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METHODS 

Isolate selection and whole genome sequencing. This study included 334 male urethral N. 

gonorrhoeae isolates from the Gonococcal Isolate Surveillance Project (GISP) that were collected 

between January and December of 2016.  Species identification and microbiological isolation was 

performed at one of the GISP regional laboratories according to methods established by GISP (1).  

Isolates were cultivated on GC medium base agar supplemented with 1% hemoglobin and/or 1% 

IsoVitaleX (BD, Franklin Lakes, NJ, USA), and were incubated at 36 ± 1ºC, 5% CO2.  Susceptibility to 

AZM was determined using the agar dilution method performed according to CLSI guidelines (2) at the 

GISP regional laboratories, and isolates with MIC values ≥ 16 µg/mL were endpointed using the 

ETEST® method (bioMerieux, France) at CDC.  Due to the absence of a CLSI MIC breakpoint for 

AZM in 2016, AZM MIC values were interpreted as susceptible (MIC ≤1 µg/mL) or reduced 

susceptible (MIC ≥2 µg/mL) based on the previously established GISP alert value (1). 

 Isolates selected for sequencing after confirmatory antimicrobial susceptibility testing either 

were shipped to a partnering state public health lab for DNA extraction, library preparation, and 

sequencing or were processed at CDC.  DNA extraction and library preparation were performed 

according to established methods (3).  Genomic DNA was sequenced (paired-end, 2 × 250-bp read 

length) on Illumina MiSeq sequencers (Illumina Denmark ApS, Copenhagen, Denmark).  

 

Phylogenomic analysis.  Quality assessment was performed using FastQC 0.10.1 (4), and de novo 

assembly was conducted using SPAdes 2.5.1 (5). KmerGenie was used when the number of contigs 

exceeded 150 bp (6), and contaminants were identified using Kraken 0.10.5 (7). Quality trimming was 

conducted using Cutadapt v. 1.8.3 (8). The core genome single-nucleotide polymorphism (SNP) 

alignment was generated using Parsnp 1.2 (9) with default parameters, and the FA19 genome (10) was 

used as the reference. To control for the effects of recombination, Gubbins v. 2.3.1 (11) was used to 



identify and remove SNPs found in recombinant regions, resulting in a core genome SNP alignment of 

20,665 bp. The maximum-likelihood phylogeny was reconstructed based on the resulting core genome 

SNP alignment using RAxML version 8.2.12 (12) with 1,000 bootstrap replicates, and the phylogenetic 

tree was visualized using the ETE Toolkit (13).  Clusters were identified using the R package fastbaps 

(14).  The SNP distance matrix was calculated using snp-dists v0.4 (15) and the statistical analysis of the 

distance matrix was performed using Python 3.6.  

 

Molecular typing. WGS data were used to determine the multilocus sequencing typing (MLST) and N. 

gonorrhoeae-multiantigen sequence typing (NG-MAST) allelic profiles for the selected isolates. Briefly, 

MLST sequence types (STs) were obtained using the program stringMLST v0.3.6 (16), while NG-

MAST STs were obtained using NGMASTER v0.4 (17).  Isolates with novel sequences were submitted 

to the MLST database (https://pubmlst.org/neisseria/) or to the NG-MAST database (https://www.ng-

mast.net) to obtain new STs.  New STs obtained for this study are MLST STs 13526, 13532, 13536-

13539, 13542-13543, 13547-13549, and NG-MAST STs 16484, 16503, 17093, 17341, 17495, 17632, 

17635, 17636, 17640, 17643-17645, 17647-17649, 17659, 17661, 17662, 17668, 17671, 17673, 17683-

17690, 17693-17746, 17905, 17909, 17916, 17951, 17973, 17976-17985.  

 

Antimicrobial resistance gene determination. The genetic determinants listed in Tables 1, 2, and 

Supplementary Dataset S1 were extracted from the WGS data using a custom analysis pipeline written 

in Python.  Individual raw reads and de novo assembled genomes were used as input for analysis.  

Similar to the phylogenomic analysis, raw reads are first analyzed using FastQC (4) then filtered and 

trimmed using trim_galore v0.3.7 (18). The trim_galore output was used as the input for reference 

mapping in breseq v0.30 (19), with FA19 (10) as the reference genome.  To extract variants in the N. 

gonorrhoeae 23S rRNA and determine the copy number in the genome, breseq was run a second time 

using the sequence for a single allele of the 23S rRNA gene from strain MS11 (20) as the mapping 



reference with the polymorphism-prediction option turned on.  Variant extraction and data formatting 

from the breseq output utilized the Pandas and Biopython packages (21, 22).  

To determine the nucleotide present in the 23S rRNA sequence at E. coli positions 2059 or 2611, 

the output from breseq after mapping to reference sequence X67293 was searched for Read Alignment 

(RA) evidence at positions 2047 (E. coli position 2059) and 2599 (E. coli position 2611).  The frequency 

of the base within the mapped reads at specific positions was calculated using the polymorphism 

prediction feature of breseq, and the frequency was used to estimate the number of alleles in the N. 

gonorrhoeae genome as described (23). 

To determine the presence of the full-length MtrR protein in the tested isolate, the mtrR 

nucleotide sequence was extracted from the de novo assembly using blastn and the mtrR nucleotide 

sequence from FA19.  This nucleotide sequence was then translated and compared to the length of wild 

type MtrR. 

Determination of the presence of mosaic-like sequence in the mtrR gene (i.e., mosaic-like mtrR) 

was made by extracting the nucleotide sequence of mtrR as described above.  The nucleotide sequence 

was compared to a known mosaic-like mtrR sequence (24) using blastn.  An identity cutoff of 98% was 

established based on pairwise comparisons of various mosaic-like mtrR loci to themselves and to wild 

type sequences.  If the extracted sequence was ≥ 98% identical to the mosaic-like sequence, the 

extracted sequence was denoted as mosaic.  

Determination of amino acid mutations in the coding sequence of mtrR and the presence of a 

disruption within the inverted repeat in the mtrR promoter region was accomplished using the method 

described above for calling nucleotide mutations in 23S rRNA genes.  After mapping the raw reads to 

the reference genome, breseq was used for variant calling and to output amino acid mutations and 

annotations.  This output was then searched for RA evidence within the mtrR coding sequence at amino 

acid positions 39, 44, 45, and 47.  If evidence was found, that amino acid was returned.  However, if no 

evidence was found for a position, the isolate was assumed to have the same amino acid as FA19.  The 



presence of a promoter disruption was determined by searching for RA evidence at FA19 genome 

positions 1110844–1110848.  Promoter mutations were confirmed by performing a local blastn search 

(ncbi-blast+ v2.6.0 (25)) using the mtrR-CDE promoter sequence from FA19 as the query against the 

isolate de novo assembly. 

The presence of ermB, ermC (reference from Neisseria meningitidis MC58), ermF (reference 

from Bacteriodes fragilis), or mefA was determined by mapping the trimmed reads to a reference 

sequence for each gene using breseq (26-29).  The gene was called as present if the average read 

coverage across the locus was greater than 2.0. 

 

Statistical analyses.  χ2 tests with a Yates correction were used to determine associations between 

mutational patterns with respect to reduced susceptibility to AZM (30).  A Bonferonni correction was 

applied to account for multiple tests.  P values greater than or equal to 0.05 were considered not 

significant. 

 

Data availability.  Raw whole genome sequence data are available from the National Center for 

Biotechnology Information (31).  Accession numbers for each isolate can be found in Supplementary 

Dataset S1. 

 

 

 

 

 

 

 



SUPPLEMENTARY FIGURES 

FIGURE S1 Distribution of isolates by azithromycin MIC and geography.  A) MIC distribution among 

included isolates with an AZM MIC ≥ 2 µg/mL (n = 177).  B) MIC distribution among  included isolates 

with an AZM MIC ≤ 1 µg/mL (n = 157).  C) HHS region distribution of the number of included isolates 

with an AZM MIC ≥ 2 µg/mL.  See Table S1 for the distribution of GISP sites per HHS region. 

 

 

 

 

 

 

 

 

 

 



FIGURE S2 Distribution of MLST STs by HHS region or AZM MIC.  A) Geographic distribution of 

MLST STs according to HHS region.  B) Histogram of MLST STs showing AZM MIC (µg/mL) 

categorical breakdown.  MLST STs represented by five or more isolates are included in the graphs. 

 

 

 

 

 

 

 

 

 

 



FIGURE S3 – Distribution of NG-MAST STs by HHS region or AZM MIC.  A) Geographic 

distribution of NG-MAST STs according to HHS region.  B) Histogram of NG-MAST STs showing 

AZM MIC (µg/mL) categorical breakdown.  NG-MAST STs represented by two or more isolates are 

included in the graphs. 

 

 

 

 

 

 

 

 

 

 

  



SUPPLEMENTARY TABLE 

TABLE S1 Distribution of GISP sites by HHS region in 2016 

HHS region GISP Sites (#) 

1 1 

2 2 

3 1 

4 3 

5 6 

6 3 

7 1 

8 0 

9 8 

10 2 
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