Supplementary Material

Improved viability and fertility of frozen-thawed dog sperm using adiposederived mesenchymal stem cells

Ahmad Yar Qamar¹, Xun Fang¹, Min Jung Kim^{2,*}, and Jongki Cho^{1,*}

* Corresponding author: cjki@cnu.ac.kr

^{2,} * Co-corresponding author: <u>tinia19@snu.ac.kr</u>

1. Supplemental files

Supplementary Figure Legends

Supplementary Figure S1. Effect of canine adipose-derived mesenchymal stem cells (Ad-MSCs) on cryopreservation of dog semen. Representative western blot images of fibronectin (FN1), annexin 1 (ANX1), high mobility group protein B (HMGB), dysferlin (DYSF) proteins, histone H3 (H3), and Beta-actin (BACT) protein expressed in post-thaw canine sperm. Where, Control; 1, Group 1; 2.5×10^6 Ad-MSCs/mL, negative control; (-).

Supplementary Figure S1

Supplementary Figure S1. Effect of canine adipose-derived mesenchymal stem cells (Ad-MSCs) on cryopreservation of dog semen. Representative western blot images of fibronectin (FN1), annexin 1 (ANX1), high mobility group protein B (HMGB), dysferlin (DYSF) proteins, histone H3 (H3), and Beta-actin (BACT) protein expressed in post-thaw canine sperm. Where, Control; 1, Group 1; 2.5×10^6 Ad-MSCs/mL, negative control; (-).