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Figure S1. Maternal expression of MEKE203K does not affect total ERK levels. Wild type
(WT) embryos (Histone-GFP) and embryos with maternally expressed MEKE203K

(MTD>MEKE203K) were stained with antibody against total ERK (C, D). (A, B) DAPI
staining showing locations of nuclei. (E, F) Merged images. Scale bar, 100 µm.



Figure S2. Localization and levels of unphosphorylated ERK in S2 cells with and without ERK activation. In (A-B’’’),
transfected expression constructs are shown on the left, and staining signals are shown above the individual panels. (C)
Quantification of stainings shown in (A-B’’’). Normalized ratio of unphosphoERK to total ERK was reduced to 0.75 when
ERK was co-transfected with Raf and MEK, compared to transfection of ERK alone, suggesting only limited dpERK
formation in cells. n = 20 cells for each transfection type; ** p < 0.01.
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Supplemental Materials and Methods 
Mathematical Model for ERK-Cic Interactions. Our model captures the effects of a substrate 

that protects its enzyme from deactivation. The model describes the conversion of an inactive 

enzyme 𝐸𝐸 to its active form 𝐸𝐸∗, which is catalyzed in the forward direction by an enzyme 𝐴𝐴 and in 

the reverse direction by another enzyme 𝐷𝐷. We assumed that 𝐴𝐴 only binds 𝐸𝐸, 𝐷𝐷 only binds 𝐸𝐸∗, 

and 𝐴𝐴 and 𝐷𝐷 are constitutively active. The substrate 𝑆𝑆 for the active enzyme 𝐸𝐸∗ is continuously 

synthesized and undergoes intrinsic degradation, whether free or in a complex. Active enzyme 

𝐸𝐸∗ binds and phosphorylates its substrate 𝑆𝑆, leading to rapid degradation. Inactive enzyme 𝐸𝐸 can 

also bind 𝑆𝑆 but does not affect its degradation. 

The dynamics of the system described above obey the following differential equations: 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑜𝑜𝑜𝑜1𝐴𝐴 ∗ 𝐸𝐸 + �𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜1 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑑𝑑1�𝐴𝐴𝐸𝐸    (1) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑜𝑜𝑜𝑜2𝐷𝐷 ∗ 𝐸𝐸∗ + �𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜2 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑑𝑑2�𝐷𝐷𝐸𝐸∗    (2) 

𝑑𝑑𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑜𝑜𝑜𝑜1𝐴𝐴 ∗ 𝐸𝐸 − �𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜1 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑑𝑑1�𝐴𝐴𝐸𝐸     (3) 

𝑑𝑑𝑑𝑑𝑑𝑑∗

𝑑𝑑𝑑𝑑
= 𝑘𝑘𝑜𝑜𝑜𝑜2𝐷𝐷 ∗ 𝐸𝐸∗ − �𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜2 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑑𝑑2�𝐷𝐷𝐸𝐸∗    (4) 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑘𝑘𝑜𝑜𝑜𝑜1𝐴𝐴 ∗ 𝐸𝐸 + 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜1𝐴𝐴𝐸𝐸 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑑𝑑2𝐷𝐷𝐸𝐸∗ − 𝑘𝑘𝑜𝑜𝑜𝑜3𝐸𝐸 ∗ 𝑆𝑆 + �𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜3 + 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑�𝐸𝐸𝑆𝑆   (5) 

𝑑𝑑𝑑𝑑∗

𝑑𝑑𝑑𝑑
= −𝑘𝑘𝑜𝑜𝑜𝑜2𝐷𝐷 ∗ 𝐸𝐸∗ + 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜2𝐷𝐷𝐸𝐸∗ + 𝑘𝑘𝑐𝑐𝑐𝑐𝑑𝑑1𝐴𝐴𝐸𝐸 − 𝑘𝑘𝑜𝑜𝑜𝑜4𝐸𝐸∗ ∗ 𝑆𝑆 + �𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜4 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑑𝑑4 + 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑�𝐸𝐸∗𝑆𝑆  (6) 

𝑑𝑑𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑜𝑜𝑜𝑜3𝐸𝐸 ∗ 𝑆𝑆 − (𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜3 + 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑)𝐸𝐸𝑆𝑆     (7) 

𝑑𝑑𝑑𝑑∗𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑘𝑘𝑜𝑜𝑜𝑜4𝐸𝐸∗ ∗ 𝑆𝑆 − (𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜4 + 𝑘𝑘𝑐𝑐𝑐𝑐𝑑𝑑4 + 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑)𝐸𝐸∗𝑆𝑆    (8) 

𝑑𝑑𝑆𝑆
𝑑𝑑𝑑𝑑

= 𝑐𝑐 − 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑆𝑆 − 𝑘𝑘𝑜𝑜𝑜𝑜3𝐸𝐸 ∗ 𝑆𝑆 + 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜3𝐸𝐸𝑆𝑆 − 𝑘𝑘𝑜𝑜𝑜𝑜4𝐸𝐸∗ ∗ 𝑆𝑆 + 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜4𝐸𝐸∗𝑆𝑆.   (9) 

Note that 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 describes spontaneous degradation of 𝑆𝑆, which can occur whether 𝑆𝑆 is free or in a 

complex. 𝑘𝑘𝑐𝑐𝑐𝑐𝑑𝑑4 describes modification of 𝑆𝑆 by 𝐸𝐸∗, which we assume is followed by rapid unbinding. 

We do not keep track of modified 𝑆𝑆 in the model because it is assumed to not interact with 𝐸𝐸 or 

𝐸𝐸∗. Furthermore, modification of Cic has been shown to rapidly cause de-repression of gene 

expression, even before Cic has degraded substantially (Lim et al., 2013). 



Since the total amounts of the enzymes 𝐴𝐴, 𝐷𝐷, and 𝐸𝐸 are conserved, the system is also subject to 

the following conservation equations: 

𝐴𝐴0 = 𝐴𝐴 + 𝐴𝐴𝐸𝐸       (10) 

𝐷𝐷0 = 𝐷𝐷 + 𝐷𝐷𝐸𝐸∗       (11) 

𝐸𝐸0 = 𝐸𝐸∗ + 𝐷𝐷𝐸𝐸∗ + 𝐸𝐸∗𝑆𝑆 + 𝐸𝐸 + 𝐴𝐴𝐸𝐸 + 𝐸𝐸𝑆𝑆.     (12) 

At steady state, we set Equations 1 through 9 equal to zero. To find solutions to this system of 

algebraic equations, we solved for 𝐸𝐸∗. First solving for the complexes 𝐴𝐴𝐸𝐸, 𝐷𝐷𝐸𝐸∗, 𝐸𝐸𝑆𝑆, and 𝐸𝐸∗𝑆𝑆 by 

using Equations 3, 4, 7, and 8, gives 

𝐴𝐴𝐸𝐸 = 𝑑𝑑∗𝑑𝑑
𝐾𝐾𝑀𝑀1

       (13) 

𝐷𝐷𝐸𝐸∗ = 𝑑𝑑∗𝑑𝑑∗

𝐾𝐾𝑀𝑀2
       (14) 

𝐸𝐸𝑆𝑆 = 𝑑𝑑∗𝑆𝑆
𝐾𝐾𝑀𝑀3

       (15) 

𝐸𝐸∗𝑆𝑆 = 𝑑𝑑∗∗𝑆𝑆
𝐾𝐾𝑀𝑀4

       (16) 

where we have defined the following Michaelis constants: 𝐾𝐾𝑀𝑀1 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜1+𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐1
𝑘𝑘𝑜𝑜𝑜𝑜1

, 𝐾𝐾𝑀𝑀2 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜2+𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐2
𝑘𝑘𝑜𝑜𝑜𝑜2

, 

𝐾𝐾𝑀𝑀3 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜3+𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘𝑜𝑜𝑜𝑜3

, and 𝐾𝐾𝑀𝑀4 = 𝑘𝑘𝑜𝑜𝑜𝑜𝑜𝑜4+𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐4+𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑
𝑘𝑘𝑜𝑜𝑜𝑜4

. 

Solving for 𝑆𝑆 using Equation 9 gives 

𝑆𝑆 =
𝑐𝑐

𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑

1+ 𝐸𝐸
𝐾𝐾𝑀𝑀3

+�1+𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐4𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑
� 𝐸𝐸∗
𝐾𝐾𝑀𝑀4

 
.     (17) 

Then we solved for 𝐴𝐴 and 𝐷𝐷 using Equations 10 and 11 and the expressions for 𝐴𝐴𝐸𝐸 and 𝐷𝐷𝐸𝐸∗: 

𝐴𝐴 = 𝑑𝑑0
1+ 𝐸𝐸

𝐾𝐾𝑀𝑀1

       (18) 

𝐷𝐷 = 𝑑𝑑0
1+ 𝐸𝐸∗

𝐾𝐾𝑀𝑀2

       (19) 

Finally, we solved for 𝐸𝐸 using Equation 5 and the expressions for 𝐴𝐴, 𝐷𝐷, 𝐴𝐴𝐸𝐸, and 𝐷𝐷𝐸𝐸∗ , noting that 

the terms with 𝑆𝑆 and 𝐸𝐸𝑆𝑆 drop out due to Equation 7: 



𝐸𝐸 =
𝐾𝐾𝑀𝑀1
𝐾𝐾𝑀𝑀2

 𝑑𝑑∗

𝜈𝜈+(𝜈𝜈−1) 𝐸𝐸∗
𝐾𝐾𝑀𝑀2

,      (20) 

where 𝜈𝜈 is defined as 𝜈𝜈 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐1𝑑𝑑0
𝑘𝑘𝑐𝑐𝑐𝑐𝑐𝑐2𝑑𝑑0

. 

Plugging the expressions for the complexes into Equation 12: 

𝐸𝐸0 = 𝐸𝐸∗ �1 + 𝑑𝑑
𝐾𝐾𝑀𝑀2

+ 𝑆𝑆
𝐾𝐾𝑀𝑀4

� + 𝐸𝐸 �1 + 𝑑𝑑
𝐾𝐾𝑀𝑀1

+ 𝑆𝑆
𝐾𝐾𝑀𝑀3

�    (21) 

All of the terms in Equation 21 have been expressed in terms of 𝐸𝐸∗ above. Solving this for the 

steady state concentration of 𝐸𝐸∗ requires solving a 5th-order polynomial; all other concentrations 

can be found from 𝐸𝐸∗. 

To isolate the relevant control knobs, we nondimensionalized the variables and equations. All 

species containing enzyme 𝐸𝐸 or 𝐸𝐸∗ were scaled by 𝐸𝐸0 (𝑒𝑒∗ = 𝐸𝐸∗/𝐸𝐸0, 𝑒𝑒 = 𝐸𝐸/𝐸𝐸0, 𝑎𝑎𝑒𝑒 = 𝐴𝐴𝐸𝐸/𝐸𝐸0, 𝑑𝑑𝑒𝑒∗ =

𝐷𝐷𝐸𝐸∗/𝐸𝐸0, 𝑒𝑒𝑒𝑒 = 𝐸𝐸𝑆𝑆/𝐸𝐸0, 𝑒𝑒∗𝑒𝑒 = 𝐸𝐸∗𝑆𝑆/𝐸𝐸0). 𝑆𝑆 was scaled to 𝑒𝑒 = 𝑆𝑆/(𝑐𝑐/𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑), where 𝑐𝑐/𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑 is the steady 

state value of 𝑆𝑆 in the absence of 𝐸𝐸 or 𝐸𝐸∗. 𝐴𝐴 and 𝐷𝐷 were scaled by their total amounts: 𝑎𝑎 = 𝐴𝐴/𝐴𝐴0, 

𝑑𝑑 = 𝐷𝐷/𝐷𝐷0. The dimensionless forms of the equations above are then: 

𝑎𝑎𝑒𝑒 = 𝜖𝜖1
𝑐𝑐∗𝑑𝑑
𝛽𝛽1

       (22) 

𝑑𝑑𝑒𝑒∗ = 𝜖𝜖2
𝑑𝑑∗𝑑𝑑∗

𝛽𝛽2
       (23) 

𝑒𝑒𝑒𝑒 = 𝜖𝜖3
𝑑𝑑∗𝑠𝑠
𝛽𝛽3

      (24) 

𝑒𝑒∗𝑒𝑒 = 𝜖𝜖3
𝑑𝑑∗∗𝑠𝑠
𝛽𝛽4

       (25) 

𝑒𝑒 = 1

1+ 𝑑𝑑
𝛽𝛽3
+(1+𝛼𝛼)𝑑𝑑

∗
𝛽𝛽4

 
      (26) 

𝑎𝑎 = 1
1+ 𝑑𝑑

𝛽𝛽1

       (27) 

𝑑𝑑 = 1

1+𝑑𝑑∗
𝛽𝛽2

       (28) 

𝑒𝑒 =
𝛽𝛽1
𝛽𝛽2

 𝑑𝑑∗

𝜈𝜈+(𝜈𝜈−1)𝑑𝑑
∗

𝛽𝛽2

       (29) 

1 = 𝑒𝑒∗ �1 + 𝜖𝜖2
𝑑𝑑
𝛽𝛽2

+ 𝜖𝜖3
𝑠𝑠
𝛽𝛽4
� + 𝑒𝑒 �1 + 𝜖𝜖1

𝑐𝑐
𝛽𝛽1

+ 𝜖𝜖3
𝑠𝑠
𝛽𝛽3
�,   (30) 



where 𝛽𝛽1 = 𝐾𝐾𝑀𝑀1/𝐸𝐸0, 𝛽𝛽2 = 𝐾𝐾𝑀𝑀2/𝐸𝐸0, 𝛽𝛽3 = 𝐾𝐾𝑀𝑀3/𝐸𝐸0, and 𝛽𝛽4 = 𝐾𝐾𝑀𝑀4/𝐸𝐸0,, 𝜖𝜖1 = 𝐴𝐴0/𝐸𝐸0, 𝜖𝜖2 = 𝐷𝐷0/𝐸𝐸0, 𝜖𝜖3 =

(𝑐𝑐/𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑)/𝐸𝐸0, and 𝛼𝛼 = 𝑘𝑘𝑐𝑐𝑐𝑐𝑑𝑑4/𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑. 

We are interested in the effects of the relative strengths of binding of 𝑒𝑒 to 𝑒𝑒 and 𝑒𝑒∗, which are 

controlled by 𝛽𝛽3 and 𝛽𝛽4, respectively. Importantly, 𝛽𝛽3 and 𝛽𝛽4 are rescaled Michaelis constants, 

which roughly indicate the concentrations of unmodified (𝛽𝛽3) or modified (𝛽𝛽4) enzyme at which 

unbound substrate concentration falls due to binding or degradation. Therefore, smaller values 

indicate stronger interactions between the substrate and the corresponding form of the enzyme. 

We chose values for the remaining parameters that are consistent with observations in the main 

text: substantial activation of 𝑒𝑒 and modification (+ degradation) of 𝑒𝑒 in the presence of 𝑎𝑎. For 

simplicity, we took 𝜖𝜖1 = 1, 𝜖𝜖2 = 1, 𝜖𝜖3 = 1, 𝛽𝛽1 = 1, 𝛽𝛽2 = 1. We took 𝜈𝜈 = 0.2 < 1 so that there is a 

preference for the dephosphorylated form of 𝑒𝑒 at steady state, in the absence of 𝑒𝑒. We chose 𝛼𝛼 =

10 so that modification of 𝑒𝑒 is much faster than its degradation. The exact values of 𝜖𝜖1, 𝜖𝜖2, 𝜖𝜖3, 𝛽𝛽1, 

𝜈𝜈, and 𝛼𝛼 affect the absolute amounts of 𝑒𝑒∗ and 𝑒𝑒 at steady state but have minimal effects on their 

qualitative dependencies on 𝛽𝛽3 and 𝛽𝛽4. However, we find that 𝛽𝛽2 does affect the qualitative 

behavior: in short, 𝛽𝛽4 must be less than or equal to both 𝛽𝛽2 and 𝛽𝛽3 in order for 𝑒𝑒∗ to be protected 

from 𝑑𝑑 and for substantial degradation of 𝑒𝑒 to occur. Although phosphatases can have strong 

affinity for dpERK (dpERK-MKP3 Km ~ 20 nM) (Zhao and Zhang, 2001), ERK and dpERK have 

as strong affinity for Cic (ERK-Cic Kd ~ 50 nM) (Futran et al., 2015), suggesting that biological 

parameters are in the range where protection of ERK from phosphatases is relevant.  

Fixing these parameters, we then varied the relative values of 𝛽𝛽3 and 𝛽𝛽4 and used Matlab’s roots 

function to find possible the solutions for 𝑒𝑒∗ at each value of the parameters. Only solutions for 

which all quantities were between 0 and 1 were kept. For each pair of 𝛽𝛽3 and 𝛽𝛽4, the solution 

satisfying this physical constraint was unique. Throughout, we have quantified the total amount 

of activated enzyme, 𝑒𝑒𝑑𝑑𝑜𝑜𝑑𝑑∗ = 𝑒𝑒∗ + 𝑑𝑑𝑒𝑒∗ + 𝑒𝑒∗𝑒𝑒, and the total amount of substrate, 𝑒𝑒𝑑𝑑𝑜𝑜𝑑𝑑 = 𝑒𝑒 + 𝑒𝑒𝑒𝑒 + 𝑒𝑒∗𝑒𝑒.  

To investigate the effects of enzyme-substrate binding on the system response to a pulse of 𝑎𝑎, 

we rescaled the dynamical equations. Time was rescaled to 𝜏𝜏 = 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑𝑡𝑡, all first-order rate 

constants were rescaled by 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑, and all second-order rate constants were rescaled by 𝑘𝑘𝑑𝑑𝑑𝑑𝑑𝑑/𝐸𝐸0. 

The resulting dimensionless equations are: 

𝑑𝑑 𝑐𝑐
𝑑𝑑𝑑𝑑

= −𝛾𝛾𝑜𝑜𝑜𝑜1𝑎𝑎 ∗ 𝑒𝑒 + 1
𝜖𝜖1
�𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜1 + 𝛾𝛾𝑐𝑐𝑐𝑐𝑑𝑑1�𝑎𝑎𝑒𝑒     (31) 

𝑑𝑑 𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝛾𝛾𝑜𝑜𝑜𝑜2𝑑𝑑 ∗ 𝑒𝑒∗ + 1
𝜖𝜖2
�𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜2 + 𝛾𝛾𝑐𝑐𝑐𝑐𝑑𝑑2�𝑑𝑑𝑒𝑒∗     (32) 



𝑑𝑑 𝑐𝑐𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜖𝜖1𝛾𝛾𝑜𝑜𝑜𝑜1𝑎𝑎 ∗ 𝑒𝑒 − �𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜1 + 𝛾𝛾𝑐𝑐𝑐𝑐𝑑𝑑1�𝑎𝑎𝑒𝑒     (33) 

𝑑𝑑 𝑑𝑑𝑑𝑑∗

𝑑𝑑𝑑𝑑
= 𝜖𝜖2𝛾𝛾𝑜𝑜𝑜𝑜2𝑑𝑑 ∗ 𝑒𝑒∗ − �𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜2 + 𝛾𝛾𝑐𝑐𝑐𝑐𝑑𝑑2�𝑑𝑑𝑒𝑒∗     (34) 

𝑑𝑑 𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝜖𝜖1𝛾𝛾𝑜𝑜𝑜𝑜1𝑎𝑎 ∗ 𝑒𝑒 + 𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜1𝑎𝑎𝑒𝑒 + 𝛾𝛾𝑐𝑐𝑐𝑐𝑑𝑑2𝑑𝑑𝑒𝑒∗ − 𝜖𝜖3𝛾𝛾𝑜𝑜𝑜𝑜3𝑒𝑒 ∗ 𝑒𝑒 + �𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜3 + 1�𝑒𝑒𝑒𝑒   (35) 

𝑑𝑑 𝑑𝑑∗

𝑑𝑑𝑑𝑑
= −𝜖𝜖1𝛾𝛾𝑜𝑜𝑜𝑜2𝑑𝑑 ∗ 𝑒𝑒∗ + 𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜2𝑑𝑑𝑒𝑒∗ + 𝛾𝛾𝑐𝑐𝑐𝑐𝑑𝑑1𝑎𝑎𝑒𝑒 − 𝜖𝜖3𝛾𝛾𝑜𝑜𝑜𝑜4𝑒𝑒∗ ∗ 𝑒𝑒 + �𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜4 + 𝛾𝛾𝑐𝑐𝑐𝑐𝑑𝑑4 + 1�𝑒𝑒∗𝑒𝑒  (36) 

𝑑𝑑 𝑑𝑑𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝜖𝜖3𝛾𝛾𝑜𝑜𝑜𝑜3𝑒𝑒 ∗ 𝑒𝑒 − (𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜3 + 1)𝑒𝑒𝑒𝑒      (37) 

𝑑𝑑 𝑑𝑑∗𝑠𝑠
𝑑𝑑𝑑𝑑

= 𝜖𝜖3𝛾𝛾𝑜𝑜𝑜𝑜4𝑒𝑒∗ ∗ 𝑒𝑒 − (𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜4 + 𝛾𝛾𝑐𝑐𝑐𝑐𝑑𝑑4 + 1)𝑒𝑒∗𝑒𝑒     (38) 

𝑑𝑑 𝑠𝑠
𝑑𝑑𝑑𝑑

= 1 − 𝑒𝑒 − 𝛾𝛾𝑜𝑜𝑜𝑜3𝑒𝑒 ∗ 𝑒𝑒 + 1
𝜖𝜖4
𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜3𝑒𝑒𝑒𝑒 − 𝛾𝛾𝑜𝑜𝑜𝑜4𝑒𝑒∗ ∗ 𝑒𝑒 + 1

𝜖𝜖4
𝛾𝛾𝑜𝑜𝑜𝑜𝑜𝑜4𝑒𝑒∗𝑒𝑒.   (39) 

In the absence of 𝑎𝑎, the steady state of the system is 𝑑𝑑 = 1, 𝑒𝑒 =
−�1+𝜖𝜖3

𝛽𝛽3
− 1
𝛽𝛽3
�+��1+𝜖𝜖3

𝛽𝛽3
− 1
𝛽𝛽3
�
2
+ 4
𝛽𝛽3
2

2/𝛽𝛽32
, 𝑒𝑒 =

1
1+ 𝑑𝑑

𝛽𝛽3

, 𝑒𝑒𝑒𝑒 = 𝜖𝜖3(𝑑𝑑∗𝑠𝑠)
𝛽𝛽3

 , and all other concentrations are zero. From this initial condition, we shifted 𝑎𝑎 to 

1 and allowed the system to evolve for 5 time units, after which 𝑎𝑎 was removed and all 𝑎𝑎𝑒𝑒 was 

converted to 𝑒𝑒.  

As the binding strength between 𝑒𝑒 and 𝑒𝑒∗ increases, the minimal value of 𝑒𝑒𝑑𝑑𝑜𝑜𝑑𝑑 drops dramatically, 

the maximal value of 𝑒𝑒𝑑𝑑𝑜𝑜𝑑𝑑∗  increases, and the time scale on which the system returns to the initial 

steady state increases. At small 𝛽𝛽3 and large 𝛽𝛽4, 𝑒𝑒 mostly binds to 𝑒𝑒, and 𝑒𝑒 can’t bind to 𝑎𝑎 and be 

converted to 𝑒𝑒∗. Furthermore, 𝑒𝑒 doesn’t bind much to the 𝑒𝑒∗ that does form, so it gets converted 

back to 𝑒𝑒 by 𝑑𝑑. At large 𝛽𝛽3 and small 𝛽𝛽4, 𝑒𝑒 mostly binds 𝑒𝑒∗, allowing 𝑒𝑒 to be converted to 𝑒𝑒∗ and 

preventing 𝑑𝑑 from binding and converting 𝑒𝑒∗ back to 𝑒𝑒. The increase in 𝑒𝑒∗ is accompanied by a 

decrease in 𝑒𝑒. When 𝑎𝑎 is removed, the return to steady state is slow because as 𝑒𝑒∗ decreases, 

more 𝑒𝑒 appears, which binds more the of remaining 𝑒𝑒∗, further preventing 𝑑𝑑 from accessing 𝑒𝑒∗. 
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