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1. Monovalent vs multivalent probe-target binding1

Let us consider a surface grafted with oligonucleotide probes, in contact with a sample solution that contains single-stranded2

target DNA molecules. We first suppose that each target molecule can bind to only a single probe (see Figure 1 (blue) and3

Figure 5 in the main text). In this monovalent binding scenario, each probe can be treated independently and the surface4

density of probes that are bound by the target, ρmonob , is given by the standard Langmuir isotherm:5

ρmonob = ρ

[
cte
−β∆G/c0

1 + cte−β∆G/c0

]
, [S1]6

where ρ denotes the surface density of oligomer probes, ct is the molar concentration of targets in the sample, ∆G is the7

free energy of probe-target hybridization, β ≡ 1/(kBT ) and c0 = 1 M is a standard reference concentration. For low surface8

coverage of bound targets, cte−β∆G/c0 < 1, and the above expression reduces to:9

ρmonob /ρ ≈ cte−β∆G/c0 = ctKA , [S2]10

as given in the introduction to the main text. Here KA ≡ e−β∆G/c0 is the equilibrium association constant.11

12

Now let us consider the case where a single target DNA fragment can bind multiple probes simultaneously (Figure 1 (red)13

and Figure 5 in the main text). Let us suppose there are k probe binding sites on a single target DNA strand. In Refs (1–4)14

we have shown that the adsorption isotherm for a flexible polymer which can bind multiple sites on the surface also follows a15

Langmuir form:16

ρmultib l2t = ctl
3
tNAqb(ρ, k, β∆G)

1 + ctl3tNAqb(ρ, k, β∆G) , [S3]17

where NA is Avogadro’s number and the surface is assumed to be discretised into lattice sites of the size of the target lt which,18

for a flexible polymer target, is determined by the radius of gyration of the target polymer Rg: lt ∼ Rg.19

20

A key quantity in Eq. (S3) is the partition function qb for the surface-bound polymer target. This function enumerates all21

possible binding configurations, and is given by22

qb(ρ, k, β∆G) =
(
1 + ρe−β∆G/(ltc0)

)k − 1 . [S4]23

The form of the partition function (S4) arises because each of the k sites on the target can be either free (with statistical24

weight 1) or bound to any of the np = l2t ρ probes within an area l2t ; ∆G is the single probe hybridisation free energy as above.25

q1u = l3t c0NA is the unbound partition function or a free configurational “volume” of an unbound target site on the DNA26

strand, while the bound partition function of a single site is: q1b = npe
−β∆G as the site can be attached to any of the np probes.27

The ratio of bound/unbound partition functions of a single target site is thus: q1b/q1u = ρe−β∆G/(ltc0). In bulk solution all28

sites on a polymer are unbound, the unbound partition function is: q∗u = (q1u)k because all k sites are assumed independent.29

For a polymer next to the surface each site can be either free or attached: q∗b = (q1u + q1b)k − (q1u)k, where the subtraction of30

−(q1u)k arises because we consider only states in which the target polymer has at least one site bound to the surface - thus the31
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weight of the completely unbound polymer state needs to be subtracted. Hence, the expression qb = q∗
b
q∗u

= (1 + (q1b/q1u))k − 132

is the normalised partition function for binding of k independent target sites, relative to the solution state where each of the k33

sites is unbound; i.e. qb = e−β∆Gpolymer where ∆Gpolymer is the bound contribution to the free energy difference between the34

polymer being at a specific location on the surface vs. a specific location in bulk solution. We have previously shown that this35

extension of the Langmuir model gives a good description of multivalent binding of a polymer to a surface (1, 2, 4). For the36

case of low oligonucleotide probe surface coverage, ctl3tNAqb(ρ, k, β∆G) < 1, the denominator in Eq (S3) is approximated as37

unity and the expression for the binding curve simplifies to38

ρmultib ≈ ctlt
[(

1 + ρ

c0lt
e−β∆G

)k
− 1
]
. [S5]39

For target strands that bind only a single probe, k = 1, the above expression reduces to the monovalent isotherm, Eq. (S1), in40

the low surface coverage limit. The full expression, Eq. (S3) and Eq. (S4), does not directly reduce to the Langmuir isotherm,41

Eq. (S1), because the full expression includes a lateral polymer excluded area of size l2t which is not captured in the standard42

Langmuir isotherm (see refs (1, 2, 4) for further discussion).43

2. Design of oligonucleotide probes44

Score function method. Our in-house algorithm chooses oligonucleotide probes based on a score function that measures the45

number of regions of complementarity between the probe sequence and the target DNA (considering both the forward and46

reverse strands of the pathogen genome). We first choose the length l, in nucleotide bases, of the desired probes. For short47

probes, l ≤ 10, our algorithm generates and evaluates all possible test probe sequences (e.g. there exist 410 different sequences48

of length 10nt). If l > 10, the algorithm instead considers all distinct sequences of length l that occur within the target49

pathogen genome.50

51

A test probe sequence i of length l is compared to all length l subsequences j in the genome and its reverse complement,52

and the numbers nija of exact matches of length 1 < a < l between i and the j are tallied. For example, if l = 5, i =AAAAA53

and j =ATAAA, then nij1 = 4, nij1 = 2, nij3 = 1 and nij2 = nij4 = nij5 = 0. Probe sequence i is then assigned a score Si,54

evaluated according to55

Si = log

[
l∑

a=1

4ania

]
. [S6]56

This score function sums the numbers of matches nia =
∑

j
nija over all subsequence lengths a. Matches of length a are57

weighted by a factor 4a to account for the fact that longer matches are less likely to happen by chance (the probability of58

finding a match of length a in a random target DNA sequence is (1/4)a). The logarithm ensures that the score values remain59

manageable even for long probes (larger values of l), and that score values for genomes of very different lengths remain comparable.60

61

As an aside, the score function, Eq. (S6), can be thought of as an estimate of the interaction free energy between62

the probe and the target. Briefly, the factor of 4a can be seen as a Boltzmann factor e−E/(kBT ), where the “energy” E is63

−kBT log(4) per matching nucleotide. The term in the square brackets in Eq. (S6) would then correspond to a partition function.64

65

For a random DNA target interacting with a random oligonucleotide probe, we can compute the expected value of the score66

function. For the random target DNA, all subsequences of length a within the probe sequence are equally likely to be exact67

matches with any given part of the target sequence. Since the probability of obtaining any given random DNA sequence of68

length a is (1/4)a, we expect a particular subsequence of length a to appear, on average, (L−a+ 1)× (1/4)a ≈ L× (1/4)a times69

in a random DNA target of length L (assuming L� a). Therefore, remembering that there are (l−a+ 1) distinct subsequences70

of length a within the probe, the expected value of nia in this random scenario is L× (l − a+ 1)× (1/4)a, and the expected71

score Si for random probe i is Si,random = log
[
L×

∑l

a=1 (l − a+ 1)
]

= log
[
L×

(
l(l + 1)−

∑l

a=1 a
)]

= log [L× (l(l + 1)/2)].72

73

To select the desired probes, the score function is computed for all test probe sequences of length l. The test probe74

sequences are then ordered based on their scores. For the E. coli bl21-de3 genome, the ten top-scoring probe sequences of length75

10nt, and their scores S, are provided in Table 1, and the equivalent data for probe sequences of length 20nt is provided in Table 2.76

77

We note that the sequences come in complementary pairs; this is a consequence of the fact that we consider both the forward78

and reverse strands of the pathogen genome. We also note that many of the sequences are very similar to one another, and79

probably correspond to overlapping parts of the pathogen genome. Should this not be desirable, one could easily modify the80

selection criteria to prevent overlapping probe sequences being chosen. For the simulation results presented in the main text81

only the top two sequences in this list were used: because these are a complementary pair, this amounts to using a single probe82

sequence, plus its reverse complement.83

84
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sequence i score Si

CGCCAGCGCC 21.262
GGCGCTGGCG 21.262
CCGCCAGCGC 21.24
GCGCTGGCGG 21.24
CCAGCGCCAG 21.231
CTGGCGCTGG 21.231
GCGCCAGCGC 21.221
GCGCTGGCGC 21.221
CAGCGCCAGC 21.203
GCTGGCGCTG 21.203

Table 1. Top-scoring 10 nucleotide sequences for the E. coli bl21-de3 strain (including both forward and reverse genome strands)

sequence i score Si

AGGCGTTCACGCCGCATCCG 32.686
CGGATGCGGCGTGAACGCCT 32.686
GATGCGGCGTGAACGCCTTA 32.671
TAAGGCGTTCACGCCGCATC 32.671
AAGGCGTTCACGCCGCATCC 32.668
GGATGCGGCGTGAACGCCTT 32.668
ATAAGGCGTTCACGCCGCAT 32.664
ATGCGGCGTGAACGCCTTAT 32.664
GATAAGGCGTTCACGCCGCA 32.663
TGCGGCGTGAACGCCTTATC 32.663

Table 2. Top-scoring 20 nucleotide sequences for the E. coli bl21-de3 strain (including both forward and reverse genome strands)

Targeted method for distinguishing similar genomes. In some cases, it is important to be able to detect the target genome in85

the presence of other genomic DNA that is closely related to it. For example, one might need to distinguish between strains of86

the same bacterial species, such as the O157 Sakai strain of E. coli, which causes food poisoning, in the presence of harmless87

strains (represented here by the wild-type lab strain bl21-de3). In this case, it is likely that the top-scoring oligonucleotide88

probe sequences for both target genomes will be very similar, making it hard to achieve selective binding.89

90

To differentiate between similar bacterial genomes (here denoted A and B) we propose a modified method of probe selection.91

Rather than simply scoring probe sequences according to their number of regions of complementarity with the target genome,92

we propose instead to rank them by the difference in their score for genomes A and B:93

∆Si = Si(A)− Si(B) . [S7]94

The probe sequences of length 10nt and 20nt that maximise the difference ∆Si between the O157 Sakai and bl21-de3 strains of95

E. coli are shown in Tables 3 and 4 respectively, along with their score difference ∆S. ∆S is much larger for the 20nt strands,96

therefore we used the first two 20nt sequences in Table 4 (corresponding to a single sequence and its reverse complement) in97

the simulations in the main text (Fig. 3)).98

Alternative oligonucleotide selection method using BLAST. An alternative approach to scoring a probe sequence is simply to99

count how many times it appears in the target genome. Here we describe an algorithm to do this, which uses the popular100

sequence i score ∆Si

GGTGTATGAC 0.335
GTCATACACC 0.335
ATCCGGATGA 0.323
TCATCCGGAT 0.323
CATCCGGATA 0.323
TATCCGGATG 0.323
GGTGACGGAC 0.319
GTCCGTCACC 0.319
GGGTGACGGA 0.319
TCCGTCACCC 0.319

Table 3. Top-scoring 10 nucleotide sequences maximising the score difference, Eq. (S7), between the O157 and bl21-de3 strains of E. coli
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sequence i score ∆S

GGAGACTAAACTCCCTGAGA 10.463
TCTCAGGGAGTTTAGTCTCC 10.463
CTCAGGGAGTTTAGTCTCCA 10.452
TGGAGACTAAACTCCCTGAG 10.452
AGGGAGTTTAGTCTCCAGGA 10.443
TCCTGGAGACTAAACTCCCT 10.443
GAGACTAAACTCCCTGAGAA 10.436
TTCTCAGGGAGTTTAGTCTC 10.436
CAGGGAGTTTAGTCTCCAGG 10.429
CCTGGAGACTAAACTCCCTG 10.429

Table 4. Top-scoring 20 nucleotide sequences maximising the score difference, Eq. (S7), between the O157 and bl21-de3 strains of E. coli

sequence BLAST matches
GCGCTGGCGG 9657
CCGCCAGCGC 9657
GCGCTGGCGA 9379
TCGCCAGCGC 9379
ACGCCAGCGC 9233
GCGCTGGCGT 9233
ACGCTGGCGG 9112
CCGCCAGCGT 9112
GCGCCAGCGT 8995
ACGCTGGCGC 8995

Table 5. Top-scoring 10 nucleotide sequences for the bl21-de3 strain of E. coli obtained using the BLAST method.

BLAST+ software suite (5).101

102

First, we determine a set of candidate probe sequences from (both strands of) the target genome – specifically for probes of103

length 10nt, we slide a 10 base window along the genome in steps of 5 bases, taking the sequence within each window as a104

candidate (after removing any duplicate sequences). Next, we remove from the candidates any sequences of low complexity, e.g.105

those containing repetitive sequences such as “TAAAAAAAGA” or “TCGCGCGCGC”, since these tend to appear frequently106

within genomes and can lead to probes which are more likely to self-hybridize. This is done using the “dustmasker” software107

(which is part of the BLAST+ suite (5)).108

109

For the remaining candidate sequences, we perform a BLAST search for matches on the target genome (using the “blastn”110

tool), counting the number of matches of 7 nt or longer. Sequences are then ranked in descending order of the number111

of matches, and the list further refined by removing any sequences which have 7 nt or longer identical regions with a se-112

quence which is higher in the list. The top-scoring probe sequences are then taken from the top of the ranked list. Table 5113

shows the top-scoring sequences found using the BLAST method for probes of length 10 nt targeting the bl21-de3 E. coli genome.114

115

Reassuringly, the top four probe sequences obtained from the BLAST method match the top four obtained from our in-house116

algorithm, allowing for single-base shifts. The BLAST and score function methods find the same two top probe sequences.117

This BLAST method for probe selection is likely to be more computationally efficient for longer genomes, since it utilizes a118

highly optimised heuristic sequence alignment algorithm. However, the score function method outlined above is likely to rank119

candidate strands more robustly, since it considers matches of any length.120

121

3. Coarse-grained polymer model for genomic DNA122

Our coarse-grained polymer model for genomic DNA is outlined in the main text: here we discuss some of its aspects in more123

detail.124

Blob radius of gyration. In our coarse-grained model, the single-stranded DNA of the target bacterial pathogen is treated as125

a chain of “blobs”, each of which represents ∼ 400 nucleotides. At sufficiently high temperature, we can assume that any126

base-pairing interactions between the blobs can be neglected and the genomic DNA can be treated as a self-avoiding walk127

(SAW) polymer (6). The radius of gyration of a SAW polymer is given by128

Rg = b√
6
Nν

Kuhn , [S8]129
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where b is the Kuhn segment length of the polymer, ν = 0.588 is the scaling exponent and NKuhn is the number of Kuhn130

segments in the polymer (7). If Nm is the number of monomers and a is the contour length per monomer, NKuhn is given by131

aNm/b. For single-stranded DNA, a = 0.65 nm (6, 8), and at a physiological salt concentration of 0.1M, b ≈ 2 nm (6, 8, 9).132

This leads to a prediction for the radius of gyration, Rg, of an Nm = 400 nucleotide blob, of 10 nm. At lower temperatures133

the radius of gyration will be affected by self-hybridisation, but recent results using a more detailed simulation model show134

that the macroscopic properties of ssDNA (e.g the radius of gyration) are not significantly affected by self-hybridisation for135

temperatures above 40◦C (10). This insensitivity arises due to the opposing effects of rigidification (the persistence length of136

dsDNA is ≈ 50nm compared to ≈ 1nm for ssDNA) which increases Rg, and hybridisation between distant parts of the strand,137

which decreases Rg. All of our calculations are performed at temperatures above 40◦C, where Rg can be assumed constant.138

For the same reason we do not include any specific blob–blob attractive interactions arising due to base pairing in our model,139

as these would reduce the radius of gyration of the simulated DNA polymer.140

Implementation of Langevin Dynamics simulations in LAMMPS. Our Langevin dynamics simulations used the open source141

molecular dynamics simulation package LAMMPS (11). Specifically, the equations of motion for a set of particles representing142

the “blobs” as they interact with each other and with the surface are solved in the NVT ensemble (constant particle number,143

volume and temperature) using a velocity Verlet algorithm. This amounts to a numerical solution of the Langevin equation144

m
d2ri
dt2

= −∇Ui(ri)− ξ
dri
dt

+
√

2kBTξηi , [S9]145

where ri is the position of particle i, Ui(ri) is the potential energy of the particle i, the second term on the right hand side146

captures viscous drag and the components of ηi are independent δ-correlated white noise with unit variance and zero mean. m147

and ξ are the particle mass and the friction due to the implied solvent respectively, and these lead to a velocity decorrelation time148

τ0 = m/ξ. In the simulations we use length units of blob radius rb, energy units of kBT , and mass units where m is the mass of149

the single blob. This leads to a simulation time unit τ =
√
mr2

b/kBT , and the integration is performed using a time step of 0.02τ .150

In reality this system will be over-damped (m� ξ), but this would lead to infeasibly long simulation run times; instead we use151

a reduced friction ξ = m/100, though since we run our simulations until they reach an equilibrium state we do not expect this to152

affect our results. Typically we run simulations for a total of 106τ while counting the blob-surface contacts only in the last third153

of the total simulation time. Where simulation results are reported they correspond to a single simulation run, averaged over the154

last third of the run. Figure S1 shows that our results for the number of blob-surface contacts typically converge after ≈ 5×105τ .155

156
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Fig. S1. Adsorption kinetics (number of blob-surface contacts as a function of time) in our simulations of the E. coli bl21-de3 (EC) and B. subtilis (BS) genomes binding to a
surface coated with E. coli probes of length 10nt. Results are shown for the full genome (solid line; “full”), for genomes fragmented into fragments of length 100 blobs (40,000nt;
dashed lines, “lc = 100”) and genomes fragmented into fragments of length 1 blob (400nt; dot-dashed lines, “lc = 1”). The probe surface density is ρ = 0.003r−2

b
.

The potential energy function U(ri) in Eq. (S9) is a sum of terms taking into account chain connectivity, blob-blob157

repulsion, and the blob-surface interaction (a short-range repulsion and longer-ranged sequence-dependent attraction) as given158

in Eqs.(4)-(6) in the main text. Some of these Gaussian potentials have previously been implemented in LAMMPS (11); the159

additional Gaussian potential describing specific base-pairing interactions between the target DNA and the DNA-grafted160

surface (second term in Eq. (6) of the main text) was implemented in LAMMPS as gaussian/cut. We mixed the different161

potential types using the hybrid/overlay option in LAMMPS.162
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4. Nearest-neighbour model for DNA hybridisation free energies163

The nearest neighbour (NN) model for DNA hybridisation (12, 13) assumes that the hybridisation free energy can be written164

as a sum over base pairs, and that the contribution for a given base-pair depends on its identity and that of its immediate165

neighbours. The total hybridisation free energy between two single-stranded pieces of DNA is then written as166

∆GNN = ∆Gstack + ∆Gboundary + ∆Gsymmetry , [S10]167

where ∆Gstack =
∑

<i,j>
∆G<i,j> is the sum is over all nearest neighbour base pairs (eg CG/GC), ∆Gboundary accounts for168

the strand ends and ∆Gsymmetry is an entropic penalty that is applied to self-complementary duplexes (i.e. those that can form169

internal structure such as hairpins), to account for the fact that these duplexes have C2 symmetry (14).170

171

In this work, we use the SantaLucia parameterisation of the NN model (14, 15), which specifies the various nearest neighbour172

base pair contributions to ∆Gstack, as well as ∆Gboundary and ∆Gsymmetry. All of these terms are assumed to be composed of173

enthalpic, ∆HNN , and entropic, ∆SNN , parts which are independent of temperature T , such that the free energy terms ∆G174

have a linear temperature dependence: ∆GNN = ∆HNN − T∆SNN . The salt concentration dependance is incorporated as a175

linear correction to the enthalpy and entropy terms. Additional penalties for misalignment, bulges, hairpins and loops are also176

applied (see Ref. (15) for a detailed explanation of the model). The SantaLucia model has been shown to faithfully reproduce177

experimental data for DNA hybridisation free energies over a wide range of temperatures and salt concentrations.178

Calculating SantaLucia DNA-binding free energies with NuPack. NuPack (16–19) is an open source program for calculating179

SantaLucia free energies for DNA strand hybridisation. It is available at http://www.nupack.org. The user specifies the180

sequences of n interacting DNA strands, the temperature (in this work T=50◦C) and salt concentration (we have used the181

default value, 1M NaCl) and the program calculates the hybridization free energy ∆GNN (s1, s2, ...sn), considering all possible182

binding combinations, including all possible partial matches, self–hybridisation and three–way junctions, as well as defects such183

as bulges and loops. In this work, we use NuPack to obtain the hybridisation free energy between two strands, one of which is a184

400nt-long “blob” in our coarse-grained DNA polymer, and the other of which is an oligonucleotide probe of length 10-20nt. We185

also use NuPack to compute the self-hybridisation free energies of the blob sequence and of the probe sequence. Denoting the186

blob sequence as sj and the probe sequence as sk, we then calculate the free energy change due to their interaction, ∆G̃j,k, as:187

∆G̃j,k = ∆GNN (sj , sk)−∆GNN (sj)−∆GNN (sk) . [S11]188

In other words, we compute the difference between the free energy of the blob and probe DNA strands in contact with each189

other and that of the isolated blob and probe strands sj and sk.190

191

It is important to note that, in NuPack, the SantaLucia free energies are obtained from partition functions that include all192

possible configurations, including the fully unbound state (which has free energy zero). Correctly accounting for these unbound193

states leads to the factors of -1 and +1 in Eq. (5) of the main text. We also note that the calculation of ∆GNN (sj , sk) includes194

all the states considered in both ∆GNN (sj) and ∆GNN (sk) plus additional states where the two strands bind each other.195

Hence, ∆G̃j,k must be negative.196

197

The free energies provided by NuPack are given with respect to a reference concentration which is taken to be that of water:198

cw = 55M. This leads to the factor of cwNA in Eq. (6) of the main text.199

Interaction free energy between a blob and the probe-coated surface. ∆G̃j,k as computed using NuPack is the interaction free200

energy between a 400nt strand corresponding to a blob, and a single oligonucleotide probe. However, we require the interaction201

free energy ∆G̃j,surf between a blob and the entire probe-coated surface. This is obtained using the following formula (3):202

∆G̃j,surf = −kBT log

[
1 + ρr2

b

∑
k

fk

(
e−β∆G̃j,k − 1

)]
, [S12]203

where ρ is the surface density (number per area) of oligonucleotide probes on the surface and rb is the radius of gyration of the204

blob, such that r2
b is assumed to be the area of the surface over which the blob interacts, and ρr2

b is the number of probes205

that interact with the blob. In Eq. (S12) we have, for generality, supposed that there can be a mixture of distinct probe206

types on the surface, such that probe type k has fractional abundance fk. In the main text, Eq. (5), we presented a simplified207

form of this equation, for only a single probe type. For our simulations, we used two probe types, one of which was the208

reverse complement of the other. Since the densities of the two probe types were equal, in our calculations we used f1 = f2 = 0.5.209

210

The -1 in the round brackets in Eq. (S12) arises because, as discussed earlier, the SantaLucia hybridisation free energy,211

Eq. (S11), is calculated using a partition function that includes the state where the probe and blob are not bound. To avoid212

double-counting, this state needs to be subtracted from each of the terms describing a particular probe type. It is then added213

back, via the +1 in the square bracket, to include the state where the blob is not bound to any of the probes.214

215
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Eq. (S12) is a mean–field formula, which assumes that the blob binds independently to each probe. This assumption is216

valid if the probe grafting density is sufficiently low: ρ ≤ 1/r2
b . The mean-field formula also assumes that the probes are217

homogeneously mixed on the surface.218

5. Derivation of the interaction potential prefactor for the Langevin dynamics simulations219

To obtain the prefactor H in the coarse-grained interaction potential that we use in our simulations (Eq. (6) in the main text),220

we match coarse-grained and microscopic definitions of the partition function for blob-surface binding.221

222

From a microscopic perspective, a blob j can be bound to any of the oligonucleotide probes on the surface, with binding223

free energy ∆G̃j,k for a probe of type k, or the blob can be free in solution (not bound to the surface). The statistical weight of224

the state in which blob j is bound to probe k is
[
e−β∆G̃j,k − 1

]
/(cwNA). Here, the -1 takes into account that the SantaLucia225

calculation performed by NuPack includes the unbound state as discussed above, and the factor 1/(cwNA) (where cw = 55mol/l226

and NA is Avogadro’s number) arises because ∆G̃j,k is determined in NuPack with respect to the reference concentration of227

liquid water; i.e. ∆G̃j,k is the hybridisation free energy with respect to the chemical potential of an ideal gas with concentration228

cw. The statistical weight of the unbound state is given by the integral over the system volume V . Therefore, the microscopic229

configurational partition function for the blob with the surface, summing over all states, is230

Qj,micro = 1
cwNA

Np
∑
k

fk

(
e−β∆G̃j,k − 1

)
+
∫
V

dr , [S13]231

where Np is the total number of probes on the surface. The first term in Eq. (S13) accounts for configurations in which the232

blob is bound to the surface and the second term accounts for configurations where it is free in the solution.233

234

From a coarse-grained perspective, the interaction due to hybridisation between the blob and the surface is described, in our235

model, with a Gaussian attraction potential236

Uj(z) = Hj√
2π
e
− z2

2r2
b . [S14]237

This potential depends on the height z of the blob above the surface; Hj is the blob-dependent prefactor that we are aiming to238

determine. In the coarse-grained representation, the partition function for blob-surface binding, considering only attractive239

interactions, can then be written as240

Qj,cg =
∫
V

e−βUj(z)dr . [S15]241

242

243

The partition functions obtained for the microscopic and coarse-grained representations of our system need to be equal,244

since they describe the same system. Therefore we equate Eq. (S13) and Eq. (S15) to obtain245 ∫
V

[
e−βUj(z) − 1

]
dr = 1

cwNA
Np
∑
k

fk

(
e−β∆G̃j,k − 1

)
. [S16]246

Using Eq. (S12) this reduces to247 ∫
V

[
e−βU(r) − 1

]
dr = Np

[
e−β∆G̃j,surf − 1
cwNAρr2

b

]
. [S17]248

Since the Gaussian form (S14) for U(z) depends only on the height above the surface, integration over the lateral coordinates249

x, y gives a factor of the surface area S on the left-hand side of Eq. (S17). Since Np/S = ρ (the probe density), ρ cancels and250

we get251 ∫ −∞
−∞

exp
[
− Hj

kBT
√

2π
e
−z2

2

]
− 1 dz = e−β∆G̃j,surf − 1

cwNAr2
b

. [S18]252

This relation determines the mapping between the attractive interaction prefactor Hj (from Eq. (S14)) and the blob-surface253

interaction free energy ∆Gj,surf that we obtain from our SantaLucia calculations.254

255

Figure S2 (solid line) shows this mapping. We note that the integrand in Eq. (S18) is a double exponential which is highly256

peaked around z = 0. We can hence approximate this as
∫ −∞
−∞ exp

[
− Hj

kBT
√

2π e
−z2

2

]
− 1 dz ≈ e

−
Hj

kBT
√

2π . Moreover, it turns257

out that in all our simulations, β∆Gj,surf ≤ −5, therefore, we can approximate e−β∆Gj,surf − 1 ≈ e−β∆Gj,surf , and a simple258

linear relation follows, as given in the main text:259

Hj =
√

2π
[
∆Gj,surf + kBT ln[r3

bcwNA]
]
. [S19]260
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Fig. S2. Blob-surface interaction: mapping between the prefactor H in the Gaussian coarse-grained attractive interaction, and the blob-surface interaction free energy
∆G̃j,surf . The mapping is obtained from Eqs. (S14) and (S18). Here, rb = 10nm (which corresponds to 400 nucleotides per blob), and β = 1/(kBT ). The dashed red line
shows the approximate linear relationship Eq. (S19).

261

262

We note that in our coarse-grained simulations, we also include an additional exponential repulsion between the blob and the263

surface, which represents the entropic penalty of confining the polymer close to the surface. Because our aim here was to match264

the partition functions for the attractive part of the polymer-surface interaction between the microscopic and coarse-grained265

representations, the repulsive term in the coarse-grained potential was not included in the mapping procedure.266

6. Blob-surface interaction free energy and binding selectivity267

Figure S3 plots the blob-surface interaction free energy values ∆G̃j,surf for each of the blobs that make up the genomic DNA268

polymer, for the E. coli wild-type (bl21-de3) and B. subtilis genomes binding to a surface designed to target E. coli. For269

probes of length 10nt (left panels in Figure S3) the difference in blob-surface binding free energy is, on average, ∼ 1kBT270

between E. coli and B. subtilis. Interestingly, coating the surface with more strand types (using the 20 highest scoring probes -271

10 distinct sequences plus their reverse complements) does not seem to appreciably change the distribution of interactions272

(Figure S3 (e) and (f), comparing nt = 2 for a single distinct probe - forward and reverse sequences, with nt = 20 for a mixture273

of 10 probes, including forward and reverse sequences).274

275

Perhaps counterintuitively, increasing the oligonucleotide probe length to 20nt (Figure S3b and c) reduces both the average276

interaction strength (∆G̃j,surf is on average less negative) and the average interaction difference between the E. coli and B.277

subtilis genomes; in other words, the specificity with which the surface binds E. coli is reduced for longer probes! This effect278

is due to longer probe strands having, on average, stronger self-interaction, which passivates them, decreasing their binding279

affinity for the target genome. However, the distribution of interaction free energies ∆G̃j,surf is very different for long versus280

short probes (compare Figure S3(e) and (f)). For the longer, 20nt probes (Figure S3(f)), the interaction free energy distribution281

shows a prominent shoulder at low free energy values for the targeted E. coli genome, with a significant number of blobs with282

∆G̃j,surf < 20kBT (even though the average interaction is weaker for 20nt probes than for 10nt probes). In contrast, few strong283

blob-surface interactions are observed for the non-target B. subtilis genome.284

285

As one might expect, differentiating between very similar genomes, for example different strains of E. coli, is more challenging.286

Here, as discussed in section 2, we suggest choosing probe sequences based on the difference ∆S in score function values287

between the targeted and non-targeted genome. We tested this approach by comparing binding of the E. coli O157 Sakai strain288

vs. the wild-type E. coli bl21-de3 strain, for a surface coated in probes that target E. coli O157 Sakai, selected by ranking of289

the ∆S values between Sakai and wild-type (Figure S4). For probes of length 10nt the difference in the average blob-surface290

interaction free energy between the two genomes is negligible (Figure S4(a)), but for longer 20nt probes (Figure S4(b)) the291

targeted Sakai strain shows a strongly interacting “shoulder” in the distribution of blob-surface interaction free energies, while292

the nontargeted bl21-de3 strain does not show any strong blob-surface interactions. Thus, the “∆S” method does provide a293

way to design probes that discriminate between similar strains.294

295

Interestingly, if one needs to discriminate between two strains that are not very similar, choosing probes based on the score296

difference ∆S has little advantage. Figure S5 compares histograms of blob-surface binding free energies for the E. coli and B.297

subtilis genomes, for probes targeting E. coli, chosen either using the basic score function method or the “∆S” method. Using298

the “∆S” method makes the overall interaction weaker (the histogram is shifted towards higher ∆G̃), but the specificity, i.e.299

the difference between the target (EC) and non-target (BS) histograms, does not improve.300

301
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In summary, to differentiate between sufficiently dissimilar genomes, such as those of different species, it appears to302

be sufficient to choose oligonucleotide probes based solely on the multiplicity of binding to the target genome, Eq. (S6).303

However, if strains of the same species must be differentiated, one should choose the oligonucleotide probes by maximising the304

target-to-non-target score difference, Eq. (S7).305

7. Effect of blob size306

In this work, we have coarse-grained the single-stranded genomic DNA into a polymer of “blobs”, with each blob representing307

400nt. Within each blob, it is assumed that the genome behaves as a self-avoiding walk polymer. A key tenet of coarse-grained308

polymer theory is that the results are independent of the chosen blob size (20, 21). Here, we test this by repeating some of our309

calculations using different blob sizes, i.e. different numbers of nucleotides per blob.310

311

Figure S6(a) confirms that changing the blob size does not appreciably affect the binding specificity, i.e. the difference312

in blob-surface interaction free energy between the E. coli and B. subtilis genomes, for an E. coli-targeting surface. The313

absolute values of the blob-surface interaction free energies ∆G̃j,surf do change with the blob size, as we would expect. However,314

the difference between the target (EC) and non-target (BS) genomes (i.e. the binding specificity) stays constant. In these315

calculations, we require the radius of gyration rb of a blob, which changes with blob size. Here, we have assumed that rb follows316

the standard scaling law for a self-avoiding walk: rb = 10nm×(lb/400nt)ν with the scaling exponent ν = 0.588 (for lb = 400nt317

we recover rc = 10nm as in our other calculations). The mass of the blob was kept constant.318

319

Using these blob-surface interaction free energies, we also performed Langevin dynamics simulations of genome-surface320

binding, for a range of blob sizes. Figure S6(b) shows that the results, in terms of genome-surface binding (number of nucleotides321

within 30nm of the surface) are essentially the same for blob sizes lb = 400nt and lb = 800nt. This is because, although larger322

blobs interact more strongly with the surface (Figure S6(a)), there are fewer of them per genome. For the smallest blob323

size lb = 200nt our simulations are no longer independent of blob size (the overall genome-surface binding is predicted to be324

somewhat stronger). We attribute this to the fact that our model neglects blob-blob hybridisation interactions. For large blobs325

these are negligible because the vast majority of binding configurations are due to intra-blob hybridisation interactions. For326

smaller blobs, however, neglecting blob-blob hybridisation tends to push the binding equilibrium towards genome–surface probe327

binding.328

329

While we could simulate blobs that are even larger than 800nt, our theory relies on the assumption that a single blob can330

bind at most a single surface probe. This assumption limits the probe density ρ that can be simulated, via the condition331

rb < ρ−0.5. Our chosen blob size of lb = 400nt is large enough to neglect the blob-blob hybridisation term (Figure S6(b)) while332

being small enough to be able to model a wide range of probe densities.333

8. Equivalence of changing probe density, temperature and salt concentration334

In this work, we have mostly investigated genome-surface binding as a function of the probe surface density ρ, keeping the335

temperature and salt concentration fixed at T = 50◦C and 1M NaCl. This was done for convenience, since the SantaLucia336

interactions need to be recalculated if the temperature or salt concentration change. However,it turns out that varying ρ is337

equivalent to varying either temperature or salt concentration.338

339

Figure S7 plots blob-surface interaction free energies for the E. coli wild-type genome binding to an E. coli-targeting340

surface (20nt probes), for a range of probe densities ρ, temperatures T and salt concentrations c. Reducing the salt concen-341

tration to c = 0.1M weakens the interaction, while increasing the temperature also uniformly weakens the interaction. If342

both the temperature and salt concentration are reduced the interactions remain virtually unchanged (compare the data343

for T = 50, c = 1M and T = 40, c = 0.1M in Figure S7). Thus, to a first approximation changing temperature or salt344

concentration simply translates the blob-surface binding interactions towards stronger/weaker binding, as does changing the345

probe density (Eq. (S12), and compare red and violet curves in Figure S7). Therefore the results that we plot as a func-346

tion of probe surface density would look essentially equivalent if plotted as a function of either temperature or salt concentration.347

348

9. Genome similarity calculation for the two E. coli strains349

In this work, we have used two E. coli strains, O157 Sakai and bl21-de3, as examples of closely related genomes. It is useful to350

be able to quantify the similarity between these genomes and to identify which parts of the genome are similar between the strains.351

352

To compare two genomes A and B, we first identify a subsequence j of genome B – this might be the sequence corresponding353

to one of the blobs in our coarse-grained polymer model. We then consider all subsequences of length ls from genome A, and354

count the number of times they appear exactly within subsequence j of genome B. This quantity is denoted nA,Bj . We then355

normalise by the number of distinct sequences of length ls that exist in subsequence j, which is lb − ls + 1, where lb is the356

length of subsequence j, to get a similarity measure Ssim
A,Bj :357

Ssim
A,Bj = nA,Bj/(lb − ls + 1) . [S20]358
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If genome A and genome B were identical, the measure Ssim
A,Bj would be 1 or greater (it would be 1 if every subsequence of359

length ls were unique but will be increased if the genome contains repeat subsequences). If, in contrast, there were no matching360

regions of length ls in subsequence j on genome, the similarity measure would be zero.361

362

This similarity measure clearly depends on the chosen length ls of the subsequences in genome A. For practical purposes, it363

is useful to choose a length ls comparable to that of the oligonucleotide probes, since this allows us to estimate how well two364

genomes can be discriminated by the probes.365

366

Figure S8(a) shows the similarity measure Ssim
A,Bj , computed between the E. coli 0157 Sakai and E. coli bl21-de3 wild type367

strains, taking ls = 20nt, and using the 400nt blobs of the bl21-de3 as the subsequences j. Indeed, the two genomes are very368

similar, but there do exist regions of dissimilarity that are dispersed throughout the genome (i.e. they happen for multiple369

blobs). Reassuringly it is these regions of dissimilarity which are selected by our probe selection algorithm, Eq. (S7); this is370

evident when we plot (in Figure S8(b)) the blob-surface hybridisation free energies ∆G̃j,surf for a surface coated in 20nt probes371

designed by the “∆S” method of Eq. (S7) to discriminate between the strains.372

373

Although other measures for quantifying genome similarity exist and are widely used, for our purposes the measure Ssim
A,Bj374

provides a useful way to estimate similarities along the coarse-grained polymer chain on a “blob to blob” basis, taking account375

of the chosen length of the oligonucleotide probes.376

10. Performance of our approach compared to that of existing DNA microarray probes377

To assess the performance of our proposed multivalent probe design strategy, we compared our results to simulations of378

target-probe binding for several published probe sequences designed for DNA detection via DNA microarrays. These were:379

• Probe A (40nt, Wiesinger et al. (2007) (22)) GTAACGTCAATGAGCAAAGGTATTAACTTTACTCCCTTCC. This380

targets the 16S ribosomal RNA gene of E. coli (therefore it should bind E. coli DNA from all strains).381

• Probe B (70nt, Vora et al. (2004) (23)) GGTTGTCACGAATGACAAAACACTTTATGACCGTTGTTTACATTT-382

TAAAGGCCAAGGATTAGCTGTACAT. This targets the rfbE gene which is specific to the O157 E. coli strain.383

• Probe C (27nt, Jin et al. (2005) (24)) GGTGGAATGGTTGTCACGAATGACAAA. This probe also targets the rfbE384

gene which is specific to the O157 E. coli strain.385

386

Using our theoretical approach, we investigated the binding free energies for probe A (and its reverse complement) interact-387

ing with both E coli wild-type and B. subtilis genomic DNA, and for probes B and C interactions with the E coli wild-type388

and O157 Sakai strain genomic DNA. The results are shown in Figure S9 (left panels). Figure S9(a) shows that probe A389

has several strong binding sites along the E coli wild-type genome: comparing with Figure S3 (b) for our 10nt probes we see390

that probe A binds more strongly than our probes, but with far fewer binding sites on the genome. The picture is similar391

for probes B and C (Figure S9(c) and (e)): both of these probes have only two binding sites on the O157 Sakai genome,392

corresponding to the locations of the rfbE gene in the forward and reverse strands. In contrast, Figure S8 (b) shows393

that our Sakai-targeting 20nt probe has many more binding sites along the O157 Sakai genome, although each one is weaker.394

395

We also performed Langevin dynamics simulations of the binding of target and non-target DNA to surfaces coated396

in probes A, B and C (and their reverse complements), compared to surfaces coated in our top-scoring probes. The397

results are shown in the right-hand panels of Figure S9. In each case, we assumed that the genomic DNA was frag-398

mented into 400nt fragments for binding to the literature probes (A, B and C) (since short fragments are typically399

used in DNA microarray methods (23)). For the simulations with our 10nt probes we assumed unfragmented genomic DNA.400

401

Figure S9 (b) compares the simulated binding of E. coli wild-type DNA and B. subtilis DNA to a probe A-coated402

surface, and to a surface coated in our 10nt E. coli-targeting probes. The data shows increased selectivity (difference in403

binding between the target and non-target DNA), and increased sensitivity (strong binding at low probe density) for our404

multivalency approach compared to the existing probe A.405

406

Similar results were obtained when we simulated the binding of E. coli O157 Sakai and E. coli wild-type DNA to surfaces407

coated in either probe B/C, or our 20nt probes targeting O157 Sakai (designed using the ∆S method). Figure S9 (d) and408

(f) show that the sensitivity and selectivity of binding are improved for our multivalent binding approach compared to409

either probe B or C.410

411

We also checked the performance of our method compared to probes A, B and C for the same level of genome fragmentation.412

Figure S10 shows equivalent results to those of the right panels of Figure S9, but in the case where the genomic DNA413

is fragmented into 4000nt fragments (for all probes). Our multiple target probe design approach still shows improved414
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sensitivity and selectivity in this case, even though the overall performance is slightly diminished by the fragmentation of415

the DNA.416
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(a) Binding of the E. coli target genome to surface coated in 10nt probes
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(b) Binding of the E. coli target genome to surface coated in 20nt probes
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(c) Binding of the non-target B. subtilis target genome to surface coated in 10nt
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(d) Binding of the non-target B. subtilis target genome to surface coated in 20nt
probes targeting E. coli

-25 -20 -15 -10
blob-surface interaction   β∆G~

10-4

10-3

10-2

10-1

100

pr
ob

ab
ilit

y 
de

ns
ity

BS, nt=2
BS, nt=20
EC, nt=2
EC, nt=20

(e) Histogram of binding free energies for a surface coated in 10nt probes
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(f) Histogram of binding free energies for a surface coated in 20nt probes
targeting E. coli

Fig. S3. Effects of changing probe length, and of using a mixture of probe sequences, for probes targeting the E. coli wild-type genome. Panels (a)-(d) show individual
blob-surface binding free energy values ∆G̃j,surf , obtained using Eq. (S12), together with moving averages over 1000 consecutive blobs. Panels (e) and (f) show histograms
of blob-surface binding free energy values. The left panels correspond to short oligonucleotide probes (10nt), while the right panels are for longer probes (20nt). In the legends,
‘BS” stands for the B. subtilis QB928 genome and “EC” stands for the E. coli bl21-de3 wild-type genome. nt = 2 refers to a surface coated in the highest-scoring probe
sequence, plus its reverse complement, while nt = 20 refers to a surface coated in a mixture of the 10 highest-scoring probe sequences, plus their reverse complements. The
other parameters are: ρ = 0.1r−2

b
, lb = 400nt, T = 50◦C.
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Fig. S4. Histogram of SantaLucia blob-surface interaction free energies ∆G̃j,surf , for the two E. coli strains 0157 Sakai and bl21-de3, interacting with a surface that is coated
in probes designed to obtain the largest score difference between the strains, ∆S = SSakai − Sbl21−de3. The calculations are performed with the single top-scoring probe
sequence, plus its reverse complement. In panel (a) the probe length is 10nt; in panel b) it is 20nt. The black lines correspond to binnding of the target Sakai strain; the orange
lines correspond to binding of the non-target wild-type strain. The other parameters are ρ = 0.1r2

b , lb = 400nt, T = 50◦C.
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Fig. S5. The “∆S” probe selection method has little effect on selectivity between different bacterial species. Histograms of blob-surface interaction free energies ∆G̃j,surf are
shown for a surface targeting E. coli wild-type, for probes selected by maximising the score S (square symbols), or using the ∆S method (diamond symbols). Using the ∆S
method shifts the interaction histograms but does not affect the selectivity of binding between the targeted E. coli wild-type genome and the non-targeted B. subtilis genome.
In panel a) the probe length is 10nt; panel b) corresponds to 20nt probes. In each case a single probe sequence is used, together with its reverse complement. The other
parameters are ρ = 0.1r−2

b
, lb = 400nt, T = 50◦C.
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Fig. S6. Effect of changing the blob size in our coarse-grained simulations. In panel (a) the 40000 nucleotide moving average of the blob-surface interaction free energy
∆G̃j,surf is plotted for different blob sizes lb = 100, 200, 400, 800nt, for a surface coated in 10nt probes designed to target E. coli bl21-de3. In the legend, EC denotes
binding of the target E. coli genome and BS denotes binding of the non-target B. subtilis genome. Panel b) shows results of our Langevin dynamics simulations, for three
different blob sizes. The number of nucleotides within a 30 nm distance of the surface is plotted as a function of time for simulations of the E. coli genome binding to a surface
coated in 10nt E. coli-targeting probes. The parameters are ρ = 0.1r2

b , T = 50◦C.
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Fig. S7. Effect of changing the temperature T , salt concentration c and the probe surface density ρ on genome-surface binding free energies. The plot shows 400000
nucleotide moving averages of the SantaLucia blob-surface binding free energy ∆G̃ for an E. coli bl21-de3 genome binding to a surface grafted with the top scoring 20nt probe
and its reverse complement. The black curve shows the same data as in Figure S3(b) at T = 50◦C and c = 1M, which are also the values used in all previous calculations.
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Fig. S8. Distinguishing between similar genomes: E. coli 0157 Sakai and E. coli bl21-de3 wild type. (a) Genome similarity calculated between bl21-de3 and 400 nucleotide
segments (blobs) of the 0157 Sakai strain, applying Eq. (S20). (b) SantaLucia blob-surface interaction energies ∆G̃j,surf for 0157 Sakai and bl21-de3 genomic DNA binding
to a surface coated with the top scoring 20nt probe that maximises the difference function ∆S = SSakai − Sbl21−de3, and its reverse complement. This data corresponds
to the genome-surface binding plots in Fig 3 in the main text.
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(d) binding curve
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(e) Jin probe for E. coli O157
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Fig. S9. Comparing the performance of our “multivalent binding” approach with probes A, B and C taken from the literature. The left panels show blob-surface SantaLucia
interaction free energies ∆G̃j,surf along the target and non-target genomes, for probe density ρ = 0.01, for (a) probe A, target = E. coli wild-type, non-target = B. subtilis; (b):
probe B, target = E. coli O157 Sakai, non-target = E. coli wild-type; and (c): probe C, target = E. coli O157 Sakai, non-target = E. coli wild-type. In all cases the forward and
reverse genomic DNA strands are included. The right panels show the results of Langevin dynamics simulations of binding of target and non-target DNA binding to surfaces
coated in either the literature probe or our top-scoring probe (including both forward and reverse probe strands). For simulations with the literature probes the genome was
assumed to be fragmented into 400nt (1 blob) fragments; for simulations with our probes the genome was assumed to be unfragmented. Panel (b) shows results for probe A
versus our top-scoring 10nt E. coli probe, for E. coli wild-type or B. subtilis DNA. Panel (d) shows results for probe B versus our top-scoring 20nt O157 Sakai probe, for E. coli
O157 Sakai or wild-type. Panel (e) is equivalent to panel (d) but for probe C. In all cases, T = 50◦C. In the simulation plots, we note that the number of genome-surface
contacts does not go to zero as the probe density decreases to zero. This is because, in our simulations, a single genome (forward and reverse strands) is confined in a
simulation box of size 10 × 10 × 50µm. Even in the absence of any genome-surface binding, we expect on average 10 of the genome blobs to be close enough to the surface
to be classified as being in “surface contact”.
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Fig. S10. Equivalent simulation results to those of Figure S9 (right panels), but for the case where the genomic DNA is fragmented into 4000nt (10 blob) fragments for both the
literature probes and our probes.
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