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We provide details below about the five different dynamic models along with information about1

computational methods used to perform inference for each of them. In addition, we describe the2

implemention of the Bayesian model averaging approach used in the manuscript.3

A Model Details4

The structure of the models is given in Figure 1, which we explain in detail below. Common to5

each of the models we describe, we assume a time-varying transmission rate with a period of one year6

to account for seasonality,7

βi(t) = β0i

(
1 + ω cos

(
2πt− 52φ

52

))
,

where t is time in weeks, β0i is the baseline rate for age class i, and ω and φ are the amplitude and8

offset of the seasonal variation.9

We also assume the birth rate µ(t) varies with time. The mean weekly birthrate is estimated by10

µ̄ = 1/(5× 52). The variation in monthly birth rate is shown in Table 1. Finally, for each model we11

assume a negative binomial observation process with mean equal to the number of weekly reported12

cases and dispersion parameter ν.13

We describe in detail the dynamics of each of the five models outlined in Figure 1. Model A [13, 2]14

is an SIRS model in which severe and mild rotavirus are tracked separately. Severe infections have a15
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Figure 1: Structure of the compartmental models adapted from [10].

Table 1: Seasonal variation in birth rate in Niger, estimated from 1980-2000 using Demographic and
Health Surveys. [5] An amplitude of −.17 for January tells us the birth rate is 17% below the mean.

Month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Amplitude -0.17 0.01 0.03 0.25 0.12 0.03 -0.01 0.09 0.01 0.13 -0.31 -0.17

longer duration and contribute more to the overall force of infection. Following infection, there is a16

period of temporary immunity that wanes over time. The model is age structured with age groups17

0-1 month, 2-3 months, 4-5 months, 6-11 months, 1 year, and 2-5 years indexed by i. The differential18

equations describing the model dynamics are:19

Model A

dMi

dt
= αi−1Mi−1 − αiMi + µN − δMi (1)

dSi

dt
= αi−1Si−1 − αiSi + δMi − λiSi + τRi (2)

dI
(s)
i

dt
= αi−1I

(s)
i−1 − αiI

(s)
i + λ

(s)
i Si − γ(s)I(s)i (3)

dI
(m)
i

dt
= αi−1I

(m)
i−1 − αiI

(m)
i + λ

(m)
i Si − γ(m)I

(m)
i (4)
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Movement between age classes occurs at rates dependent on the length of the interval in weeks, α =20 {
1

8
,

1

8
,

1

8
,

1

24
,

1

48
,

1

144

}
. The force of infection for age class i is given by λi =

6∑
j=1

βj(t)Cij

(I
(s)
j + 0.5I

(m)
j )

Nj
,21

assuming that relative infectiousness for mild infections is less than for severe RVGE. Here Cij repre-22

sents the frequency of contact from age class i onto class j [6], and satisfies fiCij = fjCji where fi is23

the fraction of the population in class i. We make the simplifying assumption that contact between24

age groups is homogeneous. With the absence of data on rotavirus infections for children over 5 and25

adults, we also assume the population of children under 5 is closed and consider child-child trans-26

mission only. Infection with rotavirus is typically asymptomatic [10] or unreported for older children27

and adults, but could potentially play a role in transmission. The contact matrix is28

C =



1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

3 3 3 1 1 1

6 6 6 2 1 1

18 18 18 6 3 1


.29

The differences in our age groups means that the contact matrix is not symmetric, for example30

we assume the population from 2-5 years is 18 times larger than the population from 0-1 months.31

For all models, fixed parameters including infection period, immunity period, and exposed period32

in the SIR models are estimated from England and Wales data as described in [10]. After a period33

of maternal immunity (Mi), individuals can be susceptible (Si), infected with either mild (I
(m)
i ) or34

severe (I
(s)
i ) rotavirus, or recovered (Ri). These represent the number of individuals in each class. In35

(1) we see how the number of children protected by maternal immunity change over time. Newborns36

are added to this class at rate µ and individuals leave this class when maternal immunity wanes with37

rate δ, where the mean period of maternal immunity is assumed to be 13 weeks (δ = 1
13 ).38

When maternal immunity wanes children are susceptible to rotavirus infection. In (2), we see that39

individuals enter the susceptible class when maternal immunity wanes. They become infected at a40

rate given by the force of infection λi. After recovery, individuals may reenter the susceptible class41

at rate τ , where the mean period of immunity following infection is fixed at one year (τ = 1/52).42

Equation (3) models the change in total infections with severe rotavirus. We assume the proportion43

of infections with severe rotavirus is lower than mild by setting λ
(s)
i = 0.24λi. Individuals leave44

the infected with severe rotavirus for a mean period of one week (γ(s) = 1) following which they45

are considered to be recovered. Similarly, (4) tracks the total infections with mild rotavirus, with46

λ
(m)
i = 0.76λi and a mean infectious period of just half a week (γ(m) = 2).47

3



Only a fraction of infections with rotavirus develop RVGE (fixed at 24%), and we assume only48

severe cases are reported, so the expected number of reported cases for age class i is given by ρλ
(s)
i Si49

where ρ is the reporting rate. We make the simplifying assumption for all models that ρ is constant50

across time and does not vary by age group.51

Model B [11] is an SIRS model allowing for successive infections in which a second, third or52

subsequent infection will have a reduced susceptibility to infection and level of infectiousness. This53

represents partial immunity granted through repeated infections. Only a fraction of individuals in54

the a first or second infectious class are assumed to develop severe RVGE. The model dynamics are55

described by as follows.56

Model B

dMi

dt
= αi−1Mi−1 − αiMi + µN − δMi

dS
(1)
i

dt
= αi−1S

(1)
i−1 − αiS

(1)
i + δMi − λiS(1)

i

dI
(1)
i

dt
= αi−1I

(1)
i−1 − αiI

(1)
i + λiS

(1)
i − γ(1)I(1)i

dR
(1)
i

dt
= αi−1R

(1)
i−1 − αiR

(1)
i + γ(1)I

(1)
i − τR(1)

i

dS
(2)
i

dt
= αi−1S

(2)
i−1 − αiS

(2)
i + τR

(1)
i − λ

(2)
i S

(2)
i

dI
(2)
i

dt
= αi−1I

(2)
i−1 − αiI

(2)
i + λ

(2)
i S

(2)
i − γ(2)I(2)i

dR
(2)
i

dt
= αi−1R

(2)
i−1 − αiR

(2)
i + γ(2)I

(2)
i − τR(2)

i

dS
(3)
i

dt
= αi−1S

(3)
i−1 − αiS

(3)
i + τR

(2)
i + τR

(3)
i − λ

(3)
i S

(3)
i

dI
(3)
i

dt
= αi−1I

(3)
i−1 − αiI

(3)
i + λ

(3)
i S

(3)
i − γ(2)I(3)i

dR
(3)
i

dt
= αi−1R

(3)
i−1 − αiR

(3)
i + γ(2)I

(3)
i − τR(3)

i

Here in addition to an initial period of maternal immunity, individuals can be in the suscep-57

tible, infected, or recovered classes for their first (S(1), I(1), R(1)), second (S(2), I(2), R(2)), or third58

and subsequent (S(3), I(3), R(3)) infections. The force of infection for age class i is given by λi =59

6∑
j=1

βj(t)Cij

(I
(1)
j + 0.5I

(2)
j + 0.2I

(3)
j )

Nj
, assuming that relative infectiousness decreases for subsequent60

infections. We assume the relative risk of infection decreases for subsequent infections, setting61

λ
(2)
i = 0.62λi and λ

(3)
i = 0.37λi as in [10]. Only 13% of first infections and 3% of second infec-62

tions are assumed to develop severe RVGE, based on data from a Mexico cohort study [16]. So the63

expected number of reported cases for age class i is given by ρ(0.13λiS
(1)
i + 0.03λ

(2)
i S

(2)
i ). Following64
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[16], we assume that the mean infectious period for the first infection is one week (γ(1) = 1) and for65

subsequent infections is half a week (γ(2) = 2).66

Model C [4] is an SEIRS model, similar to Model B but allowing for an additional exposed or67

incubation period. Individuals in the exposed class are infected but not yet infectious. The dynamic68

equations are given by:69

Model C

dMi

dt
= αi−1Mi−1 − αiMi + µN − δMi

dS
(1)
i

dt
= αi−1S

(1)
i−1 − αiS

(1)
i + δMi − λiS(1)

i

dE
(1)
i

dt
= αi−1E

(1)
i−1 − αiE

(1)
i + λiS

(1)
i − ξE(1)

i

dI
(1)
i

dt
= αi−1I

(1)
i−1 − αiI

(1)
i + ξE

(1)
i − γ(1)I(1)i

dR
(1)
i

dt
= αi−1R

(1)
i−1 − αiR

(1)
i + γ(1)I

(1)
i − τR(1)

i

dS
(2)
i

dt
= αi−1S

(2)
i−1 − αiS

(2)
i + τR

(1)
i − λ

(2)
i S

(2)
i

dE
(2)
i

dt
= αi−1E

(2)
i−1 − αiE

(2)
i + λ

(2)
i S

(2)
i − ξE(2)

i

dI
(2)
i

dt
= αi−1I

(2)
i−1 − αiI

(2)
i + ξE

(2)
i − γ(2)I(2)i

dR
(2)
i

dt
= αi−1R

(2)
i−1 − αiR

(2)
i + γ(2)I

(2)
i − τR(2)

i

dS
(3)
i

dt
= αi−1S

(3)
i−1 − αiS

(3)
i + τR

(2)
i − λ

(3)
i S

(3)
i

dE
(3)
i

dt
= αi−1E

(3)
i−1 − αiE

(3)
i + λ

(3)
i S

(3)
i − ξE(3)

i

dI
(3)
i

dt
= αi−1I

(3)
i−1 − αiI

(3)
i + ξE

(3)
i − γ(2)I(3)i

dR
(3)
i

dt
= αi−1R

(3)
i−1 − αiR

(3)
i + γ(2)I

(3)
i − τR(3)

i

The modeling assumptions are the same as Model B but for the addition of an exposed class for70

the first, second, or subsequent infections (E(1), E(2), E(3)). We assume a mean exposed period of 171

day (ξ = 7).72

Model D [15] is an SIS model which also allows for successive infections with different levels of73

infectiousness, but assumes there is no period of temporary immunity following infection. After four74

infections individuals are assumed to be fully immune to infection. The dynamics are described as75

follows.76
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Model D

dMi

dt
= αi−1Mi−1 − αiMi + µN − δMi

dS
(1)
i

dt
= αi−1S

(1)
i−1 − αiS

(1)
i + δMi − λiS(1)

i

dI
(1)
i

dt
= αi−1I

(1)
i−1 − αiI

(1)
i + λiS

(1)
i − γ(1)I(1)i

dS
(2)
i

dt
= αi−1S

(2)
i−1 − αiS

(2)
i + γ(1)I

(1)
i − λ(2)i S

(2)
i

dI
(2)
i

dt
= αi−1I

(2)
i−1 − αiI

(2)
i + λ

(2)
i S

(2)
i − γ(2)I(2)i

dS
(3)
i

dt
= αi−1S

(3)
i−1 − αiS

(3)
i + γ(2)I

(2)
i − λ(3)i S

(3)
i

dI
(3)
i

dt
= αi−1I

(3)
i−1 − αiI

(3)
i + λ

(3)
i S

(3)
i − γ(2)I(3)i

dS
(4)
i

dt
= αi−1S

(4)
i−1 − αiS

(4)
i + γ(2)I

(3)
i − λ(4)i S

(4)
i

dI
(4)
i

dt
= αi−1I

(4)
i−1 − αiI

(4)
i + λ

(4)
i S

(4)
i − γ(2)I(4)i

The force of infection is λi =

6∑
j=1

βj(t)Cij(I
(1)
j + 0.5I

(2)
j + 0.2I

(3)
j + 0.2I

(4)
j )

Nj
, assuming that rela-77

tive infectiousness decreases for subsequent infections. We also assume the relative risk of infection78

decreases for subsequent infections, setting λ
(2)
i = 0.62λi and λ

(3)
i = λ

(4)
i = 0.37λi. Again, we assume79

only 13% of first infections and 3% of second infections are assumed to develop severe RVGE. So the80

expected number of reported cases in age group i is given by ρ(0.13λiS
(1)
i + 0.03λ

(2)
i S

(2)
i ).81

Finally, Model E [1] is an SIR-SIS hybrid wherein following infection, individuals have a chance82

to either return to the susceptible class or gain full immunity. The equations for the dynamics are as83

follows.84
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Model E

dMi

dt
= αi−1Mi−1 − αiMi + µN − δMi

dS
(1)
i

dt
= αi−1S

(1)
i−1 − αiS

(1)
i + δMi − λiS(1)

i

dI
(1)
i

dt
= αi−1I

(1)
i−1 − αiI

(1)
i + λiS

(1)
i − γ(1)I(1)i

dS
(2)
i

dt
= αi−1S

(2)
i−1 − αiS

(2)
i + κ(1)γ(1)I

(1)
i − λ(2)i S

(2)
i

dI
(2)
i

dt
= αi−1I

(2)
i−1 − αiI

(2)
i + λ

(2)
i S

(2)
i − γ(2)I(2)i

dS
(3)
i

dt
= αi−1S

(3)
i−1 − αiS

(3)
i + κ(2)γ(2)I

(2)
i − λ(3)i S

(3)
i

dI
(3)
i

dt
= αi−1I

(3)
i−1 − αiI

(3)
i + λ

(3)
i S

(3)
i − γ(2)I(3)i

dS
(4)
i

dt
= αi−1S

(4)
i−1 − αiS

(4)
i + κ(3)γ(2)I

(3)
i − λ(4)i S

(4)
i

dI
(4)
i

dt
= αi−1I

(4)
i−1 − αiI

(4)
i + λ

(4)
i S

(4)
i − γ(2)I(4)i

The chance of returning to the susceptible class varies by number of previous infections. Following85

[1] we fix κ(1) = 0.62, κ(2) = 0.65, κ(3) = 0.85. The remaining modeling assumptions are the same as86

for models B-D.87

A.1 Computational Details88

Denote the observed data by Y = {Yi(t); t ∈ (1, ..., tobs), i ∈ (1, ..., 6)} where Yi(t) is the number89

of reported cases in age group i during week t. Cases were observed over tobs = 118 weeks. Denote90

the number of cases in age group i during week t predicted by our models by ξi(t). For Model A,91

ξi(t) = ρλ
(s)
i (t)Si(t)

While for models B-E,92

ξi(t) = ρ(0.13λi(t)S
(1)
i (t) + 0.03λ

(2)
i (t)S

(2)
i (t))

For each model, the periodic solution to the system of ODEs specified above determines the93

number of reported cases in age group i during a given week. Although we assume model dynamics94

are periodic, the initial solutions in the numerical solver may not be periodic. Therefore, the numerical95

solver uses an iterative approach, integrating the model dynamics forward until a periodic solution96

is obtained. To carry this out, we use an iterative numerical solver [9] in the deSolve [14] package97
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in R. Solutions have a period of one year; that is, starting from arbitrary initial conditions, we run98

the dynamics forward until our expected number of cases is identical from one 52 week period to the99

next, to within a small tolerance; i.e.100

6∑
i=1

t∗+52∑
t=t∗

|ξi(t)− ξi(t− 52)| < ε = 0.01

In practice, numerical integration for 20 years was enough to ensure the periodic solution was reached.101

After reaching a periodic solution, the models are integrated forward an additional 118 weeks to get102

the expected number of reported cases (Ξi(t); t ∈ (1, ..., tobs), i ∈ (1, ..., 6)).103

Define random variables Ni(t) ∼ NB(Ξi(t), ν). The likelihood is104

L(Y |Θ) =

6∏
i=1

tobs∏
t=1

fNi(t)(Yi(t))

The number of observed reported cases is modeled as a Negative Binomial with mean equal to the105

expected number of cases and dispersion parameter ν.106

Inference for our model parameters is done via Markov chain Monte Carlo (MCMC) for models107

A-E. At each step of the Markov chain, new parameters Θ′ are proposed and the model dynamics are108

integrated forward until the periodic solution Ξi(t; Θ′) is reached in order to calculate L(Y |Θ′). The109

parameters estimated by MCMC are Θ = (ω, φ, ν, ρ, β0i; i ∈ (1, ..., 6)), including seasonal amplitude110

ω, seasonal phase φ, the dispersion ν of the Negative Binomial observation process, the reporting rate111

ρ, and the baseline transmission rate for age class β0i.112

MCMC samples are obtained from the posterior distribution113

π(ω, φ, ν, ρ, β01, ..., β06|Y ) ∝ L(Y |ω, φ, ν, ρ, β01, ..., β06)p(ω)p(φ)p(ν)p(ρ)

6∏
i=1

p(β0i)

where we take priors p(β0i) = N(20, 5), p(ω) = Unif(0, 1), p(φ) = Unif(2, 2π + 2), p(ν) =114

Gamma(0.001, 0.001), and p(ρ) = N(0.117, 0.06). The prior of our reporting rate ρ is centered115

at 11.7%, determined from the estimated reporting rate from the cluster survey (42.9%) and the esti-116

mated proportion of the population under 5 in the four districts that is covered by hospital surveillance117

(27.3%, from 2009 census data). In practice, we find that our estimates are robust to the choice of118

standard deviation of p(ρ).119

Table 2 provides parameter estimates from five different models. Estimates of the strength of120

transmission are similar for models B-D, higher for Model E and significantly lower for Model A.121

The same holds true for the reporting rate (Model A’s estimate of the reporting rate is dramatically122

lower, and does not agree with estimates from the cluster survey, evidence that it is performing123
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Table 2: Posterior means and 95% HPD intervals for estimated parameters

Model ω φ ν ρ
A 0.50 (0.48,0.51) 7.4 (7.3,7.5) 1.5 (1.4,1.5) 0.039 (0.035,0.044)
B 0.38 (0.35,0.41) 7.4 (7.3,7.5) 2.7 (2.6,2.8) 0.108 (0.100,0.117)
C 0.39 (0.33,0.42) 7.4 (7.3,7.5) 2.7 (2.3,2.9) 0.109 (0.101,0.118)
D 0.31 (0.24,0.36) 7.1 (7.0,7.2) 2.6 (2.5,2.7) 0.109 (0.100,0.119)
E 0.33 (0.31,0.36) 7.3 (7.2,7.4) 5.4 (5.3,5.6) 0.119 (0.111,0.126)

poorly). Notably, the estimated phase of the transmission φ is similar across all models (Table 2).124

For reference, an estimated φ of 7.4 corresponds to a peak transmission in early March. This is quite125

close to the period of peak night time brightness in Maradi as measured by satellite imagery [3]. The126

peak night time brightness has been shown to be related to fluctuation of measles cases. Temporal127

change of urban population density and measles transmission are highly correlated, and population128

density can be measured by night time brightness [3].129

A.2 Dynamics Accounting for Vaccination130

Based on the results of [8] we assume that 63% of vaccinated individuals are successfully seroconvert131

after a single dose. Our models with vaccination allow for the red transitions in Figure 1. For example,132

Model B allows for transitions directly from Mi=1 and S
(1)
i=1 to R

(1)
i=2 on the first dose, and from R

(1)
i=2133

and S
(2)
i=2 to R

(2)
i=3 on the second dose. The dynamics equations will be modified by the following134

terms:135

dMi=2

dt
= (1− σψ)α1Mi=1 + ...

dS
(1)
i=2

dt
= (1− σψ)α1S

(1)
i=1 + ...

dR
(1)
i=2

dt
= (σψ)α1Mi=1 + (σψ)α1S

(1)
i=1 + ...

dR
(1)
i=3

dt
= (1− σψ)α2R

(1)
i=2 + ...

dS
(2)
i=3

dt
= (1− σψ)α2S

(2)
i=2 + ...

dR
(2)
i=3

dt
= (σψ)α2R

(1)
i=2 + (σψ)α2S

(2)
i=2 + ...

Where ψ is the coverage and σ = 0.63 is the rate of seroconversion [8] for low socio-economic136

settings. This means that an individual who is vaccinated with a single dose has a lower risk of137

infection, comparable to the effect of recovering from a natural infection. Vaccination with a second138

dose further reduces risk of infection.139

In Model A, the risk of infection does not decline with the previous number of infections. Therefore,140

9



an additional vaccinated state Vi is added to the model for age group i. Two additional input141

parameters are required for the vaccine efficacy against severe and mild RVGE. We assume the142

vaccination happens at 2 months, but the vaccine efficacy is equal to the efficacy predicted under143

models B-E for the two dose strategy, η(s) = .796 and η(m) = .609.144

dMi=2

dt
= (1− ψ)α1Mi=1 + ...

dSi=2

dt
= (1− ψ)α1Si=1 + ...

dVi=2

dt
= (ψ)α1Mi=1 + (ψ)α1Si=1 + ...

dVi>2

dt
= αi−1Vi−1 − αiVi − (τ + λ

(s)
i (1− η(s)) + λ

(m)
i (1− η(m)))Vi

dSi>2

dt
= τVi + ...

dI
(s)
i>2

dt
= λ

(s)
i (1− η(s))Vi + ...

dI
(m)
i>2

dt
= λ

(m)
i (1− η(m))Vi + ...

Given our vaccination strategy for models B-E, the vaccine efficacy for severe RVGE after two145

doses is 79.6%, in line with efficacy studies of rotavirus vaccines. This is calculated by multiplying the146

proportion of individuals who are successfully immunized twice, once, or zero times by the expected147

reduction in RVGE incidence for each case.148

V E = 1−
[
0.372 × 1 + 2(0.37)(0.63)×

(
0.62

0.03

0.13

)
+ 0.632 ×

(
0.37

0

0.13

)]
= 79.6%. (5)

We assume following [16] that 47% of first infections and 25% of second infections and 32% of third149

infections are assumed to develop any RVGE (mild RVGE is unreported). Therefore the vaccine150

efficacy for all RVGE is151

V E = 1−
[
0.372 × 1 + 2(0.37)(0.63)×

(
0.62

0.25

0.47

)
+ 0.632 ×

(
0.37

0.32

0.47

)]
= 60.9%.

In practice, first model parameters Θ are estimated via MCMC for the models without vaccination.152

Using the fitted model, the dynamics are then integrated forward at the posterior mean of Θ until the153

periodic solution has been reached. Then, the dynamics are modified to allow for transitions between154

compartments by vaccination.155
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A.2.1 Calculating the Direct Effect of Vaccination156

When the vaccine is introduced in the population it leads to decreased transmission, which in turn157

leads to a reduced force of infection. The direct effect (DE) of vaccination is the expected reduction158

in cases for vaccinated individuals that is not due to the reduction in force of infection. On the other159

hand, the indirect effect (IE) of vaccination is the expected reduction in cases for both vaccinated160

and unvaccinated individuals due to the reduction in force of infection. The total effect (TE) of161

vaccination includes both DE and IE.162

Define S∗ to be the updated number of susceptibles after the vaccine has been introduced. Our163

models assume successive infections except for model A which has 0 weight. If the vaccination has164

been introduced for a long time (long enough to include all age classes) then any S(1) in the age class165

would be one who was vaccinated but failed to seroconvert. Therefore, S
∗(1)
i>1 = (1− σψ)S

(1)
i>1, and a166

reduced amount of (σψ)S
(1)
i>1 is moved to S

(2)
i>1. This same logic would follow for those leaving S(2)

167

and entering S(3) due to vaccination. Therefore, S
∗(2)
i>1 = (σψ)S

(1)
i>1 + (1− σψ)S

(2)
i>1.168

We estimate DE by using S(1), S(2), and λ from dynamic equations without vaccination. Then169

the reduced burden is calculated ρλi(0.03S
∗(1)
i + (0.63)(0.62)S

∗(2)
i ). This burden estimate considers170

movement between susceptibles due to vaccination in the absence of any resulting reduction in force171

of infections. The reduced burden is estimated for each model and the BMA estimate is evaluated172

according to the model weights.173

A.2.2 Projections Based on Vaccine Efficacy from a Recent Study174

Recently [7] estimated that 3 doses of vaccine had 66.7% efficacy against severe RVGE among175

children in Niger. Though we do not explicitly account for 3 doses of vaccine, we can calculate the176

effective seroconversion rate for our model above that would yield this observed efficacy after a com-177

plete sequence of doses. Thus, we set η(s) = .667 and use (5) to calculate the effective seroconversion178

rate as 49%. Then the vaccine efficacy for all RVGE is η(m) = .515. We estimate the predicted impact179

of vaccination using different η(s), η(m) and σ values with the same dynamic equations.180

Although we used the two dose strategy, by using different value of the efficacy, our study can181

account for uncertainty in the seroconversion rate. Figures 2-4 are matched to Figures 3-5 in the182

main paper. Because of the lower seroconversion rate, the projected results were qualitatively similar,183

quantitatively smaller. Vaccination causes a shift in the age distribution across models (Figure 2),184

with a higher proportion of RVGE cases occurring for older children.185
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Figure 2: Distribution of cases across age groups observed in the data (black dots), predicted by the
models (solid lines), and predicted 20 years after vaccination has been introduced at 70% coverage
(dashed lines).

Over the short term, Models A-E predict an overall decline in total burden, but an increase in the186

magnitude of peak incidence (Figure 3).187
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Figure 3: Relative incidence of severe RVGE after vaccination has been introduced into the models
assuming 70% coverge, out to five years after vaccination has been introduced. The vaccination has
been introduced at 0 year.

Figure 4 indicates that the short term trend of vaccination impacts based on BMA is similar to that188

of Model C. BMA predicts 31.1% (indrect effect: 1.0%) of long term reduction (99%CI : (29.4%, 32.1%)).189
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Figure 4: Relative incidence of severe RVGE (Left), percent (Middle) and absolute (Right) long term
reduction in cases by coverage for Bayesian model averaging from the five fitted models. Dashed lines
denote 99% confidence interval for the total effect. The vaccination has been introduced at 0 year.
Variation in reduction for a fixed (70%) level of coverage is demonstrated.

B Bayesian Model Averaging190

For k = 1, ..., 5, consider Mk, the kth model, with prior p(Θk|Mk) and likelihood function191

L(Y |Θk,Mk). Note that we take the uniform model prior for p(Ml) and model evidence P (Y |Mk)192

is approximated via Bayesian information criterion (BIC) as in [12]. Then the posterior model193

probability (PMP) for Mk given the observed data C is194

p(Mk|Y ) =
p(Y |Mk)p(Mk)∑5
l=1 p(Y |Ml)p(Ml)

,

where195

p(Y |Mk) =

∫
L(Y |Θk,Mk)p(Θk|Mk)dΘk

is the model evidence for Mk which measures how well each model is supported by the observed data.196

Then the BMA estimate of the burden is197

E[ξ(t)|Y ] =

5∑
l=1

E[ξl(t)|Y,Ml]p(Ml|Y ).

A summary of our implementation of BMA is as follows: (1) We construct a separate MCMC198

algorithm for each of the models A-E. (2) For each model, the burden estimate ξk(t) is evaluated for199

the MCMC samples of the posterior distribution of that model. (3) The expected burden for model200

k, E[ξk(t)|Y,Mk], is estimated through the sample mean of the ξk(t)s obtained from Step (2). (4) We201

take the weighted average of the burden across all models, with the weights equal to the posterior202

model probabilities, p(Mk|Y ), obtained above.203
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