1 Supplemental Methods

The RPV and DPV genotyping and phenotyping data used in this analysis has been described 2 previously^{1,2}. HIVdb genotypic interpretation algorithms scores in the supplemental material were 3 determined using the Stanford HIVdb resistance interpretation algorithm version 8.4 (HIVdb 4 v8.4)³ by uploading HIV-1 population genotyping FASTA files into the HIVdb website 5 (https://hivdb.stanford.edu/hivdb/by-sequences/). In Supplemental Figure 1, we used the RPV 6 conventional biological cutoff (BCO) of 2.5-fold as previously described²⁴ for 'low-intermediate 7 resistance' and >10 fold as 'high level resistance' for comparison to HIVdb v8.4. These cutoff 8 9 values are not based on clinical data, as with etravirine, because these data are unavailable. In Supplemental Figure 2A and B we reanalyzed our genotyping ETR weight using the Tibotec 10 system⁴ and compared it to the HIVdb v8.4 (Supplemental Figure 3) using Pearson's correlation 11 coefficient calculated with Graph pad Prism version 7. To validate our findings on the association 12 13 between ETR resistance and the K65R mutation, we accessed a genotypic and phenotypic dataset previously published by Melikian et al. 2012⁵ accessed through the Stanford RT Phenotype Ouerv 14 (Supplemental Table 4A). In addition, there was no significant association between these NRTI 15 mutations and RPV or DPV resistance (Supplemental Figure 3B)^{1,2}. 16

- 17
- 18
- 19 20
- 21
- 22

23

page 2

25	Supplemental References						
26	1.	Penrose, K. J. et al. Frequent Cross-Resistance to Dapivirine in HIV-1 Subtype C-Infected					
27		Individuals on Failing First-Line Antiretroviral Therapy in South Africa. Antimicrob. Agents					
28		Chemother. AAC.01805-16 (2016). doi:10.1128/AAC.01805-16					
29	2.	Penrose, K. J. et al. Frequent cross-resistance to rilpivirine among subtype C HIV-1 from first-line					
30		antiretroviral therapy failures in South Africa. Antivir. Chem. Chemother. 26, 204020661876298					
31		(2018).					
32	3.	Liu, T. F. & Shafer, R. W. Web Resources for HIV Type 1 Genotypic-Resistance Test					
33		Interpretation. Clin. Infect. Dis. 42, 1608–1618 (2006).					
34	4.	Vingerhoets, J. et al. Tibotec Etravirine Weighted Genotype Score to Predict Responsetle. in XVII					
35		HIV Drug Resistance Workshop (2008).					
36	5.	Melikian, G. L. et al. Standardized Comparison of the Relative Impacts of HIV-1 Reverse					
37		Transcriptase (RT) Mutations on Nucleoside RT Inhibitor Susceptibility. Antimicrob. Agents					
38		Chemother. 56, 2305–2313 (2012).					
39							
40							
41							
42							
43							
44							
45							
46							
47							
48							
49							

50 Supplemental Figures and Tables

52 Supplemental Figure 1. RPV genotypic interpretation algorithm scores accurately predicted 53 the RPV phenotype resistance in HIV-1 subtype C isolates. (A) RPV genotypic interpretation 54 algorithm scores more accurately predicted the phenotype as 62% of samples were completely 55 concordant (●) and only 32 were partially concordant (■). (B) Error matrixes of actual fold 56 phenotypic resistance vs predicted resistance for RPV. Few samples with high phenotypic RPV 57 resistance (FC >10) were misclassified as having low or intermediate resistance misclassified

samples (7/100). Genotypic interpretation algorithm scores were determined using the Stanford

59 HIVdb v8.4.

60

- 61 Supplemental Figure 2 Tibotec weighted scores significantly correlated with the HIVdb v8.4
- 62 (r=0.92) in HIV-1 subtype C isolates.

64

Supplemental Figure 3. The ETR phenotype and Tibotec weighted genotype scores are discordant in HIV-1 subtype C isolates (A) ETR Phenotype (Fold-Change in IC50) does not strongly correlate with Tibotec score (r=0.45) for HIV-1 subtype C isolates. 58% of genotype scores were concordant (•; classifications matched), 36% partially discordant (∎; Tibotec predicted 1 classification different) and 6% completely discordant (▲; Tibotec predicted 2 classifications different) relative to the phenotype clinical cut-offs. (B) Error matrixes of actual

- 71 fold phenotypic resistance vs TIbotec predicted resistance for ETR. Tibotec failed to predict the
- 72 ETR phenotype resistance in 42%.

73

Etravirine (Melikian et al.)

Supplemental Figure 4. K65R is associated with ETR resistance, but not ETR NNRTI analogs such as RPV and DPV (A) K65R was associated with higher ETR phenotypic resistance in a previously published dataset (Melikian et al. 2012) obtained from the Stanford RT Phenotype Query. *p<0.05, ***p<0.005. (B) Fold-change in Rilpivirine (RPV) or Dapivirine (DPV) phenotype resistance was evaluated based on the presence or absence of K65R, M184V or Y181C.</p>

- 80 n.s.= "no signifigant difference using Fisher's Exact". There was no significant association
- 81 between viruses in our dataset containing K65R and phenotypic resistance to RPV or DPV.
- 82 Supplemental Table 1. ETR susceptibility in recombinant HIV-1 virus clones containing
- 83 K65R or reversion to 65K.

Sample	Sample Type	ETR IC50 (nM)	Mutations		
			NRTI	NNRTI	Other
Wild-type	Batch	1.2	None	None	none
Sample 1	Batch	17.5	M41 <u>LM</u> , K65R, M184V	V106M, E138A, V179D	T39DE, K103KR, I135IL
	Single 65R clone 1	2.0	M41L, K65R, M184V	V106M, E138A, V179D	T39D, K102R
	65R reverted clone 1	1.9	M41L, M184V	V106M, E138A, V179D	T39D, K102R
	Single K65R clone 2	74.8	M41M, K65R, M184V	V106M, E138A, V179D	T39E, K103R, I135L
	65R reverted clone 2	76.0	M41M, M184V	V106M, E138A, V179D	T39E, K103R, I135L
Sample 2	Batch	29.8	A62V, K65R, M184I	V106M, V179D, M230L	none
	Single clone 1	41.7	A62V, K65R, M184I	V106M, V179D, M230L	none
	65R reverted clone 1	58.0	A62V, M184I	V106M, V179D, M230L	none

84 Supplemental Table 2. K65R is associated with the NNRTI mutations V179DFT, Y181CIV

85 and M230L

NNRTI RAMs	K65R n=35 (%)	K65K n=77 (%)	P Value (Fisher's Exact)	P value summary
V90I	3 (9)	2 (3)	0.1752	*n.s.
A98G	2 (6)	12 (16)	0.2188	n.s.
L100I	7 (20)	6 (8)	0.1071	n.s.
K101EHP	5 (14)	8 (10)	0.5401	n.s.
V106I	1 (3)	1(1)	0.5293	n.s.
E138AGKQ	5 (14)	9 (12)	0.7609	n.s.
V179DFT	9 (26)	5 (6)	0.0105	p<0.05
Y181CIV	10 (29)	6 (8)	0.0070	p<0.01
G190SA	9 (26)	18 (23)	0.8143	n.s.
M230L	8 (23)	3 (4)	0.0037	p<0.01

*n.s.= "no significant difference" using Fisher's Exact

87