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Figure S1. Clustering of RNAs with changes in TE and mRNA abundance to identify
functional hubs (Related to Figure 1, also see TableS1)

(A) Network clustering of “mRNA up” RNAs from the ribosome profiling and RNA-seq in
WT and Fmrl KO hippocampus. Nodes indicate the functional processes linked to the RNAs
identified. Fold changes are indicated.

(B) Network clustering of the functional processes in the “mRNA down” RNAs

(C) Network analysis of the of the functional processes in the “TE down” mRNAs
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Figure S2. Run-off ribosome profiling of WT mouse hippocampal slices. (Related to
Figure 3, also see Table S1)

(A) Ribosome runoff patterns for clusters 1 and 2. The RPFs of each gene at each time
point was normalized to time 0. The euclidean distance matrix was then calculated,
followed by hierarchical clustering using Ward’s agglomeration method (Ward, 1963).
The global pattern of each sub-cluster was summarized using the corresponding median
and standard deviation in each timepoint. Representative ribosome runoff profiles are
shown.

(B) CDS length dependency of the ribosome runoff rates. Results of the K-S test for

significance are shown

(C) GO terms for sub-clusters 2,4, 5 and 6.
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Figure S3. Sedimentation of proteins in polysome sucrose gradients. (Related to
Figure 4, also see Table S1)

(A) Hippocampal extracts, some of which were treated with RNAse A, were centrifuged
through sucrose gradients, fractionated, and immunoblotted for FMRP, RPS6 and RPLA4.
Long and short refer to relative exposure times.

(B) Hippocampal slices from WT or FMRP KO mice were treated with vehicle only or
HHT for 30 min. The gradients were fractionated and immunoblotted for the indicated
proteins. The red arrow denotes the eEF2 band. The medium polysome fractions are

indicated.
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Figure S4. H3K36me3 ChIP metagene analysis (Related to Figure 6, also see Table S2)
(A) Scatter plot for ChIP-seq normalized reads density (Transcripts per million mapped
reads, TPM) mapped to the genic regions between biological replicate samples, WT1 and
WT2 and Fmrl KO1 and Fmrl KO2. Pearson r values for correlation efficiency are shown.
Asterisks indicate statistical significance.

(B) Metagene plots using deepTools (Ramirez et al., 2016) for distribution of H3K36me3
marks along the gene lengths. A similar increase in ChIP signal in all samples is seen in the
gene body. The transcription start site (TSS), Transcription end site (TES) and 2.0kb
downstream is shown.

(C) Heatmap for distribution of H3K36me3 signal along the gene length in each sample,
compiled plot in Figure S4B. The transcription start site (TSS), Transcription end site (TES)
and 4.0kb downstream is shown. No overall differences in ChIP signal was observed
between samples.

(D) Violin plot to assess the effect of gene length on H3K36me3 ChIP signal between WT
(white) and Fmrl KO (red) samples.

(E) Histogram depicting number of islands (log scale) and their respective island length for
all significant islands (bp in log scale) identified in the WT (blue) and Fmrl KO (green)
ChIP-seq. The island lengths were parsed in bins of 100bp and the center of each bin is
plotted in the histogram. Asterisks indicate statistical significance.

(F) Scatter plot comparing the log,FC in RNA-seq (x-axis) with the ChIP-seq data (y-axis)
averaging H3K36me3 island differences within each gene is plotted. Pearson correlation

coefficient value is stated.
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Figure S5. Comparison of skipped exon genes to RNA abundance and RPF levels
(Related to Figure 1,6, and 7 also see Table S1 and S3)

(A) Scatter plot for the delta percent spliced-in (Psi/¥) score of skipped exons (y-axis)
(From Figure 7) versus their RNA fold changes (From Figure 1) on the x axis. Pearson
correlation coefficient value is stated.

(B) Scatter plot for the delta percent spliced-in (Psi/¥) score of skipped exons (y-axis)
(From Figure 7) versus their RPF levels (From Figure 1) on the x axis. Pearson correlation
coefficient value is stated.

(C) Swarm plots are shown representing the FMRP CLIP density (CLIP level/length) using
the FMRP CLIP-Seq data (GSE45148) at skipped exons and their flanking introns of genes
with increased exon skipping (SE-UP in red), decrease skipped exons SE-DN in blue) and
no significant change in skipped exons (SE-NC) are plotted. The other category represents
exons with no alternative splicing detected. Wilcoxon test was used to determine
significance of differences amongst the categories.

(D) Violin plot for the H3K36me3 ChIP signal +/-150nt at the 5’ (SS5) and 3’ (SS3) splice
sites of the alternatively skipped exons in WT (white) and Fmrl KO (red) hippocampus
tissue (p-value<0.05, Wilcox test for significance). Also see Figure 7F.

(E) Western blot analysis of SETD2 and Lamin B1 in immortalized MEFs from WT and
Fmrl KO mice (left), passage number 31. When quantified and made relative to Lamin B1
(right), there was no observable change in SETD2 levels in the Fmrl KO (3 replicates,

p=0.48, two-tailed t test). Error bars represent the S.E.M (also see Figure 5)



