SUPPLEMENTARY INFORMATION

Yao *et al.* Observation of giant spin-split Fermi-arc with maximal Chern number in the chiral topological semimetal PtGa

Supplementary Figure 1 |**Optical image and X-ray diffraction of crystal** (a) A optical picture of the as grown PtGa single crystal; (b) Representative Laue diffraction pattern of the [100] oriented PtGa single crystal superposed with the simulated pattern confirming high crystal quality.

Supplementary Figure 2 | **Resistivity of PtGa.** (a) Temperature dependence of the longitudinal resistivity with current applied along the [100] direction of various batches of PtGa single crystals. For sample S-1, resistivity data with 9 T field applied along [001] are shown as well; (b) Giant magnetoresistance, $[MR = [\rho(B) - \rho(0)] / \rho(0)]$ observed for sample S-1 at various temperatures.

Supplementary Figure 3 | **Hall characteristics of PtGa.** (a) Magnetic-field dependence of Hall resistivity for sample S-1; (b) Carrier concentration and mobility estimated from high-field slope at various temperatures. For simplicity, a single-carrier Drude band model was used to estimate the charge-carrier density (*n*) and mobility (μ) using $n(T) = 1/[eR_H(T)]$ and $\mu(T) = R_H(T)/\rho_{xx}(T)$, where *e* denotes the electronic charge and R_H the Hall coefficient.

Supplementary Figure 4 | Detailed band structure of PtGa without (a) and with (b) incorporation of spin-orbit coupling. Corresponding spin-split bands are highlighted with respective colors. There are three hole pockets along the high symmetry line of Γ -R. For convenient, we denote the center as point A.

Supplementary Figure 5 | **de Haas–van Alphen quantum oscillations of PtGa.** Magnetization with superimposed quantum oscillations of sample S-1 with magnetic field applied along different directions—[001], [110], and [111].

Supplementary Figure 6 | Temperature dependence of (a) dHvA quantum oscillations in PtGa and (b) FFT spectra with B applied along the [001] direction. The corresponding inset shows a magnified high-frequency zone.

Supplementary Figure 7 | **Dingle temperature of PtGa.** (a) dHvA oscillations with fit using the Lifshitz–Kosevich formula for the dHvA frequency $\alpha_2 = 93.96$ T while *B* || [001]; (b) Dingle plot of the FFT amplitude for the dHvA frequency $\alpha_2 = 93.96$ T by choosing overlapping field windows with constant width in 1/*B*. The Dingle temperature (*T*_D) estimated from both methods demonstrates good agreement.

Supplementary Figure 8 | Additional spin-split Fermi pockets with identified extremal areas at different points of the Brillouin zone for different bands as shown in Fig. S-4. The corresponding frequencies are indicated in the FFT spectrum of the dHvA oscillations in the upper panel.

Supplementary Figure 9 | Calculated constant energy maps with different binding energies, $\Delta E = E - E_F = -0.1$, -0.2, -0.3, and -0.4 eV, respectively. The Fermi arcs are highlighted by yellow and green dashed lines.

Supplementary Figure 10 | Spin-split Fermi arc of PtGa. Calculated spin texture of the surface state at $\Delta E = E - E_F = -0.1$ eV.

Compound	PtGa		
F.W. (g/mol);	264.81		
Space group; Z	<i>P</i> 2 ₁ 3 (No.198); 4		
<i>a</i> (Å)	4.9114(3)		
$V(\text{\AA}^3)$	118.47(2)		
Absorption Correction	Multi-scan		
Extinction Coefficient	0.015(2)		
θ range (deg)	5.9-35.7		
No. reflections; R_{int}	1252; 0.0320		
No. independent reflections	188		
No. parameters	8		
R_1 ; wR_2 (all I)	0.0213; 0.0430		
Goodness of fit	1.082		
Fourier difference peak and hole $(e^{-}/Å^3)$	2.432; -1.764		

Supplementary Table 1 | Room-temperature single-crystal refinement result for PtGa.

Supplementary Table 2 | Oscillation frequency *F*, effective mass m^* , extremal cross-sectional areas A_F , Fermi wave vector k_F and Fermi velocity v_F of the Fermi-surface pockets as depicted in the inset of Fig. 2(d). The analysis is performed by describing the temperature-dependent FFT amplitudes of the corresponding frequencies with the Lifshitz–Kosevich formula and the Onsager relations given in the main text.

	<i>F</i> (T)	<i>m*/ m</i> 0	$A_{\mathrm{F}}(\mathrm{\AA}^{-2})$	$k_{\rm F}({ m \AA}^{-1})$	$\nu_{\rm F} ({\rm m/s})$ ($\times 10^5$)
					(~ 10)
α_1	31.9	0.06	0.003	0.03	7.21
α_2	93.96	0.12	0.009	0.053	5.33
β_1	112.84	0.13	0.011	0.058	5.42
β_2	259.4	0.17	0.025	0.089	6.05
γ1	492.6	0.14	0.047	0.122	9.84
γ2	679.37	0.19	0.065	0.144	8.76

Supplementary Note 1| Structural characterization of PtGa single crystal:

The single crystal diffraction data were collected on a Rigaku AFC7 four-circle diffractometer with a Saturn 724+ CCD-detector applying graphite-monochromatized Mo-Kα radiation. Small crystal pieces were broken from the big chunk and the fragments were mounted on Kapton loops for the data collection. The final refinement details are given in Table-S1. The complete crystallographic information has been deposited and is available citing CSD-1991900.