SUPPLEMENTARY MATERIAL

Research Article

TITLE

Effects of anti-PD-1 immunotherapy on tumor regression: insights from a patient-derived xenograft model.

AUTHORS

Asunción Martín-Ruiz^{1,2}, Carmen Fiuza-Luces³, Esther Martínez-Martínez^{1,4}, Clemente F. Arias⁵, Lourdes Gutiérrez¹, Manuel Ramírez⁶, Paloma Martín-Acosta⁷, Maria José Coronado⁸, Alejandro Lucia^{2,3} and Mariano Provencio^{1*}.

^{*}Correspondence: Dr. Mariano Provencio, mprovenciop@gmail.com

SUPPLEMENTARY MATERIAL

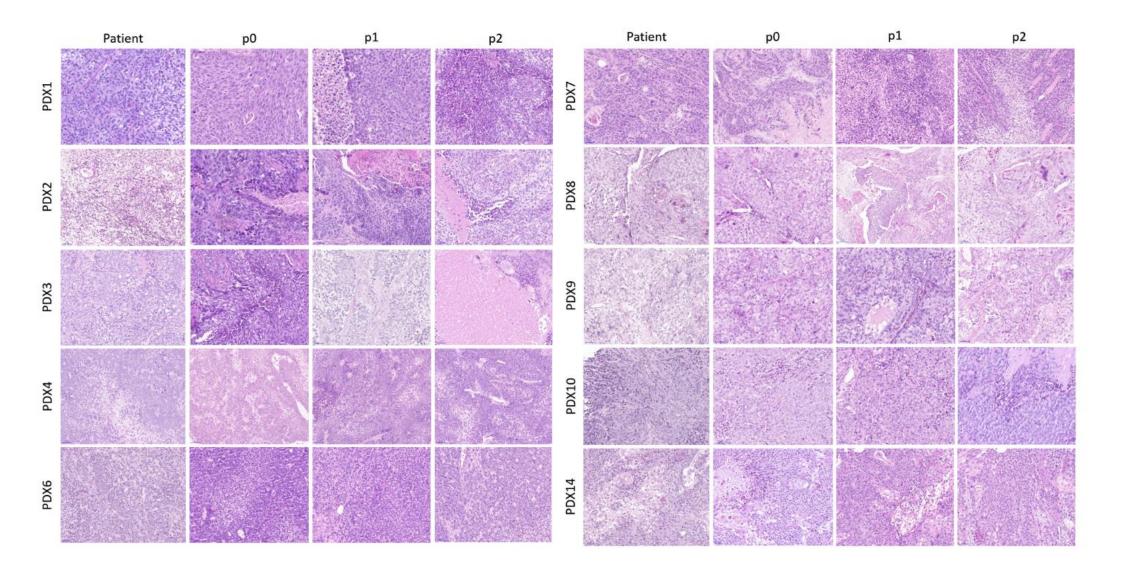


Figure S1

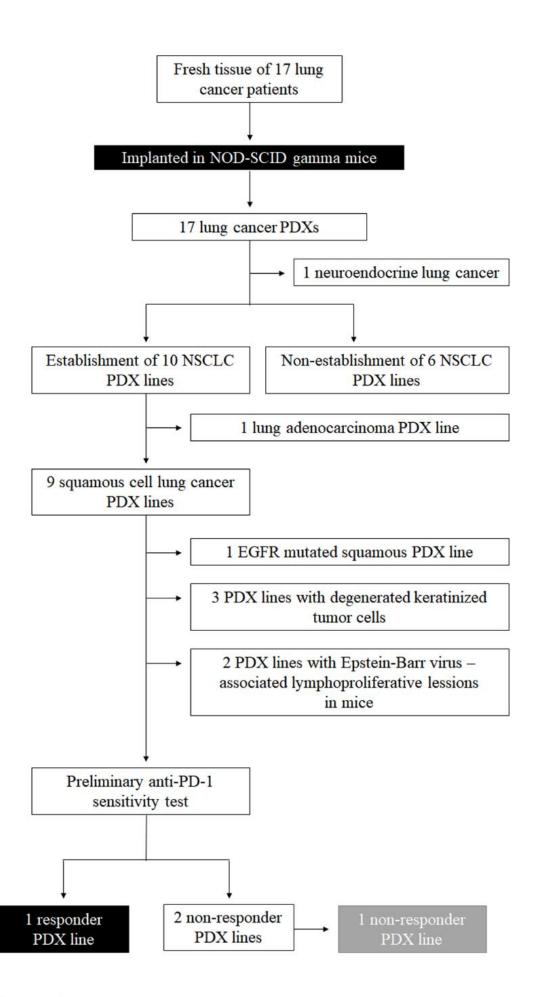


Figure S2

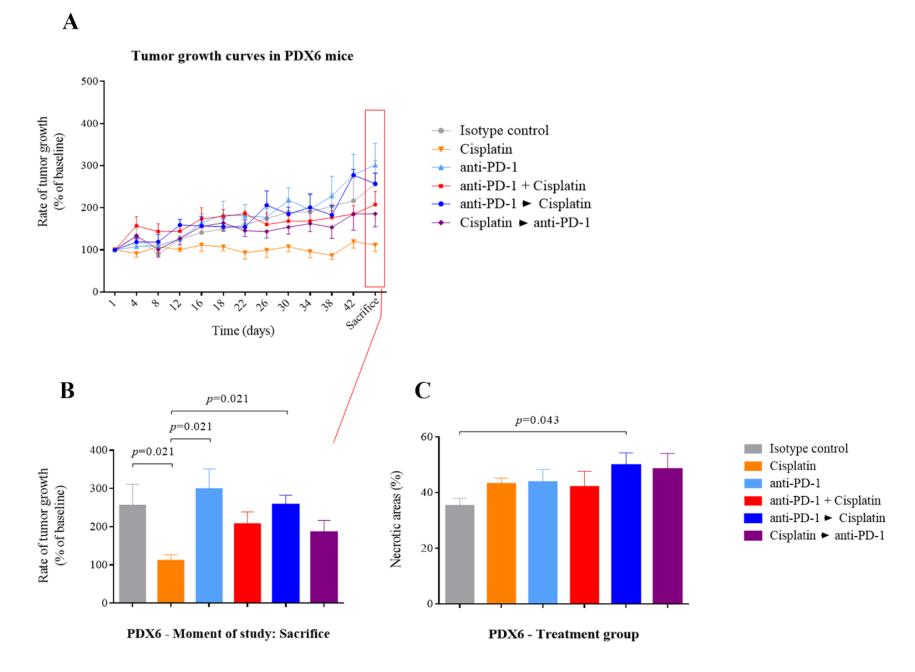


Figure S3

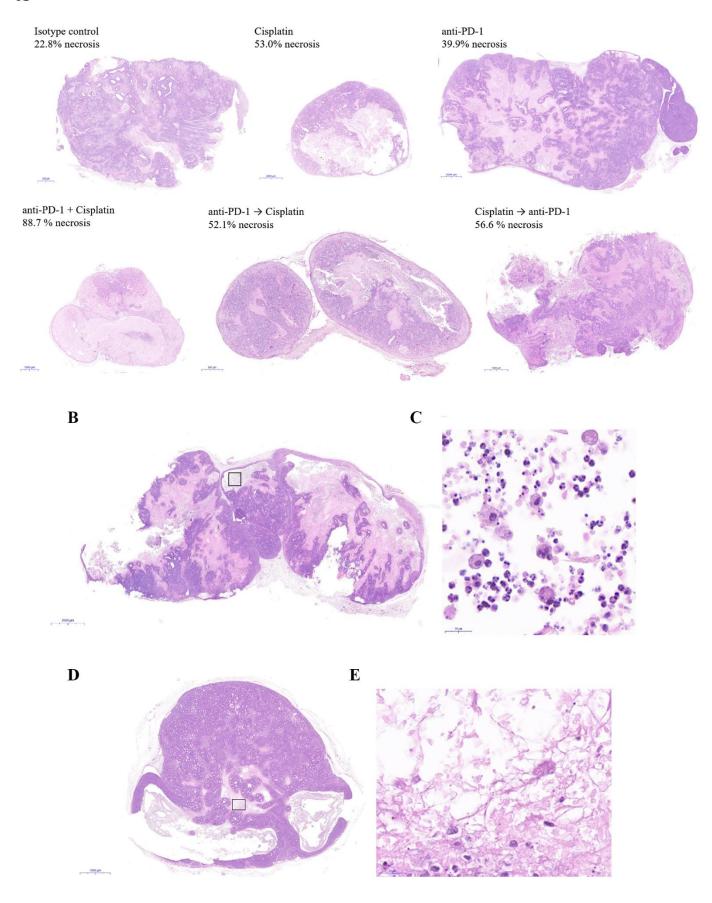


Figure S4

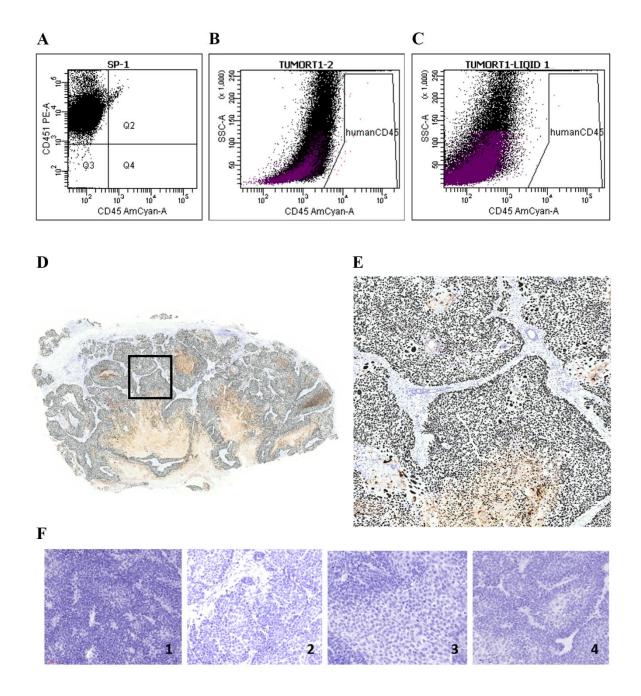


Figure S5

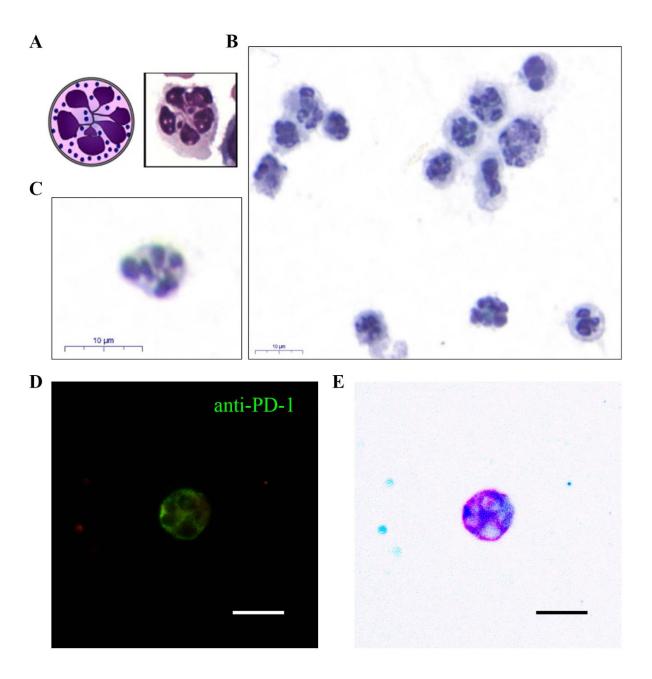


Figure S6

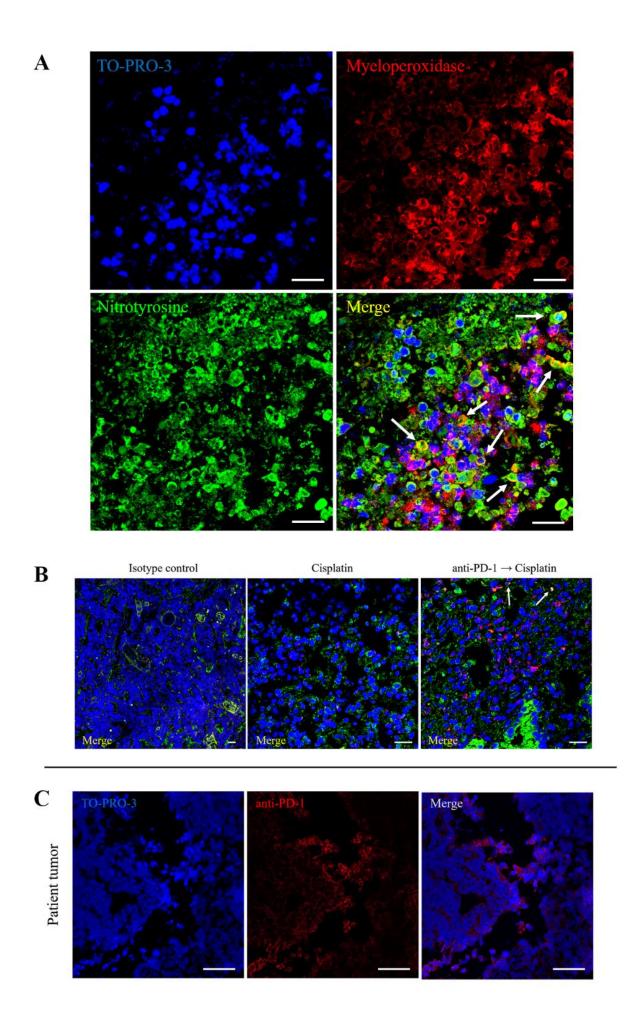


Figure S7

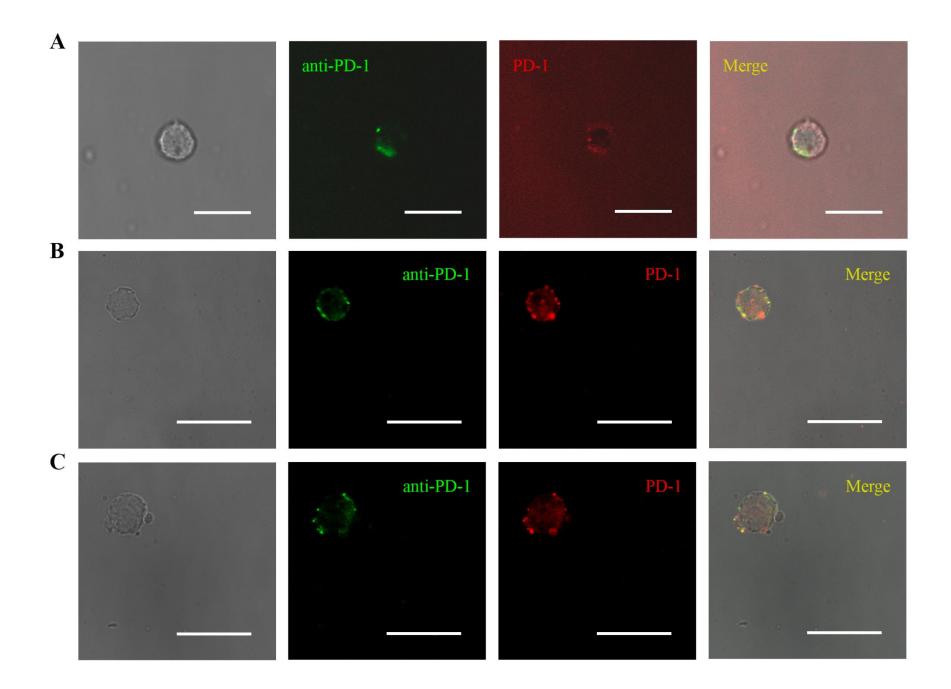


Figure S8

Supplementary text file S1

Establishment of a human squamous NSCLC PDX model

Female 8-week-old NOD-SCID gamma (NOD.Cg-Prkdcscid Il2rgtmlWjl/SzJ) mice were purchased from Charles River Laboratories (Chatillon-sur-Chalaronne, France). Mice were transplanted with a direct surgically obtained tumor sample from patients with NSCLC using the following protocol. The specimen was sliced into fragments (\sim 3 mm \times 2 mm) and two pieces were implanted subcutaneously into the flanks (bilateral grafts) of each host mouse (passage 0 or p0) under inhalation anesthesia (sevoflurane in oxygen, Sevorane). After transplant, tumor growth was monitored and, whenever palpable, the volume was measured with a caliper (AA846R, Aesculap AG, Tuttlingen, Germany) twice weekly using the following formula: $(4\pi/3) \times (w/2)^2 \times (1/2)$, where w = width and 1 = length. When the tumor volume reached ~1 cm³, the mice were sacrificed by CO₂ inhalation. A portion of the harvested tumor was used for phenotype and molecular analyses to verify that the xenograft model was histopathologically stable, and another portion was harvested and serially re-engrafted to maintain the in vivo PDX line during subsequent passages (termed p1, p2, etc.). Several NSCLC PDX lines were established, and those lines fulfilling the following criteria were selected: squamous histology, not having driver mutations, and maintenance of the original tumor characteristics throughout the passages.

Preliminary test of response to anti-PD-1 therapy

To evaluate the response of the PDX model to immunotherapy, a preliminary test was performed based on changes to tumor volume, which would allow for the detection of responders *versus* non-responders. Groups of three mice (p1) were administered with anti-PD-1 therapy (nivolumab [Opdivo®, Bristol-Myers Squibb, Princeton, NJ, USA is a fully human immunoglobulin G4 (hIgG4, Crown Bioscience, Inc. [Santa Clara, CA, USA]) PD-1 immune checkpoint inhibitor antibody that disrupts the interaction of PD-1 with its ligands PD-L1 and PD-L2, blocking the immune response], 150 μg) or an equivalent dose of an irrelevant hIgG4 by intra-peritoneal (i.p.) injection twice weekly for 3 consecutive weeks. Responder mice were selected and maintained through consecutive passages.

Supplementary Table S1. Primary antibodies used for different immunodetection techniques

Antibody	Supplier	Clone	Type	Species	Uses	System	Dilution
TTF-1	Dako	8G7G3/1	mAb, mouse	Human	IHC	Omnis Dako	1:200
CD56	Dako	123C3	mAb, mouse	Human	IHC	Omnis Dako	1:50
Synaptophysin	Dako	DAK-SYNAP	mAb, mouse	Human	IHC	Omnis Dako	Ready-to-use
Napsin-A	Novocastra	IP64	mAb, mouse	Human	IHC	Leica	1:500
p40	Dako	BC28	mAb, mouse	Human	IHC	Ventana (Roche)	1:500
p63	Dako	DAK-p63	mAb, mouse	Human	IHC	Omnis Dako	Ready-to-use
CK-5/6	Dako	D5/16 B4	mAb, mouse	Human	IHC	Omnis Dako	Ready-to-use
CD45	Dako	2B11 + PD7/26	mAb, mouse	Human	IHC	Omnis Dako	Ready-to-use
CD3	Dako	GA503	pAb, rabbit	Human	IHC	Omnis Dako	Ready-to-use
CD4	Dako	4B12	mAb, mouse	Human	IHC	Omnis Dako	Ready-to-use
CD20cy	Dako	L26	mAb, mouse	Human	IHC	Omnis Dako	Ready-to-use
PD-1	Cell Marque	NAT105	mAb, mouse	Human	IHC	Ventana (Roche)	1:50
PD-L1	BioLegend	29E.2A3	mAb, mouse	Human	IHC	Manual	1:200
Nitrotyrosine	Abcam	HM.11	mAb, mouse	Human/mouse	IF	Manual	1:25
Myeloperoxidase (MPO)	R&D Systems	AF3174	pAb, rabbit	Human/mouse	IF	Manual	1:25
Nivolumab (anti-PD-1)	Bristol-Myers Squibb	-	humanized mAb	Human/mouse?	IF	Manual	1:200

Immunohistochemistry (IHC), immunofluorescence (IF), monoclonal antibody (mAb), polyclonal antibody (pAb). Markers of NSCLC immunophenotype panel shaded in light gray; other immunohistochemistry markers are shaded in dark gray and immunofluorescence markers are non-shaded

Supplementary Table S2. List of antibodies used for flow cytometry analysis

Protein	Clone	Brand			
hCD33	HIM3-4	Becton Dickinson-PharMingen			
hCD4	SK3	Becton Dickinson-PharMingen			
hCD56	NCAM16,2	Becton Dickinson-PharMingen			
hCD19	HIB19	Becton Dickinson-PharMingen			
hCD8	SK1	BioLegend			
hCD3	UCHT1	Becton Dickinson-Horizon			
hCD45	2D1	Becton Dickinson–PharMingen			
7-AAD	_	BioLegend			
mCD45.1	A20	BioLegend			
mLy6G	1A8	BioLegend			
mNK1.1	PK136	BioLegend			
mCD11B	M1/70	BioLegend			
mCD3	145-2C11	BioLegend			
mCD45	30-F11	BioLegend			

Supplementary Table S3. Antibodies per tube and per tumor homogenate sample used for flow cytometry analysis based on fluorophore labeling.

	FITC	PE	PerCP	PE-Cy7	APC	APC-Cy7	PB	AC
Peripheral blood tube	hCD33	mCD45.1	hCD4	hCD56	hCD19	hCD8	hCD3	hCD45
Tumor tube 1	hCD4	mCD45.1	7-AAD	hCD56	hCD19	hCD8	hCD3	hCD45
Tumor tube 2		mLy6G	7-AAD	mNK1.1	mCD11b	mCD3		mCD45
Isolated neutrophil tube	mCD206	mCD11c	7-AAD	mF4/80	mCD11b	mLy6G	mLy6C	mCD45

Abbreviations: FITC (Fluorescein isothiocyanate); PE (Phycoerythrin); PerCP-CY7 (Peridinin chlorophyll protein); PE-Cy7 (Phycoerythrin cyanin 7); APC (Allophycocyanin); APC-Cy7 (Allophycocyanin-cyanin 7); PB (Pacific blue); AC (AmCyan).

Supplementary Table S4. Antibody conditions for immunofluorescence staining.

		Primary a	ntibody	Secondary antibody			
		Dilution	Supplier		Dilution	Supplier	
Myeloperoxidase	anti-MPO	1:25	R&D Systems	anti-goat IgG Alexa 546	1:500	Invitrogen	
Nitrotyrosine	anti-Nitrotyr	1:25	Abcam	anti-mouse IgG Alexa 488	1:500	Invitrogen	
PD-1	anti-PD-1	1:200	Bristol-Myers Squibb	anti-human IgG Alexa 546	1:500	Invitrogen	
Double immunofluorescence:	anti-MPO	1:25	R&D Systems	anti-goat IgG Alexa 546	1:500	Invitrogen	
Myeloperoxidase/Nitrotyrosine	anti-Nitrotyr	1:25	Abcam	anti-mouse IgG Alexa 488	1:500	Invitrogen	
Double immunofluorescence:	anti-MPO	1:25	R&D Systems	anti-goat IgG Alexa 488	1:500	Invitrogen	
Myeloperoxidase/PD-1	anti-PD-1	1:200	Bristol-Myers Squibb	anti-human IgG Alexa 546	1:500	Invitrogen	
Double immunofluorescence of isolated	anti-PD-1	1:20	Bristol-Myers Squibb	anti human IaC EITC	1:200	A. Menarini Diagnostics	
neutrophils: PD-1/FcγR	PD-1-PE	1/500	Abcam	anti-human IgG-FITC	1.200	A. Wenariii Diagnostics	
Control double immunofluorescence of	hIgG4	1:20	Crown Bioscience, Inc.	anti human IaC EITC	1.200	A. Menarini Diagnostics	
isolated neutrophils: PD-1/FcγR	PD-1–PE	1/500	Abcam	anti-human IgG-FITC	1:200		

Supplementary Table S5. Clinical and pathologic characteristic of patients and passagable lung cancer

ID/No.	Gender	Smoking status	Age	Pathology	Localization	Grade / differenciation	Туре	Mutation	Tumor-stage	Established Xenograft
PDX1	M	YES	78	SQC	RUL	Moderately	Infiltrating	NO	pT2a N0 L0 V0 R0 (IB)	YES
PDX2	M	YES	66	SQC	RUL	Poorly	Infiltrating / keratinized	NO	pT2a N0 L1 V1 R0 (IB)	YES
PDX3	M	YES	73	SQC	RUL	Poorly	Non-infiltrating	NO	pT2b N0 (IB)	YES
PDX4	M	YES	79	SQC	ML, RLL	Poorly	Infiltrating / basaloid	NO	pT2a N1 L1 V0 R0 (IIA)	YES
PDX5	M	YES	68	SQC	LLL	Moderately	Infiltrating	NO	pT4 N1 M0 (IIIA)	NO
PDX6	M	NO	62	SQC	LUL	Poorly	Infiltrating / basaloid	NO	pT1b N0 L0 V0 R0 (IA)	YES
PDX7	M	YES	71	SQC	RUL	Moderately	Infiltrating / keratinized	NO	pT3 N1 R0 (IIIA)	YES
PDX8	M	YES	74	SQC	RUL	Poorly	Infiltrating / keratinized	NO	pT2b N1 P0 V0 R0 (IIB)	YES
PDX9	M	YES	55	ADC	ML	Poorly	Infiltrating	NO	pT2a N0 P3 V2 R0 (IB)	YES
PDX10	M	YES	64	SQC	LUL	ns	Basaloid	NO	pT1b N0 M0 (IA)	YES
PDX11	F	YES	64	ADC	RUL	ns	Infiltrating	NO	pT2 N0 L1 V1 R0 (IB)	NO
PDX12	F	NO	80	ADC	RLL	ns	Infiltrating	Exon19Del	pT2a N0 M0 (IB)	NO
PDX13	M	YES	65	ADC	RUL	ns	Infiltrating	ALK/EML4	pT2 N2 M0 (IIIA)	NO
PDX14	M	YES	63	SQC	LUL	Poorly	Infiltrating / keratinized	G719X	pT3 N1 L1 V1 R0 (IIIA)	YES
PDX15	M	YES	36	ADC	LUL	ns	Infiltrating	NO	pT2a N0 (IB)	NO
PDX16	F	NO	60	NEC	LLL	Poorly	ns	NO	pT2a N0 L1 V0 R0 (IB)	YES
PDX17	M	NO	74	ADC	RLL	ns	Infiltrating	NO	pT2a N0 M0 L1 (IB)	NO

Abbreviations: M, male; F, female; SQC, squamous carcinoma; ADC, adenocarcinoma; NEC, neuroendocrine carcinoma; RUL, right upper lobe; LUL, left upper lobe; ML, middle lobe; RLL, right lower lobe; LLL, left lower lobe; ns, not specified.