
  

 

  

    

 

 

 

       

  

 

 

 

  

        

Supplementary material A

  In this section, we introduce a novel way to implement closed frequent pattern 

mining.

   A frequent closed itemset in a data set is defined that there exists no superset that 

has the same support count as this frequent itemset. The equivalent definition is that if  

some frequent sets appear in certain transactions, only the maximal one is retained.   

  The proof of relevance definition and lemma are given before introducing how to 

implement the frequent closed Itemset algorithm.

  The frequent sets are enumerated via prefix tree traveling. A path from the leaf node

to  root  node  encodes  a  frequent  set. For  example,  set A  can  be  represented  by  the 
sequence < 1, 2 …,d >.

Let A = {1, 2 …,d} be a label set that indicates each element in a frequent 

set, and elements in label set are partially ordered with linear order.

  If any element is unique in set A with a linear order, there is a unique ordered list for 
set A within this linear order.

  If there are duplicate elements in a set, we use an additional label to translate the set 
into a unique sequence. For an element duplicate n times {e, e, …, e}, we use label 

sequence <e,2e…,ne>  to indicate this set.

     

             
          
        

->{e} One element
 -> {e, e} Two elements
 ->{e, e, e} Three  elements

 

<e>
<e 2e>,
<e 2e 
3e>, ,

…

 

A sequence x = < 1 2…,m > is a sub-sequence of another sequence y = <b1,b2 …, 

bn >, denoted by xy, if and only if   i1, i2 ,…,im , such that  i1 , i2,…,im < n  and  

1 = bi1, 2 = bi2,…,m = bim . We also designate y is a supper-sequence of x. 

 

      


   
  

        

    

        

     

  

We define the recursive linear order of ID sequences for all subsets as follows:

For two ID sequences,   <i1,i2 …, iN>  <j1, j2…, jN>

indicate two subsets
If j1 > i1 then ≻ 
If j1 < i1 then ≺
If j1 = i1, then the ID subsequence < i1 > of  equals the ID subsequence < j1 > of 

If  ID  subsequence <  i1,  i2 ,…,in >  of  equals  ID  subsequence <  j1,  j2 ,…, jn > of

 then if jn+1 > in+1 and then ≻ if jn+1 < in+1 and then ≺ if jn+1 = in+1 then ID 
subsequence < i1, i2 ,…, in+1 > of  equals ID subsequence < j1, j2 ,…, jn+1 > of 

   A n-tuple binary numeral encodes an ID sequence. As demonstrated in Table 1, for  a 

set A,  if an element belongs to A, then the ith term of this n-tuple binary numeral is1,  
or  if  this element  does  not  belong  to A,  then  the ith  term of  this  n-tuple  binary

numeral is 0.   

 

 

 

 

 



 

Table 1 - Scheme of encode 

 
 

 

 

 
 

              
  

    

   

  



  

  

  

 

   

  

 

 

  

 

The linear order of a binary numeral is a lexicographic ordering.

Proposition  1. For  two  subsets,  and  if  is  a  subset of    contains  then
 ≻ 

  Proof: A binary numeral for  is n, and a binary numeral for  is m Because  is a 
subset of   if a term in one position of n is 1, then the term in this position of m 
must also be 1. Then m is greater than n therefore,  ≻

  Then  the  enumeration  of  the  subsets  for  a  set  is  achieved  by  enumerating  all 
subsequences of the sequence for this set.

  To accomplish enumeration, we construct a prefix tree for a set A, and assign each 

node in this prefix tree to a label ID. We define a constraint that any node ID is smaller 

than its left sibling node ID and its father node ID.

Case1:

  As shown in Figure S1. (1), if a node is the first node of a node’s children in the left 
order, then this node ID is larger than its father node ID. If this node is the root, then 
this node ID is the largest one.

Case2:

  As shown in Figure S1. (2), if a node is not the first child of node in the left order, 

this node ID is one larger than its left sibling.

  A path composed by IDs which begins with the root node ID and ends with this node 
ID is an ID sequence representing a subset. 

 

1 subset

s 

2 labeled 

sequence 

3 Label ID 

sequence 

4 n-tuple 

binary 

5 Integer of n-tuple 

binary 

{ 𝑥3 } < 𝑥3 > 
< 3 > 100 8 

{𝑥1  , 𝑥3} < 𝑥1   𝑥3> 
< 3, 1 > 101 9 

{𝑥2  , 𝑥3} < 𝑥2    𝑥3 > 
< 3, 2 > 110 10 



 

Figure S1 Two cases for search space 

 

 

 

     

    

 

       

   

  

 

         

        

        

   

  

  

 

 

  

   

 
 

 

 

  

   

Proposition  2. When  performing  a  depth-first search on a  prefix tree, nodes  are

traveled in inverse lexicographic order.

Proof:

  For two nodes,   if the ID path  is part of ID path  then  ≻, and  must be 
traveled before  in the depth-first search. If ID path  is not part of ID path  find the 
maximal prefix sequence for those two paths : < p1, p2…, pk >, where k is the length of 
the prefix sequence.

The ID sequence of Path  is < p1, p2 …,pk, ik+1, ik+2 … >.

The ID sequence of Path  is < p1, p2…, pk, jk+1, jk+2 … >.Comparing the k+1 th 
node ID of Path  with Path  if ik+1 < jk+1 then node jk+1 is the

left  brother  node  of  node  ik+1 and, node  jk+1 must  be traveled  before  node  ik+1 In 
summary, the depth-first search order is an inverse lexicographic order.

  The transaction ID list (TID-list) for an item set is the IDs of the transactions in which 
this item set is found.

  We  initially  assign  each  item  a  TID-list.  Then  the  TID-list  for  an  item  set is 
determined by intersecting the TID lists of items from this set.

For example, the TID list for item A is {3,4,7}, the TID list for item B is {3,4,6} and 
the TID list for item set {A, B} is {3,4}.

  Each node in the prefix tree represents an item set. Then each node is assigned a TID 
list for this item set.

  Proposition 3. For item sets with the same TID list, there is only one maximal item 
set.

Proof:

  It is because if there are two maximal item sets (A and B), then the united set of A 
and B has the same TID list with A and B. It is a paradox that either A or B is a maximal 
item set within this TID list. 

 



   

 

  

 

 

          

  

 

    

  

   

  Proposition 4. In a depth-first traveling prefix tree, if the TID list for a node is not 
equal to the TID list of any children  for this node, and the node with this TID list was 

first reached (Leaf node travel is unnecessary; this node may be on the fly), then the 
item. set for this node is a closed frequent item set, i.e. a maximal one with this TIDlist 
Proof:

    The reason is that in depth-first searching on a prefix tree,  nodes  travel in an  
inverse lexicographic order. Any offspring of this node will travel before this node. 

If there is no TID list for  any offspring that is equal to this node’s TID list, and 

there is not a node with this TID list that has traveled before, then there is no super 
itemset of this item set with this same TID list, because all super item sets of this item 

set is encoded in offspring nodes of this node. Thus, this item set is the maximal one 

with this TID list. An example showing the maximal item set is given in Figure S2.

 

 

Figure S2 The strategy to find maximal one with a TID list 

 

 

  

  

 
 

     

 

 

    

  

  

  

    

  

  Proposition 5. If there are two item sets (A, B), one is a part of another (A≻B), 
and they have the same TID list, for any offspring node, ai, of superset node, A, there is 
an offspring node, bj, of another node, B, satisfying that bj is a part of ai, and they have

the same TID list.
Proof:

  If < ib1, ib2 …, ibn> is the ID sequence for node B, then any offspring  of node B  can 

be indicated by < ib1, ib2 …,ibn, pbn+1, pbn+2 …> and the < pbn+1, pbn+2 …> is a postfix ID 

sequence.

  If < i1, i2 …, in> is the ID sequence for node A, then for any offspring node bj of 
node B, the ID sequence of bj is < ib1, ib2 …,ibn, pbn+1, pbn+2 …>.   We add a postfix ID 
sequence of bj to ID sequence of node A to construct an offspring node ai of node A, i.e. 
the ID sequence of ai is < ia1, ia2 …, ian , pbn+1, pbn+2 … >. Because the item set for 
node A  is  a  part  of  the item  set  for  node  B,  and  they  have  the  same TID  list  and  ID 
sequences, then ai and bj have the same postfix ID sequence so bj is a part of ai and they 
have the same TID list. An example is given in Figure S3.   

 



 

Figure S3 The nodes in gray is maximal one with TID list {i, j,n,m}. 

Because TID {} = TID {}∩ TID {} and TID {} = TID { }∩TID {} , so TID { }=TID{ } =>TID{ }=TID{ }. 

 

 

We construct a TID-list library to store the TID-lists of the nodes that have traveled. 

The pseudocode is listed as follows  

Algorithm 1: The main program for closed frequent item set mining   

 

1. For each node n in a prefix tree with the depth-first traveling: 

2.     If the length of TID-list for node n is less than a support threshold, 

3.        then remove this node and it’s offspring nodes.  

4.     If the TID-list of this node n would be found in the TID-list library, 

5.        then remove this node and it’s offspring nodes.  

6.     Check the length of TID-list for all children nodes of this node n:  

7.     If there are not any children node’s TID list has the same length with parent 

node n, 

8.        then report the Item set of node n, the TID list of this node is recorded in 

the TID-list library as well.  

   

 

Algorithm 1 illustrates the framework, including the necessary main step. 

Lines 2-3, which are a support-constraint that the frequent item set, must appear in 

the dataset more frequently than a threshold. 

Lines 4-5, according to Proposition 5, if the superset of the frequent item set for 

node n has been found before, then it is unnecessary to reach node n and the offspring 

of node n. 



Lines 6-8, according to Proposition 4, if the length of the TID list for all children 

nodes of node n is less than this node n, then this node is the maximal one for a TlD 

list. According to the definition of the closed frequent item set, this node must be 

reported and the TID list of node n recorded in the TID-list library as well, as shown in 

Figure S4. 

 

  

 

 

     

     

  

Figure S4 The rule to record the TID-list

If a frequent set has been reported then the TID-list will be recorded in TID-list library. Any node with

a TID list which have been recorded are deleted.

  The depth of this prefix tree can be very large in a practical application. Depth-first 
traveling for a prefix tree is implemented by stack architecture instead of recursive call, 
therefore, large depth for traveling is available. 

 

 




