisting
only of sequences from the training clusters. While experimenting, we
observed that the effect is consistent but barely measurable for large train-
ing data, but as the training data (and therefore the BLAST database) get
smaller, the effect becomes more apparent. We considered four training
sizes: 10%, 30%, 50% and 80% training size, while the test size stayed
20% (the rest of the sequences were neglected for this experiment. For each



4 Strodthoff et al.

experiment, we trained a model for level 1 EC prediction as described in
Section 2.2 and shown in Section 3.2.2, where we used an early stopping
criterion based on the accuracy on a validation set. Here, we used the EC40
dataset as described in Table 1.

10 30 50 80
0

0.5

1

% Training Set Size (Clusters)

A
cc

ur
ac

y

Baseline (seq+PSSM) clean
Baseline (seq+PSSM) leakage

Figure 3: Dependence of EC classification accuracy on the size of the
dataset used to computed PSSM features compared to a model exploiting
PSSM features computed on the full dataset.

Figure 3 shows the results of this experiment. It can be seen that the
effect (difference between clean and leakage) is getting more pronounced
when the training dataset gets smaller. This might be a obvious fact from a
machine learning point of view, but to the best of our knowledge, this has
never been shown in the context of PSSM features for proteomics. From
this finding, we can conclude that the results from previous literature are not
overestimated strongly. Nevertheless, a fundamental difference remains
when dealing with smaller datasets. In the case of small data, considering
e.g. 10% of the EC40 training data, the gap in performance between a clean
and a leaky procedure is 8% in accuracy, which is far from negligible. In
addition, we restricted our analysis to EC classification whereas the effect
might very well also depend on the considered downstream task.

7 Attribution Maps
In this section, we present the remaining attribution maps accompanying
the analysis in Section 4.

MQLYNTLTRKKEKFIPQREGKASVYVCGITAYDLCHLGHARSSVAFDVLV
RYLRHTGLDVTFVRNFTDVDDKIIKRAGETGLTSTEVAEKYMAAFHEDMD
RLGCLRADIEPRCTQHIGEMIALCEDLISKGKAYSTASGDVYFRVRSFAS
YGKLSGRDVDDMRSGARVAPGEEKEDPLDFALWKSAKPGEPYWESPWGNG
RPGWHIECSAMSEKHLPLPLDIHGGGQDLVFPHHENEIAQTEAATGKEFA
RYWVHNGFVQVNAEKMSKSLGNFSTIRDILQGYLPETLRYFLLTKHYRSP
IDFTFDGMDEAEKNLRRIYQTLNLVENELQKTKWSAAPLPEEVLSEMDET
ERAWNEAMEDDLNTAAALGHIFGLVRLVNRIIEDKTMRKSAQARDALLRM
QSMMARWGAVLGLFTRQPAEFLREMRDCRAARRDVDTARVETLLLERQEA
RKAKDFERSDAIREELARMGVEVQDTPAGAAWDIA

Figure 4: Attribution map for the class EC6 for UniProt accessionQ30ZH8
based on integrated gradients. The heatmap shows high relevance both
on the ’HIGH’ region (ITAYDLCHLGH; pos. 29-39) and the ’KMSKS’
region (KMSKS; pos. 265-269).

MMRLRGSGMLRDLLLRSPAGVSATLRRAQPLVTLCRRPRGGGRPAAGPAA
AARLHPWWGGGGWPAEPLARGLSSSPSEILQELGKGSTHPQPGVSPPAAP
AAPGPKDGPGETDAFGNSEGKELVASGENKIKQGLLPSLEDLLFYTIAEG
QEKIPVHKFITALKSTGLRTSDPRLKECMDMLRLTLQTTSDGVMLDKDLF
KKCVQSNIVLLTQAFRRKFVIPDFMSFTSHIDELYESAKKQSGGKVADYI
PQLAKFSPDLWGVSVCTVDGQRHSTGDTKVPFCLQSCVKPLKYAIAVNDL
GTEYVHRYVGKEPSGLRFNKLFLNEDDKPHNPMVNAGAIVVTSLIKQGVN
NAEKFDYVMQFLNKMAGNEYVGFSNATFQSERESGDRNFAIGYYLKEKKC
FPEGTDMVGILDFYFQLCSIEVTCESASVMAATLANGGFCPITGERVLSP
EAVRNTLSLMHSCGMYDFSGQFAFHVGLPAKSGVAGGILLVVPNVMGMMC
WSPPLDKMGNSVKGIHFCHDLVSLCNFHNYDNLRHFAKKLDPRREGGDQR
VKSVINLLFAAYTGDVSALRRFALSAMDMEQRDYDSRTALHVAAAEGHVE
VVKFLLEACKVNPFPKDRWNNTPMDEALHFGHHDVFKILQEYQVQYTPQG
DSDNGKENQTVHKNLDGLL

Figure 5: Attribution map for the class EC3 for the glutaminase kidney
isoform, mitochondrial with UniProt accession O94925 (isoform1) based
on integrated gradients.

MMRLRGSGMLRDLLLRSPAGVSATLRRAQPLVTLCRRPRGGGRPAAGPAA
AARLHPWWGGGGWPAEPLARGLSSSPSEILQELGKGSTHPQPGVSPPAAP
AAPGPKDGPGETDAFGNSEGKELVASGENKIKQGLLPSLEDLLFYTIAEG
QEKIPVHKFITVSFYIFLS

Figure 6: Attribution map for the class NoEC for the glutaminase kidney
isoform, mitochondrial with UniProt accession O94925 (isoform2) based
on integrated gradients. VSFYIFLS at the end of the sequence deviates
from the canonical sequence.

MMRLRGSGMLRDLLLRSPAGVSATLRRAQPLVTLCRRPRGGGRPAAGPAA
AARLHPWWGGGGWPAEPLARGLSSSPSEILQELGKGSTHPQPGVSPPAAP
AAPGPKDGPGETDAFGNSEGKELVASGENKIKQGLLPSLEDLLFYTIAEG
QEKIPVHKFITVSFYIFLS

Figure 7: Attribution map for the class NoEC for Glutaminase kidney
isoform, mitochondrial with UniProt accession O94925 (isoform2) based
on occlusion. VSFYIFLS at the end of the sequence deviates from the
canonical sequence.


