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Supplementary Text 

Topology generation algorithm 

Our topology generation algorithm is schematically shown in Fig. S1. The topology 

generation process is correlated with the desired symmetry of the unit. For convenience, we 

choose a relatively simple symmetry p4 as an example. We mark the total number of pixel in the 

unit as Npixel, and the desired porosity of the final architectured material as . The start point of 

our generation procedure is a unit filling with solid pixels, as displayed in Fig. S1 (A). The task 

of generating an architectured material with desired porosity then be simplified as transform 

Nvoid = Npixel solid pixels into void pixels.  

We then randomly seed Nseed void seeds into an element of the unit. The spatial distribution 

of void seeds in the unit can be mapped from the spatial distribution of void seeds in an element 

by the symmetry manipulations, i.e. Fig. S1 (B). These Nseed void seeds in an element of the unit 

will randomly grow into void phases by a boundary-etching algorithm (see the next paragraph 

and Fig. S2 for more details). An intermediate configuration of the unit is shown in Fig. S1 (C). 

Notice that i). the sizes of void phases in the element can be different from each other; and ii). 

the shapes of void phases in the element can be different from each other. These randomness 

features are rooted in our boundary-etching algorithm. The growth of the void phases will be 

terminated when the total number of pixels in the void phases Nvoid reaches the Nvoid = Npixel 

constraint. The configuration reached the constraint is shown in Fig. S1 (D).  

Even though the porosity constraint is satisfied, this configuration is usually not path-

connected. There are many isolated solid phases which are not connected with the percolated 

solid phase of the configuration. In order to have a path-connected configuration, we need merge 

these isolated solid phases to the percolated solid phase. The configuration satisfying the porosity 



 

 

 

 

constraint will go through a domain-check algorithm. The domain-check algorithm detects solid 

phases, and marks the solid pixels belonging to a solid domain with a unique domain ID. Fig. S1 

(E) is colored in the domain IDs.  For example, the void phases are with a domain ID zero, and 

the percolated solid phase is with a domain ID one. Other solid phases will be with a domain ID 

larger than one. After such identification, these small isolated solid phases are merged to the 

surface of the percolated solid phase, to form a path-connected configuration. Fig. S1 (F) 

displays the final unit of the architecture material. 

The boundary-etching algorithm for a void phase growth is shown in Fig. S2. Fig. S2 (A) 

displays the void phase (pixels in white) surrounding by solid phase (pixels in black) at a certain. 

To grow the void phase, we first identify the void-solid boundary. This void-solid boundary is 

highlighted in Fig. S2 (B) in green. The new voids will appear by etching the solid pixels next to 

the void-solid boundary. Such new voids are shown in Fig. S2 (C) in yellow. Both the number 

and the position of solid pixels that turn into voids are random. After forming these new voids, 

the void phase grows (the gray figure in Fig. S2 (C)). This boundary-etching procedure will be 

repeated until the void phase reaches a certain size. 

 

Details of machine learning setups 

The structure of datasets 

Our database is composed by 17 separated datasets. Each dataset corresponds to a particular 

symmetry. In Fig. S3 the color bars represent our database, while each color bar is for a dataset 

corresponding to a particular symmetry. In each data-point in each dataset, such as the showed 

symmetries p4g and p6m in Fig. S3, we store three items: normalized Young’s modulus 

   , the isotropy , and the configuration. In order to take the symmetry information 



 

 

 

 

into account while we construct the dataset, only the pixel information in the element will be 

stored. More specifically, the pixel information in the element will be stored as a vector for each 

architectured material. 

As we see in Fig. S3, the dimension of the vector, which representing the architectured 

material, depends on several factors: the resolution of the computational domain (the gray 

rectangles in Fig. S3) and the symmetry. Typically, the higher the resolution of the 

computational domain, the vector will possess a higher dimension; the higher the symmetry, the 

vector will have a decreased dimension. Table S1 summarizes the details of the resolutions of 

the computational domain and dimensions of the configuration vector for each symmetry that we 

used in our database. 

 

GANs setups 

In this work, the architecture of deep convolutional generative adversarial network is 

adopted. Overall, the generator is identified through supervised learning, while the discriminator 

learns without supervision. For the neural networks structures, the generator is composed by five 

layers. The first layer is a fully connected layer composed by 1024 neuros to receive the data. 

The second layer is also a fully connected layer composed by 1600 neuros. The third and fourth 

layers are a convolutional and are composed by 64 and 32 neuros, respectively. The last 

deconvolutional layer is associated with a tanh activation function to produce configurations with 

bounded pixel values. For the input of the generator, the  is used as the label attached 

to each of the configuration for the supervised learning of the discriminator and  is used as the 

threshold to screen out anisotropic configurations in advance. For the output of the generator, the 

size of the last layer of the neural network depends on the symmetry groups, e.g. 2500 for p1, 



 

 

 

 

and 132 for p6m. We have separately trained different GANs for different symmetry groups. The 

overall structure of discriminator is similar with that of generator. In the discriminator, the last 

convolutional layer has a sigmoid activation function appended to produce probabilities between 

0 and 1, while the other convolutional layers are all associated with batch normalization 

operations and leaky rectified linear unit activations. The goal of the discriminator is to detect 

fake generated data, i.e. low-modulus configurations, so the discriminative neural network is 

trained to minimize the final classification error. A discriminator in this problem effectively 

functions as a fast finite-element solver to map out the relationship between pixel matrices of 

elements and their corresponding probability to be the high elastic-modulus configurations. The 

discriminator could speed up the whole training process without introducing another costly 

finite-element solver (to calculate the newly generated configurations). 

While the theoretical optimality of GANs is Nash equilibrium, the global optimality or 

sufficiently good local optimality is not guaranteed. In order to improve it, we include several 

terms into the loss function. Specifically, the total loss consists of three major components: i). 

adversarial loss that evaluates the performance of generator and discriminator and ii) style 

transfer loss that imposes morphological constraints to the generated microstructures. We will 

explain one by one in the following section.  

1. The adversarial loss is essentially the optimization objective of GANs, expressed as 

 

      Note that the min-max training process essentially wants the generator G to minimize 

the loss the let D maximizes it.  

2. The style transfer loss is 

 



 

 

 

 

with  and are the porosity of generated configurations and real configurations, 

respectively.  

Thus, the total loss is 

 

with  is the moderating weights that prevent the style transfer loss from diminishing to 

zero or overwhelming the GANs adversarial loss.  is set to be 0.03 in our study. Furthermore, 

Adam optimizer is applied in training by setting the learning rate as 0.0001. The batch size for 

training is set to be 32. 

 Fig. S4 gives the details of the machine learning training process. Fig. S4(A) shows the 

accuracy versus epoch for models with different training data densities. The accuracy for the 

model with 0.1 million data points actually does not improve over 100 epochs. Models with 

larger databases (0.4 and 0.8 million) can substantially increase the accuracy over a few epochs 

(e.g., 20 epochs). To be conservative, we choose 1 million data points in the training process.  

 Overfitting could happen in the training process. We adopt the early stop method to 

suppress the overfitting, and the results is shown in Fig. S4(B). In the models with early stop, the 

accuracies for both training set and the test set are similar to each other. 

 

 

Additional architectured materials that achieve the HS bound 

In the main text, we show several representative configurations for architectured materials 

that achieve the HS bound within a wide porosity range from 0.1 to 0.8. After the GANs-model 

is trained, it can generate enormous number of architectured materials that achieve the HS 

bound. Here we show more architectured materials for such an extreme design. All architectured 



 

 

 

 

materials satisfy i).  and ii). . Fig. S5 is for  = 0.05. In this case, the 

void phases are very small and most of them are pixel-level (the number of void pixels is 

limited). Thus, the shape/size of void itself is not very intriguing compared with the spatial 

pattern of void phases. With this consideration, we only show a limited number of architectured 

materials.  As the porosity increases, both the shape/size of void and the spatial pattern of void 

phases become important. Thus, a larger number of architectured materials are displayed for 

illustrating this point. Fig. S6 is for  = 0.15, Fig. S7-S8 is for  = 0.25, Fig. S9-S10 is for  = 

0.35, Fig. S11-S12 is for  = 0.45, and Fig. S13 is for  = 0.55. As the porosity further increases, 

the shape/size of the void phase is really stretched out (the number of solid pixels is limited) and 

majorly only the spatial pattern of void phases matters. This fact is rooted in the fact that our 

resolution of the computational domain is fixed. If we enhance the resolution of the 

computational domain, more possible architectured materials can be discovered. Nevertheless, 

with the current setup for resolution (Table S1), Fig. S14 and Fig. S15 is for  = 0.65, and  = 

0.75, respectively. 

 

Experimental and finite-element simulation setups 

Experimental setup 

In the above-mentioned Section 3, we provide a large dataset consists of over a thousand 2D 

architectured materials created by generative adversarial networks (GANs). The experiments 

were carried out to verify that these isotropic configurations achieved the optimal Young’s 

modulus.  

To prepare the suitable testing samples, we need their CAD models first. Each 3D sample 

model was built from a 2D 1-0 configurations generated by the GANs system. The 1-0 matrix 



 

 

 

 

was mapping into the black-and-white geometry to represent solid phase and void phase in 

architectured materials. The binary number “1” represented the solid phase and “0” represented 

the void phase, which was plotted in the final configuration as black and white pixel, 

respectively. After the black-and-white configuration was generated, we imported the 

configuration into Solidworks software. In Solidworks sketch module, we need to use simple 

geometry, i.e. closed shape with lines and curves, to fully represent the original black-and-white 

pixels, since the cutting route for laser cutter need to be smooth. The cubic spline interpolation 

was adopted here to fit the solid-void boundary. Thereafter, the simplified geometry was linear 

patterned in x and y direction to make a full architectured material, then pad the 2D architectured 

material in z direction by 1.5mm. The size of architectured material is 50𝑚𝑚 × 50𝑚𝑚. 

Appended with shoulders on the two sides, the whole 3D testing sample was established. The 

full batch of 3D model used in experiments are displayed in Fig. S17. 

 

Fabrication on the testing samples 

Acrylic plates (thickness 2.25mm) were used to fabricate the testing samples. The CAD 

testing dataset were uploaded to the laser cutter (Epilog Mini/Helix; Epilog Laser) and cut 

multiple times with minimal laser energy, so as to avoid weight loss by melting acrylic. The 

resolution of Epilog Laser is limited to 200um, and the micro holes in the architectured materials 

cannot be formed concisely, so we choose 3 × 3 to be equivalent to periodic boundary condition. 

Fig.S18 also shows the 3 × 3 experimental setup is sufficient to derive effective mean Young’s 

modulus. It converges fast and have little difference with 6 × 6 case, which is assumed to be 

closer to the periodic boundary condition. This claim is valid in different porosities. In 

experimental setup, during the stretching process, the shoulders are constrained to fixed 



 

 

 

 

boundary condition, i.e. the constrained uniaxial tension tests. The sample undergoes neither 

plain-strain nor plain-stress deformation. The comparation between the plain-stress case, plain-

strain case and constrained uniaxial tension tests are displayed in Fig. S18. The experimental 

data lie between the plain-stress and plain-strain case, and it could be converted to equivalent 

plain-strain result.  



 

 

 

 

 

 
 

Fig. S1. The region-growing based algorithm for topology generation. (A). A unit is filled with 

all solid pixels at the initial stage. (B). Void seeds are randomly assigned in an element of the 

unit. (C). The void seeds randomly grow into void phases by a boundary-etching algorithm. (D). 

The growth is terminated when the total number of void pixels   reaches . (E). The 

domain-check algorithm detects isolated solid pixels. (F). The isolated solid pixels are randomly 

merged to the surface of the percolated solid phase to form a path-connected configuration. 



 

 

 

 

 

 

 

 

 

 
 

Fig. S2. The boundary-etching algorithm for the growth of a void phase. (A) The initial void 

phase (pixels in white) is surrounded by solid phase (pixels in black). (B). Highlight the void-

solid boundary (pixels in green). (C). New voids randomly grow by etching the solid pixels next 

to the boundary and the whole process repeats. 

 



 

 

 

 

 

 

 

 

 
 

Fig. S3. The structure of datasets. 



 

 

 

 

 

 

 

 
 

Fig. S4. Details of the machine-learning training process. (A). Training set accuracy versus 

epoch for models with different training data densities. (B). Early stop to avoid overfit for 

models with different training data densities. In the models with early stop, the accuracies for 

both training set and the test set are similar to each other. 



 

 

 

 

 

 

 

 

 

Fig. S5. The architectured materials achieved HS bound for  𝝓 = 𝟎. 𝟎𝟓. 

 

 



 

 

 

 

 

Fig. S6. The architectured materials achieved HS bound for  𝝓 = 𝟎. 𝟏𝟓. 

 



 

 

 

 

 
 

Fig. S7. The architectured materials achieved HS bound for  𝝓 = 𝟎. 𝟐𝟓. 



 

 

 

 

 

Fig. S8. The architectured materials achieved HS bound for  𝝓 = 𝟎. 𝟐𝟓 (𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆𝒅). 



 

 

 

 

 

Fig. S9. The architectured materials achieved HS bound for  𝝓 = 𝟎. 𝟑𝟓. 



 

 

 

 

 

Fig. S10. The architectured materials achieved HS bound for  𝝓 = 𝟎. 𝟑𝟓 (𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆𝒅). 

 

 
 

Fig. S11. The architectured materials achieved HS bound for  𝝓 = 𝟎. 𝟒𝟓. 



 

 

 

 

 
 

Fig. S12. The architectured materials achieved HS bound for  𝝓 = 𝟎. 𝟒𝟓 (𝒄𝒐𝒏𝒕𝒊𝒏𝒖𝒆𝒅). 



 

 

 

 

 

Fig. S13. The architectured materials achieved HS bound for  𝝓 = 𝟎. 𝟓𝟓 



 

 

 

 

 

Fig. S14. The architectured materials achieved HS bound for  𝝓 = 𝟎. 𝟔𝟓 

 
 

Fig. S15. The architectured materials achieved HS bound for  𝝓 = 𝟎. 𝟕𝟓 



 

 

 

 

 

Fig. S16. The statistic distribution plot compared the training dataset with the GANs output 

within p6m symmetry group (𝛀 < 𝟓%). Porosity (𝝓) changes from 0.25, 0.5 to 0.75. 



 

 

 

 

 

Fig. S17. Architectured materials 3D model in uniaxial tensile test with different porosities ϕ 

 

 

Fig. S18. Effective mean Young’s modulus with different repetition of units’ number in various 

porosity 



 

 

 

 

 

Table S1. Resolutions of the computational domain, unit, and element. 

 
Symmetry p1 p2 pg pm pgg pmg pmm cm 

Dimension 50x50 50x50 50x50 50x50 50x50 50x50 50x50 50x50 

Pixels in compute-

domain 
2500 2500 2500 2500 2500 2500 2500 2500 

Pixels in an element 2500 1250 1250 1250 625 650 625 600 

 

Symmetry (continued) cmm p4 p4g p4m p3 p6 p3m1 p31m p6m 

Dimension 50x50 50x50 50x50 50x50 86x75 86x75 86x75 86x50 86x75 

Pixels in compute-

domain 
2500 2500 2500 2500 6450 6450 6450 4300 6450 

Pixels in an element 300 625 325 325 528 264 264 363 132 
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