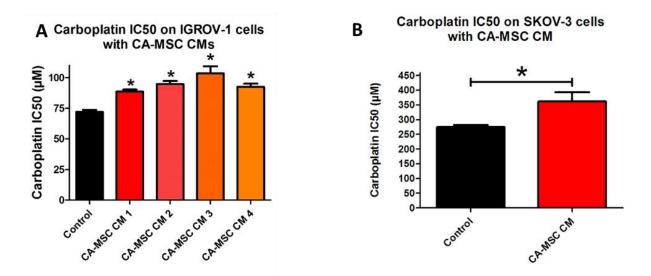
Supplementary material

Tumor cells educate mesenchymal stromal cells to release chemoprotective and immunomodulatory factors

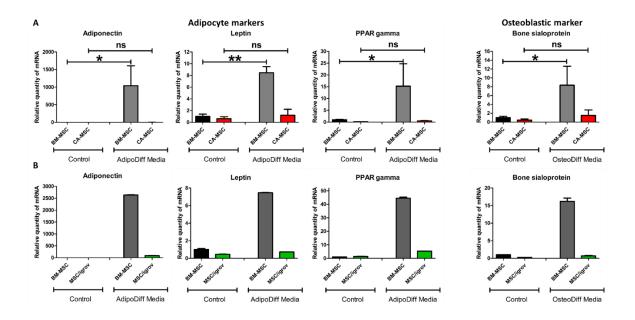

Augustin Le Naour^{1,2}#, Mélissa Prat³#, Benoît Thibault^{1,2}, Renaud Mével^{1,2}, Léa Lemaitre^{1,2}, Hélène Leray^{1,2}, Marie-Véronique Joubert^{1,2}, Muriel Golzio⁴, Lise Lefevre³, Eliane Mery¹, Alejandra Martinez¹, Gwénaël Ferron¹, Jean-Pierre Delord^{1,2}, Agnès Coste³¶, Bettina Couderc^{1,2}¶[†].

Institut Claudius Regaud –IUCT Oncopole, Université de Toulouse, Toulouse, France
INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT), Toulouse, France
UMR 152 Pharma Dev, Université de Toulouse, IRD, UPS, Toulouse, France,
UMR CNRS 5089, IPBS Toulouse, France

*Correspondence should be addressed to: <u>Couderc.bettina@iuct-oncopole.fr</u>

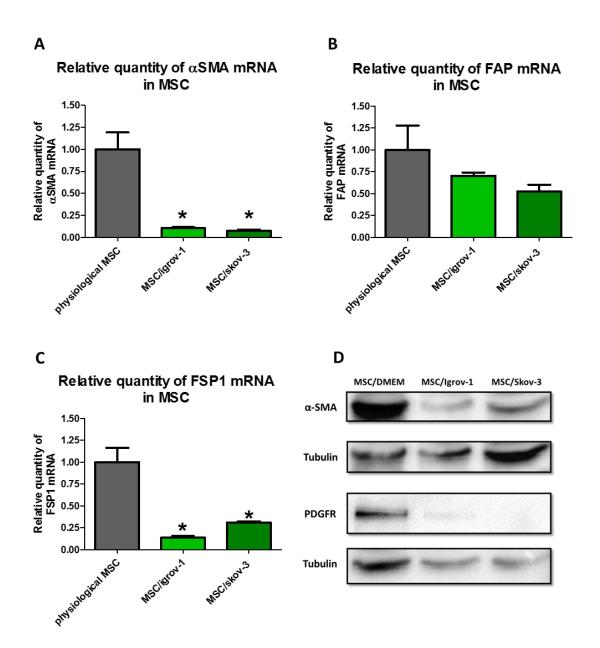
Content

I. S	Supplementary figures	p. 3
	ary Figure S1: The chemoresistance acquisition by SKOV-3 and IGROV- fors secreted by CA-MSCs	1 cells p. 3
Supplement	ary Figure S2: Functional characterization of CA-MCS multipotency.	p. 4
Supplement analysis.	ary Figure S3: Characterization of CA-MCS multipotency by transcriptional	l p. 5
Supplement	ary Figure S4: Test of iCA-MSC differentiation in CAF	p. 6
Supplement	ary Figure S5: Effects of treatments on the chemokine production by MSCs	
		p. 7
Supplement	ary Figure S6: Expression of CXCR1/2 and sensitivity to its inhibition in O	ГCs
		p. 8
	ary Figure S7: Effects of the CXCR1/2 inhibitor are lost in the absents and require their prior polarization by MSCs	nce of p. 9
II. S	Supplementary tables	p. 10
Supplement	ary Table 1: Peritoneal cancer index	p. 10
Supplement	ary Table 2: Baseline characteristics of patient samples.	p. 11
	ary Table 3: Effect of iCA-MSC secretions on the transcription of M2 polaries in primary human monocytes	ization p. 12
Supplement	ary Table 4: Primers used for qRT-PCR analysis	p. 13

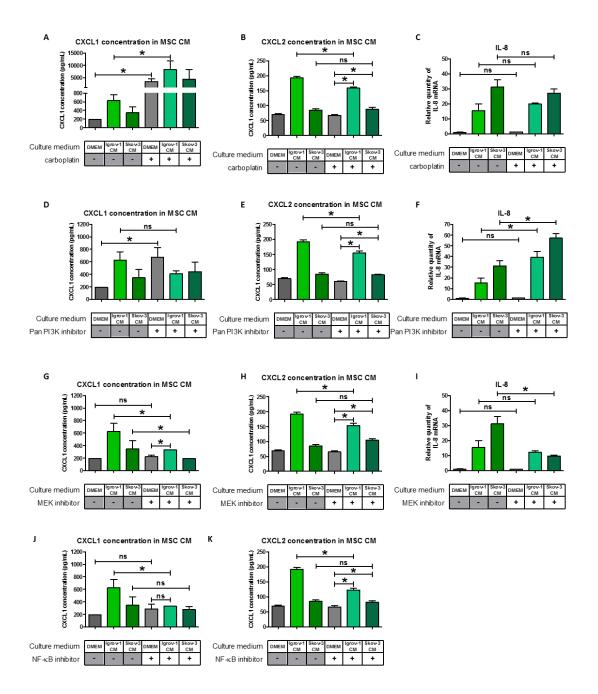

Supplementary Figure S1: The chemoresistance acquisition by SKOV-3 and IGROV-1 cells through factors secreted by CA-MSCs

A: Histogram representing the mean IC50 of carboplatin on SKOV-3 cells cultured with CA-MSC CM (n=6). B: Histogram representing the mean IC50 of carboplatin on IGROV-1 cells cultured with CA-MSC CM from 4 different patients (each tested in triplicate).

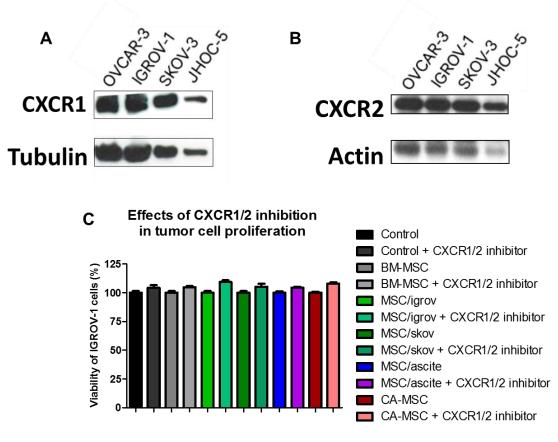
A Nile Red : lipid vacuoles				В	Nile Red : li	lipid vacuoles		
Control Ad		AdipoDif	AdipoDiff media		Control		AdipoDiff media	
BM-MSC	CA-MSC	BM-MSC	CA-MSC		BM-MSC	MSC/igrov	BM-MSC	MSC/igrov
		1	1					1
FAST v	iolet : Alka	line phosph	atase		FAST	/iolet : Alkal	ine phosph	natase
Cont	trol	OsteoDif	fmedia		Con	trol	OsteoDif	fmedia
BM-MSC	CA-MSC	BM-MSC	CA-MSC		BM-MSC	MSC/igrov	BM-MSC	MSC/igrov
	1						14	
Alizarin red : Mineralization				Alizarin red : Mineralization			ion	
Control		OsteoDiff media			Control		OsteoDiff media	
BM-MSC	CA-MSC	BM-MSC	CA-MSC		BM-MSC	MSC/igrov	BM-MSC	MSC/igrov
	AN AN							


Supplementary Figure S2: Functional characterization of CA-MCS multipotency.

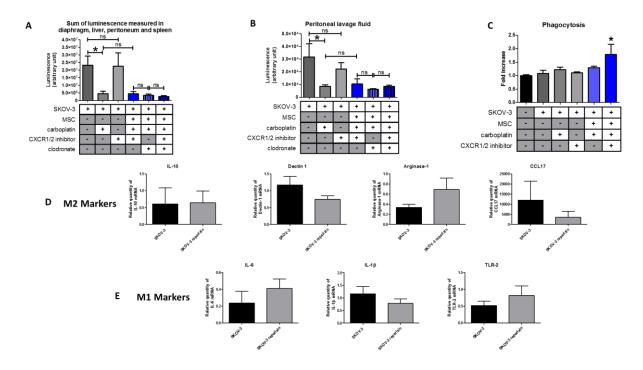
BM-MSCs (A and B), CA-MSCs (A) and iCA-MSCs (B) were cultured for 21 days prior to colorimetric tests. Colorimetric tests were performed using Nile red as an adipocyte stain, FAST violet and alizarin red as an osteoblast stain. BM-MSCs can differentiate into adipocytes or osteoblasts but CA-MSCs or iCA-MSCs seem to be unable to differentiate into adipocytes or osteoblasts.


Supplementary Figure S3: Characterization of CA-MCS multipotency by transcriptional analysis.

BM-MSCs (A and B), CA-MSCs (A) and iCA-MSCs (B) were cultured for 14 days prior to RTqPCR analysis of marker genes for adipocyte (adiponectin, leptin, PPARγ) or osteoblastic (bone sialoprotein) differentiation.


Supplementary Figure S4: Test of iCA-MSC differentiation in CAF

BM-MSCs were cultured alone or in CM from IGROV-1 (MSC/igrov-1) or SKOV-3 (MSC/skov-3) cells for 21 days. Then media were changed for complete DMEM. After three days, cells or CM were collected. A–C: The transcription of genes coding for α -SMA (A), FAP (B), FSP1 (C) was evaluated by RT-qPCR performed on mRNA extracted from BM-MSCs and different types of iCA-MSCs (induced by IGROV-1 CM or SKOV-3 CM). The data from BM-MSCs were set to 1 and the relative quantity of mRNA is shown for α -SMA (A), FAP (B), FSP1 (C). Histograms show the mean value of three independent experiments (mean +/- SEM, * p < 0.05). D: BM-MSCs were cultured in IGROV-1 CM, SKOV-3 CM or in control medium (physiological BM-MSCs) for 21 days. Cells were collected and proteins were extracted. PDGFR and α -SMA expression was assayed by western blot and normalized to tubulin expression (representative of 3 experiments).


Supplementary Figure S5: Effects of treatments on the chemokine production by MSCs

BM-MSCs were cultured alone or in CM from IGROV-1 (MSC/igrov-1) or SKOV-3 (MSC/skov-3) cells for 21 days. Then media were changed for complete DMEM and cells were treated by carboplatin (50 μ M) (A, B, C), a pan PI3K inhibitor, the GDC0941 (1 μ M) (D, E, F), a MEK inhibitor, the AZD6244 (1 μ M) (G, H, I), a NF- κ B inhibitor, the Bay 11-7082 (10 μ M) (J, K), or vehicle (DMSO). After three days, CM or cells were collected. The concentrations of CXCL1 and CXCL2 in the CM were quantified using ELISA kits. RNA was extracted. The transcription of IL-8 gene in iCA-MSC or physiological MSC were quantified using a RT-qPCR analysis and normalized to GAPDH transcription. Histograms show the mean concentrations of three independent experiments (Mean +/- SEM, * p < 0.05).

Supplementary Figure S6: Expression of CXCR1/2 and sensitivity to its inhibition in OTCs

A, B: The expression of CXCR1 (A) and CXCR2 (B) was validated by Westernblot on 4 ovarian tumor cell (OTC) lines. Tubulin and actin were used as loading control. C: Histogram representing the viability of IGROV-1 cells cultured with BM-MSC CM (physiological MSCs), CA-MSC or "induced" CA-MSC (iCA-MSC) CM from different origins (BM-MSCs cultivated with IGROV-1 CM, SKOV-3 CM or ascites) (n=4 for each type of MSC).

Supplementary Figure S7: Effects of the CXCR1/2 inhibitor are lost in the absence of macrophages and require their prior polarization by MSCs

A, B, C: 10⁷ SKOV-3luc +/- 10⁶ MSC were injected intraperitoneally (i.p.) into nude mice (6 mice/group at the beginning of the experiments). After 7 days, treatments were started, including 1 injection of carboplatin every 7 days for 3 weeks, 1 injection of reparixin 3 times per week for 3 weeks. On day 36, the mice were euthanized and a peritoneal lavage was carried out with 5 mL of NaCl 0.9%. The peritoneum, spleen, liver and diaphragm were removed +/- 1 injection of clodronate liposome once a week for 4 weeks. After addition of luciferin, the sum of the luminescence of the peritoneum, spleen, diaphragm and liver (A) and the luminescence in the peritoneal lavage fluid (B) was measured. The ability of phagocytosis of peritoneal macrophages isolated from mice was evaluated and normalized to unstimulated macrophages (C). D, E: Representative gene expression analysis of peritoneal macrophages isolated from mice that have been injected with SKOV-3 cells admixed or not with MSCs and treated with carboplatin +/- CXCR1/2 inhibitor. RNA was extracted and analyzed by RT-qPCR. The comparison between groups was performed using a Wilcoxon-Mann Whitney test (independent non-parametric data). P values of <0.05 (*) indicate a significant difference.

Supplementary Table 1: Peritoneal cancer index

Maximal nodule diameter	No visible disease		< 0.5 cm	0.5 to < 2 cm		≥ 2 cm	
Diameter score	0		1	5			10
Number of nodules	1-5	6-1	0 11-15	16-20	21	-25	>25
Number score	1	2	3	4	!	5	6

Table outlining the parameters used to evaluate the peritoneal cancer index.

Number	Туре	Stage	Chemotherapy	Free interval	Sensitivity
1	High-grade serous ovarian carcinoma	IIIc	Carboplatin/paclitaxel	>36 months	Sensitive
2	Ovarian carcinoma with low differentiation	IV	Carboplatin/paclitaxel	Progressive disease	Refractory
3	High-grade serous ovarian carcinoma	ш	Carboplatin/paclitaxel	30 months	Sensitive
4	Serous papillary ovarian carcinoma	IIIc	Carboplatin/paclitaxel	5 months	Resistant
5	Serous papillary ovarian carcinoma	IV	Carboplatin/paclitaxel	>48 months	Sensitive
6	Clear cell carcinoma	IIIc	Carboplatin/paclitaxel	7 months	Sensitive
7	High-grade serous ovarian carcinoma	II	Carboplatin/paclitaxel	14 months	Sensitive
8	Serous papillary ovarian carcinoma	IIIb	Carboplatin/paclitaxel	30 months	Sensitive
9	High-grade serous ovarian carcinoma	IIIc	Carboplatin/paclitaxel	22 months	Sensitive
10	Serous papillary ovarian carcinoma low grade	ш	Carboplatin/paclitaxel	>60 months	Sensitive
11	Atypical mucinous carcinoma	ш	Carboplatin/paclitaxel	3 months	Resistant
12	High-grade serous ovarian carcinoma	IV	Carboplatin/paclitaxel	8 months	Sensitive
13	High-grade serous ovarian carcinoma	ш	Carboplatin/paclitaxel	Progressive disease	Refractory
14	Serous ovarian carcinoma	IIIc	Carboplatin/paclitaxel	>42 months	Sensitive
15	Low-grade serous ovarian carcinoma	ш	Carboplatin/paclitaxel	18 months	Sensitive
16	Serous ovarian carcinoma	ш	Carboplatin/paclitaxel	4 months	Resistant
17	High-grade serous ovarian carcinoma	IV	Carboplatin/paclitaxel	3 months	Resistant
18	Serous ovarian carcinoma with moderate differentiation	ND	Carboplatin/paclitaxel	Progressive disease	Refractory
19	Serous ovarian carcinoma	IV	Carboplatin/paclitaxel	3 months	Resistant
20	High-grade serous ovarian carcinoma	ш	Carboplatin/paclitaxel	5 months	Resistant
21	Ovarian adenocarcinoma with low differentiation	IV	Carboplatin/paclitaxel	Progressive disease	Refractory

Supplementary Table 2: Baseline characteristics of patient samples.

Supplementary Table 3: Effect of iCA-MSC secretions on the transcription of M2 polarization marker genes in primary human monocytes

Human monocytes were cultured for 2 days in control media, or in CM from BM-MSCs (MSC/physio CM) or in CM from different types of iCA-MSCs (induced by IGROV-1 CM (MSC/igrov-1 CM) or SKOV-3 CM (MSC/skov-3 CM). After culture, cells were washed and IL-10 mRNA expression levels were analyzed by RT-qPCR. The relative transcription of each of the evaluated genes is calculated relative to the GAPDH transcription. The genes coding for CCL17, CD36, CD163, IDO2, IL-1ra, IL-10, PGES, TGF- β and VEGF-A are analyzed. Signs +, ++ and +++ correspond respectively to an increase in transcription, relative to that of unstimulated monocytes, by a factor greater than 2, 5 and 10.

Monocytes grown in		Physiological MSC CM	MSC/igrov-1 CM	MSC/skov-3 CM	
	CCL17		++	+	
	CD36		++		
	CD163		++	+	
	IDO2		++	+	
M2 markers	IL1-RA		++		
	IL-10		+++	+++	
	PGES	+	++	+	
	TGF-β		+		
	VEGF-A		+		

Human/Mouse gene	Primer reverse	Primer forward	Species
a-SMA	ACTGGGACGACATGGAAAAG	TACATGGCTGGGACATTGAA	Human
Arginase-1	GTGAAGAACCCACGGTCTGT	CTGGTTGTCAGGGGAGTGTT	Mouse
CCL17	AGGTCTTGAAGCCTCCTCAC	AGTTCAGACAAGGGGATGGG	Human
CCL17	AGTGGAGTCTTCCAGGGATG	CTGGTCACAGGCCGTTTTAT	Mouse
CD36	GGTGTGGTGATGTTTGTTGC	CAGGGCCTAGGATTTGTTGA	Human
CD163	AAGCTGATGTGGTTTGCAGG	CCATTGCCAGTTCTTGCAGT	Human
CXCL1	AGGGAATTCACCCCAAGAAC	CACCAGTGAGCTTCCTCCTC	Human
CXCL2	CGCCCAAACCGAAGTCATAG	AGACAAGCTTTCTGCCCATTCT	Human
Dectin-1	CATCGTCTCACCGTATTAATGCAT	CCCAGAACCATGGCCCTT	Mouse
FAP	CCAGGAGATCCACCTTTTCA	ACGCAGGGTAAGTGGTATCG	Human
FSP1	GATGAGCAACTTGGACAGCA	CCCAACCACATCAGAGGAGT	Human
GAPDH	AGGTCGGAGTCAACGGATTT	ATCTCGCTCCTGGAAGATGG	Human
GAPDH	AACTTTGGCATTGTGGAAGG	ACACATTGGGGGGTAGGAACA	Mouse
IDO2	CTGGTCCTGAGCTTCCTCAC	CAGCACCAAGTCTGAGTGGA	Human
IL-1β	GATCCACACTCTCCAGCTGCA	CAACCAACAAGTGATATTCTCGATG	Mouse
IL-1ra	TGGGAATCTCAGATGGGAAG	CTGTGTCCCCCAGAACTTGT	Human
IL-6	TACCCCCAGGAGAAGATTCC	TTTTCTGCCAGTGCCTCTTT	Mouse
IL-8	ACACTGCGCCAACACAGAAATTA	TTTGCTTGAAGTTTCACTGGTATC	Human
IL-10	TGCAAAACCAAACCACAAGA	TCTCGGAGATCTCGAAGCAT	Human
IL-10	CCAAGCCTTATCGGAAATGA	TTTTCACAGGGGAGAAATCG	Mouse
PGES	CATGTGAGTCCCTGTGATGG	GACTGCAGCAAAGACATCCA	Human
TGF-β	ACTGAGGGGAAGGGACAACT	TCGGTACCAGGTGAGGGTAG	Human
VEGF	CTTCTGAGTTGCCCAGGAGA	CTCACACACACACAACCAGG	Human

Supplementary Table 4: Primers used for qRT-PCR analysis