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Supplementary Methods 

ATAC-seq analysis. This section provides detailed explanation of the Figure 4 workflow graphic. 

Throughout the workflow, steps should be performed on all replicates and conditions in parallel. 

A machine-readable text version of this workflow with further comments is supplied in the 

additional files section. Custom unix scripts for certain workflow functions are also supplied in 

the additional files section. Scripts are additionally available at the following GitHub repository: 

https://github.com/reskejak/ATAC-seq. Note that this workflow was originally written for mouse 

analysis and certain steps should be changed as necessary for application to other organisms. 

In brief, the workflow begins with concatenation of any library read technical replicates, if 

necessary or applicable. Reads should then be trimmed and analyzed for quality control measures 

prior to genome alignment via Bowtie21. To avoid issues with downstream filtering commands or 

manipulation, it is good practice to coordinate sort and index BAM intermediates after each step 

forward via samtools2. Reads mapping to the mitochondrial genome are then removed from the 

aligned BAM, such as with the removeChrom python script developed by Harvard Informatics 

(https://github.com/harvardinformatics/ATAC-seq). Mitochondrial read contamination is a well-

documented issue with ATAC libraries due to lack of histones in mtDNA, and improved protocols 

have gone as far as including additional detergents to reduce contamination3. A further filtering 

step then retains only properly-paired reads for downstream use. 

At this point, we suggest estimating the complexities of all samples in the compared 

conditions, and then performing a stochastic subsampling process in order to standardize all 

samples to equivalent molecular complexity. The R packages preseqR and a wrapper ATACseqQC 

have implemented functions to estimate complexity by calculating a duplicate frequency matrix 
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then estimating the number of unique molecules sequenced in each library sample4,5. samtools 

view can then be used to subsample libraries based on these estimates. 

After standardizing library complexity across the experimental design, remove PCR 

duplicates e.g. through Picard MarkDuplicates (http://broadinstitute.github.io/picard/). The next 

steps involve converting the BAMs into paired-end BED format (BEDPE) for downstream peak 

calling. Firstly, sort the duplicate-removed BAMs by read names and fix associated read mate 

information. Converting to BEDPE is then achieved via bedtools6. In this format, a 9 bp coordinate 

shift can now be carried out to compensate for Tn5 transposase adapter insertion, which is 

practically achieved by a +4 and -5 bp shift to the Watson and Crick strand coordinates, 

respectively. The Tn5 shift should only minorly affect peak calling but is likely more important 

for high-resolution mapping such as motif footprinting. This step is largely a historic formality as 

was first reported by Buenrostro et al.7, and we have included a bash script (bedpeTn5shift.sh) that 

will perform this adjustment via awk. Finally, MACS2 requires a minimal 4-column BEDPE format 

that is collapsed from the standard 10-column bedtools format. We have also included a bash script 

(bedpeMinimalConvert.sh) to perform this minimal BEDPE format conversion. 

 Significant broad peaks can then be called from the minimal BEDPE individual replicates 

via MACS2 without a supplied input sample8. Peaks should then be filtered with bedtools to 

remove low mappability, highly repetitive “blacklisted” genomic regions, which were previously 

identified in a comprehensive analysis of ENCODE data9. Removing peaks mapped to unplaced 

chromosome contigs is also suggested. At this stage in the workflow, one could proceed directly 

into our suggested DA analysis method with the individual replicate peak sets. However, it is often 

desirable to identify regions which consistently display ATAC peaks in all replicates for a given 

condition. For this purpose, we implemented the ENCODE-defined naïve overlap to determine 
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biological replicate peak concordance. This method calls peaks on pooled replicates, and then 

identifies peaks displaying at least 50% overlap with all single replicate peaks. We have supplied 

a bash script (naiveOverlapBroad.sh) to execute this function for computing naïve overlap from 

two broadPeak replicates, and it may be easily modified to support more replicates. 

Differential accessibility analysis. Workflows for all implemented DA tools will be described in 

detail in this section. The csaw portion of this section describes the Figure 6 workflow, for which 

a machine-readable R script is available in the additional files section as well as in the following 

GitHub repository: https://github.com/reskejak/ATAC-seq. The BAM files supplied to DA tools 

correspond to the coordinate sorted/indexed, duplicate removed, complexity normalized, properly-

paired restricted, non-mitochondrial, paired-end BAM files generated as described in the previous 

ATAC-seq analysis section, the Figure 4 workflow graphic, and further by Wilson & Reske et al10. 

For DiffBind11, an experimental design sample table can be generated in R or a text editor 

in the format as described in the manual. This includes the columns “ID”, “Factor”, “Condition”, 

“Replicate”, “bamReads”, “Peaks”, and “PeakCaller”. The field “bamControl” is not included for 

ATAC-seq analysis. The experiment DBA object is constructed through dba() using this 

“sampleSheet” table, and DESeq212 analysis is specified via `AnalysisMethod=DBA_DESEQ2` 

with option `minOverlap=2`. Average fragment size parameter was supplied as a list of all 

replicates using the values obtained from each MACS2 .xls output file. dba.count() is then used on 

the experiment DBA object to count reads in peaks, followed by dba.contrast() with parameters 

`minMembers=2` and `categories=DBA_FACTOR`. The DBA object will then construct a 

consensus peak matrix for further DA interrogation. DA is then calculated via dba.analyze(), 

where the two normalization methods reported correspond to those with the Boolean operator 

`bFullLibrarySize`. A scalar count normalization by sample library total read depth is achieved 



 5 

with `bFullLibrarySize=TRUE`, whereas `bFullLibrarySize=FALSE` will only use reads that are 

located within the consensus peak matrix for scalar normalization. dba.report() then outputs the 

DA results for only significant regions by default (FDR < 0.05), or the parameter `th=1` can be 

used to elicit results for all regions tested within the consensus peak matrix with their associated 

statistics. 

For csaw13, DA can be computed by either supplying a pre-defined peak set such as from 

MACS2 or by calling enriched regions de novo through the implemented sliding window method. 

Both approaches will be outlined here. When starting with a pre-defined peak set, firstly import 

peak set BED files and construct GRanges14 objects, then define a consensus peak set desired for 

further interrogation. For example, the consensus peak set, 𝑝, could be derived from 1) the union 

of all replicate peak sets for both condition, 𝑝 = (	⋃ 𝑒!)⋃(⋃ 𝑐!)"
!#$

"
!#$ , 2) the union of only naïve 

overlap peaks for both conditions, 𝑝 = 𝑒%&'⋃𝑐%&', or 3) the union of condition peaks with any 

partial intersect for all replicates in a given condition, 𝑝 = (⋂ 𝑒!)⋃(⋂ 𝑐!)"
!#$

"
!#$ , where 𝑒$, …, 𝑒" 

are replicate peak sets for the experimental condition, 𝑐$, …, 𝑐" are replicate peak sets for the 

control condition, 𝑒%&' is the naïve overlap peak set for the experimental condition, and 𝑐%&' is 

the naïve overlap peak set for the control condition. The latter of which (3) was selected for the 

presented analysis and is implemented in Figure 6. Read parameters should then be defined 

through readParam() specifying paired-end data and option `max.frag=1000`, to remove 

fragments over 1 kilobase in concordance with the library size-selection step. The `discard` 

parameter should be supplied with the blacklisted regions described earlier and `restrict` specified 

to standard chromosomes. Then, count reads in the specified consensus peak set windows by 

regionCounts(), and subsequently filter low abundance peaks e.g. by a logCPM > -3 threshold as 

used in this analysis. For normalization, TMM firstly requires counting of large background bins 
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through windowCounts() with `bin=TRUE`, and a standard parameter here is `width=10000` for 

10 kb bins. Then, normFactors() will generate TMM15 scaling factors based on the background 

binned counts. If instead desired, the loess-based normalization can be issued through 

normOffsets() with parameters `type="loess"` and `se.out=TRUE`, thereby writing the log-based 

offsets to the peak count matrix. Then, for DA analysis through edgeR16, build a design model 

matrix, stabilize estimates with empirical bayes function estimateDisp(), fit the quasi-likelihood 

negative binomial model with glmQLFit(), specify contrast with makeContrasts(), and compute 

the quasi-likelihood F-tests with glmQLFTest(). Reference the edgeR manual for more information 

on constructing the design matrix. Finally, merge proximal tested windows by mergeWindows(), 

where a typical analysis will merge windows up to 500 bp apart for a maximal merged window 

size of 5 kb, as was performed in Figure 6 analysis. Then, use the most significant window as a 

statistical representation of the merged window with getBestTest(). The final window set can be 

filtered by a desired FDR threshold to determine significant DA regions. 

If instead it is desired to identify de novo locally-enriched windows in csaw without prior 

peak calling, firstly assess the fragment length distribution with getPEsizes() to select an optimal 

window size. The window size is a critical parameter and should be set to larger than the majority 

of fragments; see csaw manual for more details. 300 bp was the optimal window size selected for 

the data analyzed here, so read windows were counted throughout the genome via windowCounts() 

with `width=300`. Next, there are numerous ways to filter uninteresting windows, one of which 

being local enrichment. We used a 2 kilobase neighborhood local background estimator to filter 

for windows only with a 3-fold increase in enrichment over neighborhood abundance. This was 

achieved by widening windows with resize(), counting neighborhood reads with regionCounts(), 

and filtering low enrichment windows with filterWindows(). Then, the locally enriched windows 
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can be subject to DA analysis, as described above, by implementing a normalization method, 

building a model, stabilizing estimates, fitting the model, and so forth. The supplied csaw 

workflow R script details commands for the entire DA process described here for both TMM and 

loess normalization and either using a prior defined MACS2 peak set or identifying de novo locally-

enriched windows. 

For voom17 methods (VII and VIII), analyses presented in the manuscript were conducted 

by first reading MACS2 peak sets into csaw for counting and filtering as described above, though 

one could also apply voom methods to csaw de novo locally-enriched windows as well. The 

window counts table was extracted from csaw by assay() and converted into a data frame for 

further manipulation. After setting up the model matrix and contrasts, normalization and mean-

variance estimation was computed by voom(). Quantile normalization was applied with the voom 

option `normalize.method="quantile"`, which applies the Bolstad et al. quantile normalization 

method that has also been used for ATAC-seq by other groups18,19. Through limma20, a linear 

model was then fit with lmFit(), followed by contrasts.fit(), and eBayes() for moderated statistics 

and hypothesis testing. topTable() was used to extract full DA results with option `n=Inf`. See 

limma manual for more details on model matrix and contrast design. 
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Fig. S1 | Differential gene expression overlap and FDR thresholding analyses. Color legend 

for the 8 DA approaches is located in the upper-right panel and applies to the entire figure. a, 

Precision-Recall curve (higher is better) predicting RNA-seq gene differential expression (DE) by 

promoter DA FDR value. Zoom inset depicts differences in approach specificity at low recall. 

Overall AUC values are similar for all curves. b, distribution of DA FDR values for all 8 

approaches. Horizontal lines depict the approach-specific FDR thresholds meeting a 5% 

hypothesis rejection rate (vertical line). c, FDR thresholding analysis of number of RNA-seq DE 

genes overlapping with DA promoters. 
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Fig. S2 | Negative control DA comparison of two control groups from Schep et al. yeast data 

set. MA plots from all 8 DA methods applied to a negative control comparison of two 0 minute 

control groups (n=2 each) from the Schep et al. yeast osmotic stress ATAC-seq data set. 
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Fig. S3 | Extended analysis of DA methods on Schep et al. yeast osmotic stress ATAC-seq 

time course series. a, Genome-wide significant DA regions (FDR < 0.05) calculated by each of 

the 8 DA analyses at 15 minutes exposure vs. 0 minute control, separated by increasing vs. 

decreasing accessibility change. b, Breakdown of promoter (-2000 to +200 bp around TSS) vs. 

distal (non-promoter) annotation of significant DA regions from each of the 8 DA analyses again 

at 15 minutes exposure. c, Classification of significantly increasing (left) vs. decreasing (right) 

accessibility promoter regions at 15 minutes exposure based on Ni et al. gene expression response 

to the same osmotic stress conditions. d, Integer number of genes displaying concordant expression 

response and promoter accessibility changes at 15 minutes exposure, classified as in c. 
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Fig. S4 | Complete statistical analysis of Schep et al. osmotic stress ATAC-seq time series DA 

methods. Boxplots in the style of Tukey without outliers for all promoter DA log2FC 

measurements at each time point compared to 0 minute control, regardless of significance, 

separated by Ni et al. gene expression response classification. Top (gray) is at genes with stable 

expression, middle (red) is at genes with upregulated expression, and bottom (blue) is at genes 

with downregulated expression. Statistic is paired, two-tailed Wilcox test. 
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Fig. S5 | Replicated analysis downstream of random subsample seeds for complexity 

normalization. a, Statistics of blacklist-filtered MACS2 broadPeak (FDR < 0.05) calls per library 

following two random subsamples to normalize molecular complexity. Each library retained over 

99% of overlapping peaks between the two random subsample replicates. b, Proportional Euler 

diagram overlap of significant DA regions (FDR < 0.10) by method (IV) following the two random 

subsamples. 
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Fig. S6 | Effects of library complexity normalization by random subsampling. Library 

statistics from the analyzed in vivo mouse ATAC-seq data set by Wilson & Reske et al. before 

normalization (a), after read depth normalization (b), and after complexity normalization by 

subsampling (c). The left plots display the number of properly paired, non-mitochondrial 
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fragments in each library, and the right plots display the library complexities in the format of 

estimated number of unique molecules sequenced. Percentages listed next to each sample in c 

represent the portion of each library that was retained during subsampling. LtfCre0/+; 

(Gt)R26Pik3ca*H1047R; Arid1afl/fl replicate #1 sample was estimated as the least complex library at 

current read depth and therefore was not subsampled. The complexity-normalized libraries were 

used for all subsequent analyses. d, quantification of ATAC signal by RPKM (i.e. read depth 

normalization) in control and mutant libraries, at a set of a promoter ATAC regions determined 

significantly DA by analysis IV. DA regions are further segregated by increasing and decreasing 

accessibility. Statistic is paired, two-tailed Wilcox test. e, ATAC signal at regions as in d but 

instead quantified by RPK (reads per kilobase) in libraries of equivalent molecular complexity. 


