Supplementary Information

Molecular basis for assembly of the shieldin complex and its implications for NHEJ

Liang et al.

Supplementary Figure 1. Overview of the 2Fo-Fc electron density map of the SHLD3-REV7-SHLD2 complex and local density at regions that are important for the formation of the complex. The superimposed magenta, dark yellow, light yellow and blue C α chains are that of SHLD3, C-REV7, O-REV7 and SHLD2, respectively. **a**, Overview of the 2Fo-Fc electron density map of the SHLD3-REV7-SHLD2 complex. The map was contoured at 1.5 σ . **b-e**, Sections of the 2Fo-Fc electron density map

surrounding some important regions contoured at 1.3σ allows unambiguous placement of protein sidechains. RBM₂ of SHLD3 (**b**). The FXPWFP motif of SHLD3 (**c**). Some important residues at the conformational dimer interface (**d**). The interface between O-REV7 and SHLD2 centered around Tyr63 of O-REV7 (**e**). C-REV7 residues were shown with the carbon bonds colored dark yellow, while light yellow, red and blue carbon bonds indicate that of O-REV7, SHLD3 and SHLD2, respectively. Red and blue bonds represent that of oxygen and nitrogen, respectively.

Supplementary Figure 2. Structural alignment of C-REV7-SHLD3 and C-REV7-REV3.

Structural superimposition of C-REV7 (green) –SHLD3 (magenta) and C-REV7 (orange)–REV3 (salmon) (PDB: 3VU7). C-REV7^{S3} represents SHLD3 bound C-REV7, and C-REV7^{R3} represents REV3 bound C-REV7. The superimposition was done by align C-REV7^{S3} to C-REV7^{R3} with an RMSD (root mean square deviations) of 0.731 Å.

Supplementary Figure 3. Structural alignment of C-REV7-O-REV7 and C-Mad2-O-Mad2 and molecular weights measured by SEC-MALS.

a, Structural superimposition of C-REV7 (green)-O-REV7 (cyan) and C-Mad2 (salmon) -O-Mad2 (gray) (PDB: 2V64). The superimposition was done by align C-REV7 to C-Mad2 with an RMSD of 1.27 Å. **b**, The calculated masses for recombinant His-REV7 and SHLD3(1-82) are 26.2 kDa and 9.4 kDa, respectively. The calculated masses for SHLD3(1-82)-C-REV7-O-REV7 and SHLD3(1-82)-C-REV7 are 61.8 kDa and 35.6 kDa, respectively. WT: wild type. Molecular weight of REV7^{WT}-SHLD3(1-82) is 55 kDa, which indicates the sample was not homogeneous, some were one SHLD3(1-82) with two REV7 molecules and others were one SHLD3(1-82) with one REV7 molecule. **c**, Arg185 is a residue that does not locate in the interface, hence REV7^{R185A} behaved like REV7^{WT}. **d-h**, Mutations of residues that locate at the dimer interface abolished SHLD3 mediated REV7 conformational dimer formation and form homogeneous C-REV7-SHLD3(1-82) heterodimer. The calculated mass for C-REV7-SHLD3(1-82) is 35.6 kDa. The fitted errors obtained from the data analysis software are showed in the brackets.

Supplementary Figure 4. a-b, ITC measurements of binding affinity between REV7^{K44A}-SHLD3(45-82) or REV7^{K44A}-SHLD3(1-82)^{5A} and REV7^{K129A}. The calculated N and K_D are indicated as described in Fig. 2d. Source data are provided as a Source Data file.

Supplementary Figure 5. ITC measurements of binding affinity between REV7-SHLD3(1-82) mutants and REV7^{K129A} in the context of MBP-SHLD2(1-60).

a, ITC measurement of the interaction between REV7^{E35A}-SHLD3(1-82) (E35A-1-82) and REV7^{K129A} in the context of MBP-SHLD2(1-60). Excessive MBP-SHLD2(1-60) was first incubated with REV7^{K129A}, then REV7^{E35A}-SHLD3(1-82) was titrated into the cell containing REV7^{E35A}-SHLD3(1-82) and MBP-SHLD2(1-60). **b**, ITC measurement of the interaction between REV7^{K129A}-SHLD3(1-82) (K129A-1-82) and REV7^{K129A} in the context of MBP-SHLD2(1-60). The titration was done as described in Supplementary Fig. 5a. The calculated N and K_D are indicated as described in Fig. 2d. Source data are provided as a Source Data file.

Supplementary Figure 6. The N terminus of SHLD3 binds to O-REV7.

a, Structural details of β 1 of SHLD2 (β 1^{S2}) and β 1 of SHLD3 (β 1^{S3}). **b**, Root mean square deviations (RMSD) of C-REV7-O-REV7-SHLD3(1-82) along the MD simulation.

Supplementary Figure 7. REV7^{Y63A}-SHLD3(1-82) shows impaired ability to interact with REV3 as compared with REV7^{W171A}-SHLD3(1-82).

a, Structural details of C-REV7-SHLD3_{RBM2} shown by cartoon model. C-REV7 is shown in green, O-REV7 is shown in cyan and SHLD3 is shown in magenta. Tyr63 and Trp171 of C-REV7 are shown in spheres model to highlight their interactions with SHLD3. Tyr63, Trp171 and β sheet of SHLD3 form a sandwich to stabilize the complex. **b,c**, Molecular weights measured by SEC-MALS. Molecular weights of REV7^{Y63A}-SHLD3(1-82) and REV7^{W171A}-SHLD3(1-82) are 63 kDa and 65 kDa, respectively, which correspond to one SHLD3(1-82) with two REV7 molecules, and indicate the samples were homogeneous C-REV7-O-REV7-SHLD3(1-82). The calculated N and K_D are indicated as described in Fig. 2d. **d**, ITC measurement of the interaction between

SHLD3(1-82) and REV7. SHLD3(1-82) binds tightly to REV7 with a nanomolar affinity (about 130 nM) at a ratio about 1:2. **e**, ITC measurements of the interaction between MBP-REV3(1847-2021) and REV7^{Y63A}-SHLD3(1-82) or REV7^{W171A}-SHLD3(1-82). The calculated N and K_D are indicated as described in Fig. 2d. **f**, Gel filtration profiles show the interaction between MBP-REV3(1847-2021) and REV7^{Y63A}-SHLD3(1-82) or REV7^{W171A}-SHLD3(1-82) in a Superdex200 Increase 10/300 SEC column. Y63A-1-82 is short for REV7^{Y63A}-SHLD3(1-82) complex, W171A-1-82 is short for REV7^{W171A}-SHLD3(1-82) complex, and MBP-1847-2021 is short for MBP-REV3(1847-2021). Since MBP-REV3(1847-2021) competes away SHLD3(1-82), and SHLD3(1-82) eluted at 17 ml, the bands for SHLD3(1-82) cannot be seen in supplementary Fig. 7f (top, blue panel). n = 2 biologically independent experiments. Source data are provided as a Source Data file.

Supplementary Figure 8. REV3 and SHLD3 binds tightly to REV7^{K129A} with a similar binding affinity and molecular machinery of SHLD3 mediated REV7 conformational dimer in NHEJ.

a, Anion exchange analysis of the sample after titration in Fig. 8a in a Resource O 1ml column. The blue line represents the absorbance at 280 nm and brown line represents the conductance. Fractions (1 ml each) were analyzed by SDS-PAGE and stained by Coomassie brilliant blue (the top panel), which shows two complexes (REV7-SHLD3 and REV7-REV3) formed and they were separated. n = 2 biologically independent experiments. b, ITC measurement of the interaction between REV3(1847-1906) and REV7^{K129A}. REV3(1847-1906) binds to REV7^{K129A} with a nanomolar affinity ($K_D =$ 7.3 ± 1.9 nM). c, ITC measurement of the interaction between SHLD3(1-82) and REV7^{K129A}. SHLD3(1-82) binds to REV7^{K129A} with a nanomolar affinity ($K_D = 4.8 \pm$ 2.8 nM). The calculated N and K_D are indicated as described in Fig. 2d. Source data are provided as a Source Data file. d, Molecular machinery of SHLD3 mediated REV7 conformational dimer in NHEJ. Rectangle represents an REV7 in its closed state while Ellipse shows an open REV7. The C-REV7 and O-REV7 in SHLD3 mediated REV7 conformational dimer are colored in green and cyan, respectively. In addition to assembly shieldin complex with SHLD2 to bind ssDNA, the conformational dimer may act as a platform to coordinate various REV7 binding proteins, such as REV3.

Supplementary Figure 9. Uncropped and unprocessed versions of gels and western blots presented in the main and supplementary figures.

Supplementary Figure 9 (continued). Uncropped and unprocessed versions of gels and western blots presented in the main and supplementary figures.

Supplementary Figure 7f

Supplementary Figure 9 (continued). Uncropped and unprocessed versions of gels and western blots presented in the main and supplementary figures.

Supplementary Figure 9 (continued). Uncropped and unprocessed versions of gels and western blots presented in the main and supplementary figures.

Supplementary Figure 9 (continued). Uncropped and unprocessed versions of gels and western blots presented in the main and supplementary figures.

	Observed Mass	Calculated Mass	$E_{max}(0/)$
	(kDa)	(kDa)	Error (%)
REV7 ^{WT} -SHLD3(1-82)	55	36~62	ND
REV7 ^{R185A} -SHLD3(1-82)	57	36~62	ND
REV7 ^{E35A} -SHLD3(1-82)	37.1	36	3.1
REV7 ^{K44A} -SHLD3(1-82)	37.2	36	3.3
REV7 ^{R124A} -SHLD3(1-82)	34.1	36	-5.3
REV7 ^{K129A} -SHLD3(1-82)	35.3	36	-1.9
REV7 ^{K190A} -SHLD3(1-82)	34.7	36	-3.6
REV7 ^{Y63A} -SHLD3(1-82)	63	62	1.6
REV7 ^{W171A} -SHLD3(1-82)	65	62	4.8

Supplementary Table 1. The observed and calculated masses of the complexes measured by SEC-MALS.

Vector	Forward primer	Backward primer	
	(5'-3')	(5'-3')	
His-REV7	GGAATTCGATGACCACGCTCAC	ATAAGAATGCGGCCGCTCAG	
	ACGAC	CTGCCTTTATGAGCG	
His-MBP-REV7	GGAATTCATGACCACGCTCACA	ATAAGAATGCGGCCGCTCAG	
	CGAC	CTGCCTTTATGAGCG	
Flag-REV7	CCGCTCGAGGCCACCATGGATT	GCTCTAGATCAGCTGCCTTTA TGAGCG	
	ACAAGGATGACGACGATAAGAC		
	CACGCTCACACGAC		
His-REV7-	GGAATTCCATATGACCACCGAA	CCGCTCGAGTCAGTGAGATT	
	GTTATCCTGCACTACCGTCCGTG	TAGCGTCGTGTTCAGAGATG	
511205(1-62)	CGAAT	GTCAGGTACTGTTTAACG	
His-REV7-	GGAATTCCATATGACCACCGAA	CCGCTCGAGTCAAGCTTCTT	
	GTTATCCTGCACTACCGTCCGTG		
511205(1-04)	CGAAT	enonominiecooc	
mchammy SUU D2	CCGCTCGAGCTATGACCACCGA	CGGGATCCTTACATAGAGAA	
inclienty-stillb5	AGTTATCCT	GATAACACCGTATT	
	GGAATTCCATATGCAGGACTTC	CCGCTCGAGTCAGTGAGATT	
82)	CCGACCCGTCCGCTGTCTCGTT	TAGCGTCGTGTTCAGAGATG	
82)	TCATCCCGTGGTTCC	GTCAGGTACTGTTTAACG	
SHI D3(1-82)-His	CATGCCATGGGCATGACCACCG	CCGCTCGAGGTGAGATTTAG	
SHLD5(1-82)-IIIS	AAGTTATCCTGC	CGTCGTGTTCAG	
S-tag-HA-SHLD3	CGGGATCCATGACCACCGAAGT	ATAAGAATGCGGCCGCTTAC	
	татест	ATAGAGAAGATAACACCGTA	
		TT	
SHLD2(1-60)	CATGCCATGGGCATGAGTGGAG	CCGCTCGAGTCATTCAAGAT	
511LD2(1-00)	GATCTCAAGTCC	TTTTGTGCTGTTTTTC	
SHLD2(1-52)	CATGCCATGGGCATGAGTGGAG	CCGCTCGAGTCAATCCTTCA	
	GATCTCAAGTCC	GATATAAAGAATGTTGAC	
MBP-SHLD2(1-	GGAATTCATGAGTGGAGGATCT	CCGCTCGAGTCATTCAAGAT	
60)	CAAGTCC	TTTTGTGCTGTTTTTC	

Supplementary Tab	ole 2. Primers for constructing pla	smids.

	GGAATTCCCATGGGCTCTCACA	
cREV1 CTD-His	AAAAATCTTTCTTCGACAAAAA	
	ACG	AIGIGUITCCAI
REV3(1871-2021)-	CATGCCATGGGCACCCCTCGAA	CCGCTCGAGTTTCTTGGAAC
His	CTGCTAACATTCT	GTTCGTATTCTTCT
		ATAAGAATGCGGCCGCTCAT
MBP-KEV3(184/-	COTCATACTT	TTCTTGGAACGTTCGTATTCT
2021)	GGAATTCATGTTGACACCAACT	TCT
		ATAAGAATGCGGCCGCTCAT
MBP-KE V 5(1847-		TCCTGGTAAATAGTCTCAGA
1906)	CCIGAIAGII	CAGGTC
DEV2(1847 1006)	CATGCCATGGGCATGCTGACCC	CCGCTCGAGTTCCTGGTAGA
REV3(1847-1906)-	CGACCCCGGACTCTTCTCCGCG	TGGTTTCAGACAGGTCGTGG
H1S	TTCTACCTCTTCTC	TCCAGCAGGGT
GFP-REV3 ^{TR1}	See below (3 steps)	See below (3 steps)
1 at: 1947 2120	TCCGGACTCAGATCTCGAGCTA	AGATCCGGTGGATCCTTAAA
1st: 1847-3130	TGTTGACACCAACTCCTGATAG	ACTGGTCTAATAACTGCCG
	TACAAGTCCGGACTCAGATCTC	TTGGTGTCAACATAGC
2nd: 1-526	GAGCTATGTTTTCAGTAAGGATA	GAATTCTCCATCTAACTGAG
	GTGACTGC	GTATAGAAAGAC
	AAGGATGACGACGATAAG	GGAGTTGGTGTCAACATAGC
3rd: 1042-1251	CCAAAGAAAAGTCACAGAAGA	GAATTCAGACACATTCTGGT
GFP-REV3 ^{FL}	AAGT	GTTTC
	TACAAGTCCGGACTCAGATCTC	
	GAGCTATGTTTTCAGTAAGGATA	AGAICCGGIGGAICCIIAAA
	GTGACTGC	ACIGUICIAAIAACIGUUG
GFP-REV3(1042- 1251+1847-2021)	AAGGATGACGACGATAAG	GGAGGGAGAGGGGCG
	CCAAAGAAAAGTCACAGAAGA	TTATTTCTTGGAACGTTCGTA
	AAGT	ТТСТТ
GFP-REV3(1847-	GGAATTCTATGTTGACACCAAC	CGGGATCCTCATTTCTTGGA
2021)	TCCTGATAG	ACGTTCGTATTCTT

Supplementary Table 2 (continued). Primers for constructing plasmids.

Supplementary Table 3. Primers for mutagenesis.

Vector	Forward primer	Backward primer	
	(5'-3')	(5'-3')	
REV7 ^{E35A}	CTCTACGTGCGCGCGGGTCTACC	CACGGGGTAGACCGCGCGC	
	CCGTG	ACGTAGAG	
REV7 ^{K44A}	CCGTGGGCATCTTCCAGGCACG	CGTTGTACTTCTTGCGTGCCT	
	CAAGAAGTACAACG	GGAAGATGCCCACGG	
DEV7Y63A	CCCGGAGCTGAATCAGGCTATC	CAGCGTGTCCTGGATAGCCT	
REV/ ¹⁰⁰¹¹	CAGGACACGCTG	GATTCAGCTCCGGG	
REV7 ^{R124A}	GGAGCAGCTGCTCGCGGCCTTC	CAGGATGAAGGCCGCGAGC	
	ATCCTG	AGCTGCTCC	
DEV7K129A	CGGGCCTTCATCCTGGCGATCA	ATCGCACACGCTGATCGCCA	
KEV/	GCGTGTGCGAT	GGATGAAGGCCCG	
DEV7W171A	CATCAAGGATTTCCCCGCGATC	CTCATCCGCCAGGATCGCGG	
KEV/	CTGGCGGATGAG	GGAAATCCTTGATG	
	GTCCACATGCATGACCCCGCGC	GTTTTTAGTGGTATCAGCGC	
KEV/	TGATACCACTAAAAAC	GGGGTCATGCATGTGGAC	
REV7 ^{K190A}	CCCCCGGCTGATACCACTAGCA	CCGACGTCATGGTTGCTAGT	
	ACCATGACGTCGG	GGTATCAGCCGGGGG	
SHLD3(1-82) F38A	CGTCCGCTGTCTCGTGCCATCC	GGGAACCACGGGATGGCAC	
	CGTGGTTCCC	GAGACAGCGGACG	
SHLD3(1-82) ^{5A}	CCGACCCGTCCGCTGTCTCGTG	GTTTAGAACCGTCGTACGCG	
	CCATCGCGGCGGCCGCGTACGA	GCCGCCGCGATGGCACGAG	
	CGGTTCTAAAC	ACAGCGGACGGGTCGG	
DEV7 SHI D2(20	GTATAAGAAGGAGATATACATAT GTTCATCCCGTGGTTCCCG	CGGGAACCACGGGATGAAC	
REV7-SHLD3(38-		АТАТGTATATCTCCTTCTTATA	
02)		С	
REV7-SHLD3(45-	AAGAAGGAGATATACATATGGA	GCGGCAGTTTAGAACCGTCC	
82)	CGGTTCTAAACTGCCGC	ATATGTATATCTCCTTCTT	