
Single-cell transcriptome data clustering via
multinomial modeling and adaptive fuzzy k-means
algorithm

1 ADDITIONAL THREE DENOISING MODEL
We substitute zero-inflated negative binomial model, mask MSE and weight MSE for multinomial denoising
model, respectively. Particularly, for the former,

L1(πij , µij , θij |Xij) = −
n∑
i=1

m∑
j=1

logPZINB(Xij ; πij , µij , θij) (S1)

where

PZINB(Xij ; πij , µij , θij) = πijδ0 + (1− πij)PNB(Xij ;µij , θij) (S2)

δ0 = I{Xij = 0} (S3)

PNB(Xij ;µij , θij) =
Γ(Xij + θij)

Γ(θij)
(

θij
θij + µij

)θij (
µij

θij + µij
)Xij (S4)

For the middle one,

L1(X, X̂) = ||PX(X − X̂)||2F (S5)

where operator PZ forces the loss function only on non-zero entries of X . For the latter,

L1(X, X̂) =
n∑
i=1

m∑
j=1

Xij(Xij − X̂ij)
2 (S6)

2 ADAPTIVE LOSS FUNCTION
For an arbitrary vector x ∈ Rd, l1-norm and l2-norm are defined as ||x||1 =

∑d
i=1 |xi| and ||x||22 =∑d

i=1 x
2
i , respectively. As we all know, l2-norm is sensitive to the large outliers, but has better impact to

objective when outliers are small. Conversely, l1-norm is robust to the large outliers, but sensitive to the
small outliers. Similarly, for a matrix Xn×d, l2,1-norm defined as ||X||2,1 =

∑n
i=1 ||xi||2 is sensitive to the

small outliers and robust to the large ones, while the Frobenius-norm represented as ||X||2F =
∑n

i=1 ||xi||22
is sensitive to the large outliers. Besides, l2,1-norm is non-smooth, while the Frobenius-norm based
optimization problems are easy to solve. To exploit both their advantages, (Nie et al., 2013) proposed a
robust loss function namely the adaptive loss function which is defined as

||X||σ =
n∑
i=1

(1 + σ)||xi||22
||xi||2 + σ

(S7)
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where σ is a tradeoff parameter that controls robustness to various type outliers. We can see that the adaptive
loss function interpolates between l2,1-norm and Frobenius-norm. And the mathematical properties of
||Xσ|| can be summarized as follows:
1. ||X||σ is twice differential, convex and non-negative so that it is suitable as a loss function.
2. When ∀i, ||xi|| � σ, then ||X||σ → 1+σ

σ ||X||
2
F .

3. When ∀i, ||xi|| � σ, then ||X||σ → (1 + σ)||X||2,1.
4. When σ → 0, then ||X||σ → ||X||2,1.
5. When σ →∞, then ||X||σ → ||X||2F .
Moreover, we also test the performance of l2,1-norm and Frobenius-norm on ten real datasets which
correspond to σ = 0 and σ =∞, respectively. From the results in Figure S10, we can see that for those
datasets with more clusters, such as “Chen”, “Park” and “Tosches turtle”, l2,1-norm(σ = 0) can result in
better clustering performance than Frobenius-norm(σ =∞).

3 SUPPLEMENTARY TABLES AND FIGURES
3.1 Tables

In the real data analysis section, we select 10 real datasets that have made the purified cell types available
to public. We summarize their basic information and source into following table.

Table S1. The information and source for 10 real datasets from different organs. The first column represents the dataset name. Bladder, Kidney, LimbMuscle
and Spleen refer to Qx Bladder, Qx Kidney, Qx LimbMuscle and Qx Spleen, respectively.

real data information
organ cell type num cell num zero percent reference

Bach Gammary Gland 8 23184 88.04% (Bach et al., 2017)
Chen Brain 46 12089 93.74% (Chen et al., 2017)
Enge Pancreas 6 2282 86.05% (Enge et al., 2017)
Park Kidney 16 43745 93.60% (Park et al., 2018)

Bladder Bladder 4 2500 86.94% (Schaum et al., 2018)
Kidney Kidney 8 2781 90.84% (Schaum et al., 2018)

LimbMuscle Limb Muscle 6 3909 93.57% (Schaum et al., 2018)
Spleen Spleen 5 9552 94.34% (Schaum et al., 2018)

Tosches turtle Brain 15 18664 90.83% (Tosches et al., 2018)
Young Kidney 11 5685 94.70% (Young et al., 2018)

Table S2. Comparison of NMI values among scDMFK, D-scDMFK and scDM+kmeans, D-scDM+kmeans in ten real datasets. Bladder,Kidney,LimbMuscle
and Spleen refer to Qx Bladder, Qx Kidney, Qx LimbMuscle and Qx Spleen respectively.

NMI value of real data
D-scDM+kmeans D-scDMFK scDM+kmeans scDMFK

Bach 0.78 0.86 0.77 0.83
Chen 0.61 0.71 0.62 0.78
Enge 0.71 0.73 0.73 0.76
Park 0.45 0.69 0.49 0.78

Bladder 0.96 0.97 0.96 0.97
Kidney 0.80 0.82 0.82 0.84

LimbMuscle 0.92 0.94 0.92 0.94
Spleen 0.78 0.85 0.80 0.83

Tosches turtle 0.63 0.68 0.63 0.69
Young 0.71 0.74 0.72 0.76

3.2 Figures
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Figure S1. Simulation analysis. (A and B)Boxplots of NMI values in Splatter balanced and imbalanced
simulation, respectively. (C)Change of NMI values with the increasing dropout rate in Splatter balanced
experiment.
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Figure S2. Simulation analysis. (A)Change of NMI values with the increasing cluster number in Splatter
balanced experiment. (B and C)Change of NMI values with the increasing dropout rate and geometric in
Splatter imbalanced experiment.

Frontiers 5



Supplementary Material

Figure S3. Real data analysis. (A)Dotplot of ten real datasets. Every point in x-axis stands for a dataset
and in y-axis a method. The scatter reflects the corresponding performance of a method in a dataset
where the color stands for its NMI value, and the size stands for its ranking according to NMI value
among the eight methods. The blue scatter implies that its NMI value is less than 0.2. (B) Visualization of
“Quake 10x Kidney” dataset.
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Figure S4. Robustness and scalability experiments of real dataset. (A) Downsampling experiments:
histogram of NMI values under different sample size of three datasets.(B) Dropout experiments: histogram
of NMI values for raw data and disturbance data with 15% artificial dropout.
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Figure S5. Cluster number estimation experiments in real datasets using gap statistic. (A, B, C and
D)Change of gap statistic values(y-axis) with the referenced cluster number(x-axis) in four real datasets.
The number in parentheses represents the true cluster number for the corresponding dataset. The red dot
corresponds to the optimal cluster number estimated by gap statistic, which is consistent with the true one.

Figure S6. Robustness experiments for changing cluster number. Change of NMI values with the disturbed
cluster number in eight real data sets.
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Figure S7. Additional comparison experiments in real datasets. (A)Comparison of NMI values between
adaptive fuzzy k-means and hard k-means clustering in ten real datasets. (B)Comparison of ARI and NMI
values between scDMFK and DIMMSC in six real datasets, respectively.
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Figure S8. Additional comparison experiments in real datasets. (A and B)Comparison of ARI and NMI
values between scDMFK and other scRNA-seq data clustering methods in ten real datasets.

Figure S9. Additional comparison experiments in real datasets. Comparison of true cluster numbers and
estimated ones by Seurat in ten real datasets.
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Figure S10. Additional comparison experiments in real datasets. (A and B)Change of ARI and NMI
values with three σ value situations in ten real datasets.
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