EM algorithm derivations and supplementary data

1 Algorithm derivations

1.1 Derivation of E-step filter updates

1.1.1 Probability mass function of m_k

$$P(m_{k}|x_{k}) = p_{k}^{m_{k}}(1-p_{k})^{1-m_{k}}$$

$$= \exp\left\{\log\left[p_{k}^{m_{k}}(1-p_{k})^{1-m_{k}}\right]\right\}$$

$$= \exp\left[m_{k}\log(p_{k}) + (1-m_{k})\log(1-p_{k})\right]$$

$$= \exp\left[m_{k}\log\left(\frac{p_{k}}{1-p_{k}}\right) + \log(1-p_{k})\right]$$

$$= \exp\left[m_{k}(\beta_{0} + \beta_{1}x_{k}) + \log\left(\frac{1}{1+e^{\beta_{0} + \beta_{1}x_{k}}}\right)\right]$$
(1)

1.1.2 Mean and variance of the posterior density function $p(x_k|y^k)$

We follow an approach similar to [1] in deriving the filter updates. Recall that linear models are assumed to relate sympathetic arousal to the phasic-derived and tonic components.

$$r_k = \gamma_0 + \gamma_1 x_k + v_k \tag{2}$$

$$s_k = \delta_0 + \delta_1 x_k + w_k \tag{3}$$

We take the two noise terms v_k and w_k to be independent of each other. Consequently, the density functions $p(r_k|x_k)$ and $p(s_k|x_k)$ conditioned on already having observed x_k are independent of each other in the following derivation.

$$p(x_{k}|y^{k}) = \frac{p(x_{k}|y^{k-1})p(y_{k}|x_{k})}{p(y_{k}|y^{k-1})}$$

$$= \frac{p(x_{k}|y^{k-1})P(m_{k}|x_{k})p(r_{k}|x_{k})p(s_{k}|x_{k})P(n_{k,1:J}|x_{k})}{p(y_{k}|y^{k-1})}$$

$$\propto \exp\left[\frac{-(x_{k} - x_{k|k-1})^{2}}{2\sigma_{k|k-1}^{2}} + m_{k}\log\left(\frac{p_{k}}{1 - p_{k}}\right) + \log(1 - p_{k})\right]$$

$$- \frac{(r_{k} - \gamma_{0} - \gamma_{1}x_{k})^{2}}{2\sigma_{v}^{2}} - \frac{(s_{k} - \delta_{0} - \delta_{1}x_{k})^{2}}{2\sigma_{w}^{2}} + \sum_{j=1}^{J}\log(\lambda_{k,j}\Delta)n_{k,j} - \lambda_{k,j}\Delta\right] \qquad (4)$$

$$\log\left[p(x_{k}|y^{k})\right] = \left[\frac{-(x_{k} - x_{k|k-1})^{2}}{2\sigma_{k|k-1}^{2}} + m_{k}\log\left(\frac{p_{k}}{1 - p_{k}}\right) + \log(1 - p_{k})\right]$$

$$- \frac{(r_{k} - \gamma_{0} - \gamma_{1}x_{k})^{2}}{2\sigma_{v}^{2}} - \frac{(s_{k} - \delta_{0} - \delta_{1}x_{k})^{2}}{2\sigma_{w}^{2}} + \sum_{j=1}^{J}\log(\lambda_{k,j}\Delta)n_{k,j} - \lambda_{k,j}\Delta\right] + \text{const} \qquad (5)$$

We take the partial derivative of the logarithm term above and set it to 0 to solve for the mean.

$$\frac{\partial}{\partial x_k} \log\left[p(x_k|y^k)\right] = \frac{-(x_k - x_{k|k-1})}{\sigma_{k|k-1}^2} + \beta_1(m_k - p_k) + \frac{\gamma_1(r_k - \gamma_0 - \gamma_1 x_k)}{\sigma_v^2} + \frac{\delta_1(s_k - \delta_0 - \delta_1 x_k)}{\sigma_w^2} + \sum_{j=1}^J \frac{1}{\lambda_{k,j|k}} \frac{\partial \lambda_{k,j|k}}{\partial x_k} (n_{k,j} - \lambda_{k,j|k}\Delta) = 0.$$
(6)

Solving for x_k in the equation above provides the filter update for $x_{k|k}$. We have taken,

$$\frac{\partial p_k}{\partial x_k} = \beta_1 p_k (1 - p_k) \tag{7}$$

when calculating the partial derivative. Similarly, the second partial derivative is,

$$\frac{\partial^2}{\partial x_k^2} \log\left[p(x_k|y^k)\right] = \frac{-1}{\sigma_{k|k-1}^2} - \beta_1 \frac{\partial p_k}{\partial x_k} - \frac{\gamma_1^2}{\sigma_v^2} - \frac{\delta_1^2}{\sigma_w^2} + \frac{\partial}{\partial x_k} \left[\sum_{j=1}^J \frac{1}{\lambda_{k,j|k}} \frac{\partial \lambda_{k,j|k}}{\partial x_k} (n_{k,j} - \lambda_{k,j|k}\Delta)\right]$$
$$= \frac{-1}{\sigma_{k|k-1}^2} - \beta_1^2 p_k (1 - p_k) - \frac{\gamma_1^2}{\sigma_v^2} - \frac{\delta_1^2}{\sigma_w^2}$$
$$+ \sum_{j=1}^J \left[\frac{1}{\lambda_{k,j|k}} \frac{\partial^2 \lambda_{k,j|k}}{\partial x_k^2} (n_{k,j} - \lambda_{k,j|k}\Delta) - \frac{n_{k,j}}{\lambda_{k,j|k}^2} \left(\frac{\partial \lambda_{k,j|k}}{\partial x_k}\right)^2\right]. \tag{8}$$

The filter update for $\sigma_{k|k}^2$ is given by [1],

$$\sigma_{k|k}^{2} = \left\{ -\frac{\partial^{2}}{\partial x_{k}^{2}} \log\left[p(x_{k}|y^{k})\right] \right\}^{-1}.$$
(9)

1.2 Derivation of the M-step updates

1.2.1 Complete data log-likelihood

Taking $\mathcal{X}^K = \{x_1, x_2, \dots, x_K\}$, the complete data likelihood conditioned on the model parameters Θ is given by,

$$p(\mathcal{Y}^{K}, \mathcal{X}^{K} | \Theta) = \prod_{k=1}^{K} p_{k}^{m_{k}} (1-p_{k})^{1-m_{k}} \times \prod_{k=1}^{K} \frac{1}{\sqrt{2\pi\sigma_{v}^{2}}} e^{-\frac{(r_{k}-\gamma_{0}-\gamma_{1}x_{k})^{2}}{2\sigma_{v}^{2}}} \times \prod_{k=1}^{K} \frac{1}{\sqrt{2\pi\sigma_{v}^{2}}} e^{-\frac{(s_{k}-\delta_{0}-\delta_{1}x_{k})^{2}}{2\sigma_{w}^{2}}} \times \prod_{k=1}^{K} e^{\sum_{j=1}^{J} \log(\lambda_{k,j}\Delta)n_{k,j}-\lambda_{k,j}\Delta} \times \prod_{k=1}^{K} \frac{1}{\sqrt{2\pi\sigma_{\varepsilon}^{2}}} e^{-\frac{(x_{k}-\rho x_{k-1}-\alpha I_{k})^{2}}{2\sigma_{\varepsilon}^{2}}}.$$
(10)

The expected log-likelihood is,

$$Q = \sum_{k=1}^{K} \mathbb{E} \Big[m_k (\beta_0 + \beta_1 x_k) - \log \left(1 + e^{\beta_0 + \beta_1 x_k} \right) \Big] + \frac{(-K)}{2} \log \left(2\pi \sigma_v^2 \right)$$

$$-\sum_{k=1}^{K} \frac{\mathbb{E}\left[\left(r_{k}-\gamma_{0}-\gamma_{1}x_{k}\right)^{2}\right]}{2\sigma_{v}^{2}} + \frac{\left(-K\right)}{2}\log\left(2\pi\sigma_{w}^{2}\right) - \sum_{k=1}^{K} \frac{\mathbb{E}\left[\left(s_{k}-\delta_{0}-\delta_{1}x_{k}\right)^{2}\right]}{2\sigma_{w}^{2}} + \sum_{k=1}^{K} \sum_{j=1}^{J} \mathbb{E}\left[\log(\lambda_{k,j}\Delta)n_{k,j}-\lambda_{k,j}\Delta\right] + \frac{\left(-K\right)}{2}\log\left(2\pi\sigma_{\varepsilon}^{2}\right) - \sum_{k=1}^{K} \frac{\mathbb{E}\left[\left(x_{k}-\rho x_{k-1}-\alpha I_{k}\right)^{2}\right]}{2\sigma_{\varepsilon}^{2}}.$$
 (11)

Following [2], we take

$$x_{k|K} = \mathbb{E}\Big[x_k | \mathcal{Y}^K, \Theta\Big]$$
(12)

$$U_k = \mathbb{E}\left[x_k^2 | \mathcal{Y}^K, \Theta\right] \tag{13}$$

$$U_{k,k+1} = \mathbb{E}\Big[x_k x_{k+1} | \mathcal{Y}^K, \Theta\Big].$$
(14)

1.2.2 M-step updates for α and ρ

Let Q_1 denote the term in Q that contains α and ρ .

$$Q_1 = \frac{1}{2\sigma_{\varepsilon}^2} \sum_{k=1}^K \mathbb{E}\Big[(x_k - \rho x_{k-1} - \alpha I_k)^2 \Big]$$
(15)

While it is possible to determine the starting state x_0 as a separate parameter, we follow one of the options in [2, 3] and set $x_0 = x_1$. This permits some bias at the beginning. Therefore,

$$Q_1 = \frac{1}{2\sigma_{\varepsilon}^2} \Biggl\{ \sum_{k=2}^K \mathbb{E} \Bigl[(x_k - \rho x_{k-1} - \alpha I_k)^2 \Bigr] + \mathbb{E} \Bigl[(\alpha I_1)^2 \Bigr] \Biggr\}.$$
(16)

We take the partial derivatives of Q_1 with respect to α and ρ and set them to 0 to obtain the M-step updates.

$$\frac{\partial Q_1}{\partial \alpha} = \sum_{k=2}^K \mathbb{E} \Big[-2I_k (x_k - \rho x_{k-1} - \alpha I_k) \Big] + 2\alpha I_1^2
0 = -\sum_{k=2}^K I_k \mathbb{E} \Big[x_k \Big] + \rho \sum_{k=2}^K I_k \mathbb{E} \Big[x_{k-1} \Big] + \alpha \sum_{k=1}^K I_k^2
= -\sum_{k=2}^K I_k x_{k|K} + \rho \sum_{k=2}^K I_k x_{k-1|K} + \alpha \sum_{k=1}^K I_k^2
(17)
\frac{\partial Q_1}{\partial \rho} = \sum_{k=2}^K \mathbb{E} \Big[-2x_{k-1} (x_k - \rho x_{k-1} - \alpha I_k) \Big]
0 = -\sum_{k=2}^K \mathbb{E} \Big[x_k x_{k-1} \Big] + \rho \sum_{k=2}^K \mathbb{E} \Big[x_{k-1}^2 \Big] + \alpha \sum_{k=2}^K I_k \mathbb{E} \big[x_{k-1} \big]
= -\sum_{k=2}^{K-1} U_{k,k+1} + \rho \sum_{k=2}^{K-1} U_k + \alpha \sum_{k=2}^K I_k x_{k-1|K}$$
(18)

$$= -\sum_{k=1}^{N} U_{k,k+1} + \rho \sum_{k=1}^{N} U_k + \alpha \sum_{k=2}^{N} I_k x_{k-1|K}$$
(18)
(19)

The solutions to these simultaneous equations provide α and ρ .

1.2.3 M-step updates for $\gamma_0, \gamma_1, \delta_0$ and δ_1

Let Q_2 denote the term in Q containing γ_0 and γ_1 .

$$Q_2 = \sum_{k=1}^{K} \frac{\mathbb{E}\left[(r_k - \gamma_0 - \gamma_1 x_k)^2 \right]}{2\sigma_v^2}$$
(20)

Taking the partial derivatives with respect to γ_0 and γ_1 yields,

$$\frac{\partial Q_2}{\partial \gamma_0} = \sum_{k=1}^K -2\mathbb{E} \left[r_k - \gamma_0 - \gamma_1 x_k \right]$$

$$0 = -\sum_{k=1}^K r_k + \gamma_0 K + \gamma_1 \sum_{k=1}^K \mathbb{E} \left[x_k \right]$$

$$= -\sum_{k=1}^K r_k + \gamma_0 K + \gamma_1 \sum_{k=1}^K x_{k|K}$$

$$\frac{\partial Q_2}{\partial \gamma_1} = \sum_{k=1}^K -2\mathbb{E} \left[x_k (r_k - \gamma_0 - \gamma_1 x_k) \right]$$
(21)

$$0 = -\sum_{k=1}^{K} r_k \mathbb{E}[x_k] + \gamma_0 \sum_{k=1}^{K} \mathbb{E}[x_k] + \gamma_1 \sum_{k=1}^{K} \mathbb{E}[x_k^2]$$

= $-\sum_{k=1}^{K} r_k x_{k|K} + \gamma_0 \sum_{k=1}^{K} x_{k|K} + \gamma_1 \sum_{k=1}^{K} U_k.$ (22)

The solutions to these simultaneous equations provide γ_0 and γ_1 . δ_0 and δ_1 may be obtained similarly from the term in Q containing s_k .

1.2.4 M-step updates for σ_v^2 and σ_w^2

Let Q_3 denote the term in Q containing σ_v^2 .

$$Q_3 = \frac{-K}{2} \log\left(2\pi\sigma_v^2\right) - \sum_{k=1}^K \frac{\mathbb{E}\left[\left(r_k - \gamma_0 - \gamma_1 x_k\right)^2\right]}{2\sigma_v^2}$$
(23)

We take the partial derivative with respect to σ_v^2 and set it to 0.

$$\frac{\partial Q_3}{\partial \sigma_v^2} = \frac{-K}{2\sigma_v^2} + \frac{1}{2\sigma_v^4} \sum_{k=1}^K \mathbb{E} \Big[(r_k - \gamma_0 - \gamma_1 x_k)^2 \Big] = 0$$

$$\sigma_v^2 = \frac{1}{K} \sum_{k=1}^K \mathbb{E} \Big[(r_k - \gamma_0 - \gamma_1 x_k)^2 \Big]$$

$$= \frac{1}{K} \Big\{ \sum_{k=1}^K r_k^2 + K\gamma_0^2 + \gamma_1^2 \sum_{k=1}^K \mathbb{E} [x_k^2] - 2\gamma_0 \sum_{k=1}^K r_k - 2\gamma_1 \sum_{k=1}^K r_k \mathbb{E} [x_k] + 2\gamma_0 \gamma_1 \sum_{k=1}^K \mathbb{E} [x_k] \Big\}$$

$$= \frac{1}{K} \Big\{ \sum_{k=1}^K r_k^2 + K\gamma_0^2 + \gamma_1^2 \sum_{k=1}^K U_k - 2\gamma_0 \sum_{k=1}^K r_k - 2\gamma_1 \sum_{k=1}^K r_k x_{k|K} + 2\gamma_0 \gamma_1 \sum_{k=1}^K x_{k|K} \Big\}.$$
(24)

The update for σ_w^2 may be obtained likewise.

1.2.5 M-step update for σ_{ε}^2

Let Q_4 denote the term in Q containing σ_{ε}^2 .

$$Q_{4} = \frac{-K}{2} \log \left(2\pi\sigma_{\varepsilon}^{2}\right) - \sum_{k=1}^{K} \frac{\mathbb{E}\left[\left(x_{k} - \rho x_{k-1} - \alpha I_{k}\right)^{2}\right]}{2\sigma_{\varepsilon}^{2}}$$
$$= \frac{-K}{2} \log \left(2\pi\sigma_{\varepsilon}^{2}\right) - \sum_{k=2}^{K} \frac{\mathbb{E}\left[\left(x_{k} - \rho x_{k-1} - \alpha I_{k}\right)^{2}\right]}{2\sigma_{\varepsilon}^{2}} - \frac{\mathbb{E}\left[\left(\alpha I_{1}\right)^{2}\right]}{2\sigma_{\varepsilon}^{2}}$$
(26)

We take the partial derivative with respect to σ_{ε}^2 and set it to 0.

$$\frac{\partial Q_4}{\partial \sigma_{\varepsilon}^2} = \frac{-K}{2\sigma_{\varepsilon}^2} + \frac{1}{2\sigma_{\varepsilon}^4} \sum_{k=2}^K \mathbb{E}\left[(x_k - \rho x_{k-1} - \alpha I_k)^2 \right] + \frac{(\alpha I)^2}{2\sigma_{\varepsilon}^4} = 0$$

$$\sigma_{\varepsilon}^2 = \frac{1}{K} \sum_{k=2}^K \left\{ \mathbb{E}[x_k^2] - 2\rho \mathbb{E}[x_k x_{k-1}] + \rho^2 \mathbb{E}[x_{k-1}^2] - 2\alpha I_k \mathbb{E}[x_k] + 2\alpha \rho I_k \mathbb{E}[x_{k-1}] \right\} + \frac{\alpha^2}{K} \sum_{k=1}^K I_k^2$$

$$= \frac{1}{K} \left\{ \sum_{k=2}^K U_k - 2\rho \sum_{k=1}^{K-1} U_{k,k+1} + \rho^2 \sum_{k=1}^{K-1} U_k - 2\alpha \sum_{k=2}^K I_k x_{k|K} + 2\alpha \rho \sum_{k=2}^K I_k x_{k-1|K} + \alpha^2 \sum_{k=1}^K I_k^2 \right\}$$
(27)

1.2.6 M-step updates for β_0 and β_1

Let Q_5 denote the expectation term containing β_0 and β_1 .

$$Q_{5} = \sum_{k=1}^{K} \mathbb{E} \Big[m_{k} (\beta_{0} + \beta_{1} x_{k}) - \log \left(1 + e^{\beta_{0} + \beta_{1} x_{k}} \right) \Big]$$
(29)

We perform a Taylor expansion of the logarithm term around $x_{k|K}[1]$.

$$\log\left(1 + e^{\beta_0 + \beta_1 x_k}\right) \approx \log\left(1 + e^{\beta_0 + \beta_1 x_{k|K}}\right) + \beta_1 p_{k|K}(x_k - x_{k|K}) + \frac{\beta_1^2}{2} p_{k|K}(1 - p_{k|K})(x_k - x_{k|K})^2 \tag{30}$$

Taking the expected value on both sides,

$$\mathbb{E}\Big[\log\left(1+e^{\beta_0+\beta_1x_k}\right)\Big] \approx \log\left(1+e^{\beta_0+\beta_1x_{k|K}}\right) + \beta_1 p_{k|K} \mathbb{E}\big[x_k - x_{k|K}\big] + \frac{\beta_1^2}{2} p_{k|K}(1-p_{k|K}) \mathbb{E}\big[(x_k - x_{k|K})^2\big] \\ = \log\left(1+e^{\beta_0+\beta_1x_{k|K}}\right) + 0 + \frac{\beta_1^2}{2} p_{k|K}(1-p_{k|K}) \sigma_{k|K}^2.$$
(31)

Therefore,

$$Q_5 \approx \sum_{k=1}^{K} \left[m_k (\beta_0 + \beta_1 x_{k|K}) - \log \left(1 + e^{\beta_0 + \beta_1 x_{k|K}} \right) - \frac{\beta_1^2}{2} p_{k|K} (1 - p_{k|K}) \sigma_{k|K}^2 \right].$$
(32)

Now,

$$\frac{\partial p_{k|K}}{\partial \beta_0} = \frac{\partial}{\partial \beta_0} \left[\frac{1}{1 + e^{-(\beta_0 + \beta_1 x_{k|K})}} \right]$$

$$= \frac{(-1)}{\left[1 + e^{-(\beta_0 + \beta_1 x_{k|K})}\right]^2} \times \left[-e^{-(\beta_0 + \beta_1 x_{k|K})}\right]$$

= $p_{k|K}(1 - p_{k|K}).$ (33)

And similarly,

$$\frac{\partial p_{k|K}}{\partial \beta_1} = p_{k|K} (1 - p_{k|K}) x_{k|K}.$$
(34)

Taking the partial derivative w.r.t. β_0 ,

$$\frac{\partial Q_5}{\partial \beta_0} = \sum_{k=1}^K \left\{ m_k - p_{k|K} - \frac{\beta_1^2 \sigma_{k|K}^2}{2} \frac{\partial}{\partial \beta_0} \left[p_{k|K} (1 - p_{k|K}) \right] \right\}$$
$$0 = \sum_{k=1}^K \left[m_k - p_{k|K} - \frac{\beta_1^2 \sigma_{k|K}^2}{2} (1 - p_{k|K}) (1 - 2p_{k|K}) p_{k|K} \right]. \tag{35}$$

And similarly for β_1 we arrive at,

$$\frac{\partial Q_5}{\partial \beta_1} = \sum_{k=1}^K \left[m_k x_{k|K} - x_{k|K} p_{k|K} - \frac{\beta_1 \sigma_{k|K}^2}{2} p_{k|K} (1 - p_{k|K}) \left[2 + \beta_1 x_{k|K} (1 - 2p_{k|K}) \right] \right]$$

= 0 (36)

1.2.7 Approximation for the expectation term containing $\lambda_{k,j}$

Let Q_6 denote the expectation term containing $\lambda_{k,j}$.

$$Q_{6} = \sum_{k=1}^{K} \sum_{j=1}^{J} \mathbb{E} \Big[\log(\lambda_{k,j} \Delta) n_{k,j} - \lambda_{k,j} \Delta \Big]$$
(37)

We perform a Taylor expansion of the summed term around $x_{k|K}$ [1].

$$\log(\lambda_{k,j}\Delta)n_{k,j} - \lambda_{k,j}\Delta \approx \log(\lambda_{k,j|K}\Delta)n_{k,j} - \lambda_{k,j|K}\Delta + \frac{1}{\lambda_{k,j|K}}\frac{\partial\lambda_{k,j|K}}{\partial x_k}(n_{k,j} - \lambda_{k,j|K}\Delta)(x_k - x_{k|K}) + \frac{1}{2}\left[\frac{1}{\lambda_{k,j|K}}\frac{\partial^2\lambda_{k,j|K}}{\partial x_k^2}(n_{k,j} - \lambda_{k,j|K}\Delta) - \frac{n_{k,j}}{\lambda_{k,j|K}^2}\left(\frac{\partial\lambda_{k,j|K}}{\partial x_k}\right)^2\right](x_k - x_{k|K})^2 \quad (38)$$

Taking the expected value on both sides,

$$\mathbb{E}\Big[\log(\lambda_{k,j}\Delta)n_{k,j} - \lambda_{k,j|K}\Delta\Big] \approx \log(\lambda_{k,j|K}\Delta)n_{k,j} - \lambda_{k,j|K}\Delta + \frac{1}{\lambda_{k,j|K}}\frac{\partial\lambda_{k,j|K}}{\partial x_k}(n_{k,j} - \lambda_{k,j|K}\Delta)\mathbb{E}\Big[x_k - x_{k|K}\Big] \\ + \frac{1}{2}\left[\frac{1}{\lambda_{k,j|K}}\frac{\partial^2\lambda_{k,j|K}}{\partial x_k^2}(n_{k,j} - \lambda_{k,j|K}\Delta) - \frac{n_{k,j}}{\lambda_{k,j|K}^2}\left(\frac{\partial\lambda_{k,j|K}}{\partial x_k}\right)^2\right]\mathbb{E}\big[x_k - x_{k|K}\big]^2 \\ \approx \log(\lambda_{k,j|K}\Delta)n_{k,j} - \lambda_{k,j|K}\Delta + 0$$

$$+\frac{1}{2}\left[\frac{1}{\lambda_{k,j|K}}\frac{\partial^2 \lambda_{k,j|K}}{\partial x_k^2}(n_{k,j}-\lambda_{k,j|K}\Delta)-\frac{n_{k,j}}{\lambda_{k,j|K}^2}\left(\frac{\partial \lambda_{k,j|K}}{\partial x_k}\right)^2\right]\sigma_{k|K}^2.$$
 (39)

Therefore,

$$Q_{6} \approx \sum_{k=1}^{K} \sum_{j=1}^{J} \log(\lambda_{k,j|K} \Delta) n_{k,j} - \lambda_{k,j|K} \Delta + \frac{1}{2} \left[\frac{1}{\lambda_{k,j|K}} \frac{\partial^{2} \lambda_{k,j|K}}{\partial x_{k}^{2}} (n_{k,j} - \lambda_{k,j|K} \Delta) - \frac{n_{k,j}}{\lambda_{k,j|K}^{2}} \left(\frac{\partial \lambda_{k,j|K}}{\partial x_{k}} \right)^{2} \right] \sigma_{k|K}^{2}$$

$$\tag{40}$$

2 Experimental data – model parameter estimates

The experimental model parameters estimated for each participant are shown in Table 1. Recall that we estimate x_k at the E-step and calculate the model parameters at the M-step. Recall also that due to computational complexity we split the estimation of the model parameters related to heart rate (i.e., the θ_i 's and the η coefficient) into two parts and calculate them separately. We calculate the θ_i 's offline based on maximum likelihood estimation (MLE) and select η based on which value maximized a log-likelihood term. As pointed out in the "Discussion" section of the main text, this separated-out calculation is a limitation of our model (e.g. it can result in numerical issues). The separate estimation of the heart rate parameters may be the reason why η values are small in the final estimates and why larger η values cause convergence issues in the Newton-Raphson solution for the state update $x_{k|k}$ since the MLE estimation of the θ_i 's may account for much of the heart rate variability. The value of β_1 also turned out to be negative for two participants (the M-step updates turned out to be negative even after the first iteration). Our algorithm provides two options for calculating β_0 and β_1 and it is possible to select the alternate option which sets $\beta_0 = 1$ and calculates β_1 empirically as well if this is to be avoided beforehand. As noted in the main text, a model with a less complex form of the conditional intensity function may enable all the parameters to be recovered at once at the M-step. Lower computational load is also likely to have the benefit of easier deployment onto a wearable platform.

Participant	σ	θ	δ_0	δ_1	σ_w^2	0٨	λ_1	σ^2_v	β_0	β_1	$\sigma_{_F}^2$	μ
	0.1339	0.9964	6.0453	0.8501	0.4475	-2.1516	0.8182	0.4881	-4.5533	0.1642	0.0147	-10^{-4}
2	0.1752	0.9984	10.4601	0.8507	0.4731	-6.3457	0.8019	0.5319	-4.9209	0.1145	0.0149	-10 ⁻⁶
ç	0.2050	0.9944	15.4847	0.9157	0.5967	-2.9270	0.8805	0.6270	-3.9055	0.2620	0.0196	-10^{-6}
4	0.2122	0.9889	14.8302	0.9337	0.5191	-3.3621	0.9018	0.5515	-3.1620	0.0282	0.0195	-10 ⁻⁶
IJ	0.1779	0.9963	13.4671	0.8726	0.4388	-3.6769	0.7916	0.5381	-3.7924	-0.1577	0.0150	-10 ⁻⁶
9	0.1532	0.9888	14.6993	0.8869	0.4876	-0.5512	0.8542	0.5247	-3.8582	0.1047	0.0170	-10 ⁻⁵
7	0.0934	0.9986	4.0806	0.8944	0.2311	-2.6035	0.8653	0.2804	-4.1830	0.5256	0.0109	-10 ⁻³
×	0.1231	0.9933	13.5384	0.8755	0.4095	-0.9875	0.8193	0.4829	-3.6242	0.3115	0.0148	-10 ⁻⁴
6	0.1587	0.9966	6.0052	0.9050	0.3256	-4.0313	0.8408	0.4178	-3.6640	-0.1002	0.0141	-10-6
10	0.1365	0.9911	5.6286	0.8804	0.3722	-2.1238	0.8515	0.4127	-4.3647	0.1101	0.0142	-10^{-4}
11	0.1533	0.9947	17.6648	0.9119	0.4269	-0.7794	0.8601	0.4901	-3.4974	0.1716	0.0171	-10 ⁻³
12	0.1536	0.9931	11.5030	0.9069	0.3077	-1.6278	0.8558	0.3835	-4.0583	0.2806	0.0140	-10-6
Participant	$ heta_i$'s											
1	0.0744,	1.1497, -(0.1054, -0.	1686, 128	39.5							
2	0.0733,	1.0793, -(0.2674, -0.	0028, 0.4	085, -0.4	041, -0.04	61, 0.128	9, 0.0149	, 1404.5			
°.	0.2484,	0.7572, 2	31.5820									
4	0.2079,	1.3273, -(0.4968, -0.	0615, -0.0	0765, -0.0	0068, 0.01	94, 341.5	199				r
ъ	0.1319,	1.3161, -(0.4226, -0.	1202, 0.0	481, -0.0	603, 0.037	6, 561.42	94				
9	0.0677,	0.9083, 6	25.1079									
7	0.1478,	1.0039, -(0.2359, 0.0	760, 585	.6449							
×	0.1289,	1.1844, -(0.3928, 69	9.4618								
6	0.0229,	0.7706, -(0.0228, -0.	1910, 0.2	809, 0.12	20, 1253.4	1					
10	0.1575,	1.1033, -(0.3104, 71	4.4876								
11	0.0990,	1.0544, -(0.4583, 0.0	0098, 0.16	316, 0.025	54, -0.0710	0, 0.0540, 0	0.1015,	107.0561			
12	0.0818,	0.7980, -(0.2500, 0.0)853, 0.2(50, 693.1	1574						

Table 1: Estimated model parameters on experimental data

References

- Coleman TP, Yanike M, Suzuki WA, Brown EN. A mixed-filter algorithm for dynamically tracking learning from multiple behavioral and neurophysiological measures. In: The dynamic brain: An exploration of neuronal variability and its functional significance. Oxford Univ. Press; 2011. p. 1–16.
- [2] Smith AC, Frank LM, Wirth S, Yanike M, Hu D, Kubota Y, et al. Dynamic analysis of learning in behavioral experiments. Journal of Neuroscience. 2004;24(2):447–461.
- [3] Prerau MJ, Smith AC, Eden UT, Kubota Y, Yanike M, Suzuki W, et al. Characterizing learning by simultaneous analysis of continuous and binary measures of performance. Journal of Neurophysiology. 2009;102(5):3060–3072.