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Description of state-switch detection algorithm 
 
Overview of algorithm 
Trajectories of x-y particle positions over time, generated by FIESTA analysis software1 
(Fig. S2A), were separated into displacements parallel and perpendiculartothe 
microtubule by fitting a line to define the microtubule axis and rotating the trace (Fig. S2 
B). If the particle position could not be fit by FIESTA for 10 consecutive frames (100 
msec) due to background noise, the particle being out of focus, or other issues, the 
trace was terminated. The exception was if the particle was stuck in place during the 
dropped frames and could unambiguously be connected to a later trace when tracking 
resumed. If less than 10 consecutive frames were dropped, missing points were filled in 
by averaging previous and subsequent tracked positions.  
 
For identifying motility states, a sliding 10-frame window was chosen for every timepoint 
(except the first 4 points and last 5 points of the trace), and three metrics were 
calculated:velocity (V), standard deviation of position (SDpos), and standard deviation of 
the residual (SDres), defined as the SDpos after subtracting the velocity. By examining 
many individual traces, three characteristic motility states were defined, as follows:  
Processive states (Fig. S2C) had high velocities and small SDres; Diffusive segments 
(Fig. S2D) had high SDposand/or high SDres; and Stuck segments (Fig. S2E) had low 
velocities and low SDpos.  Thus, a motility state (P, D, or S) was defined for each 
timepoint (the 5th point in a 10-frame window) using three cutoffs: Vcut, SDpos_cut, and 
SDres_cut, as follows: 
 

Processive state (P):  V> Vcut  and  SDres< SDres_cut 
Stuck state (S):    V< Vcut  and  SDpos< SDpos_cut 
Diffusive state (D)  SD > SDpos_cut or SDres> SDres_cut 

 
This initial cutoff-based analysis had two problems. First, it led to premature state-switch 
calls, because switching from processive or stuck states led to premature increases in 
SDpos and/or SDres at the corners. Second, transient fluctuations led to false-positive 
switch calls. These problems were solved by making a rule that a state-switch is called 
only when 5 consecutive timepoints (half of the 10-frame window) are called in the new 
state, and making the minimum state duration to be 10 points (100 msec). This lower 
duration limit is equivalent to limiting the switching rate to 10 s-1, which is reasonable for 
our 100 Hz data.This analysis resulted in the trace being broken into segments of 
defined states. From these data, the mean duration of each motility state, the fraction of 
time in spent each state, and the first-order switching rates between states were 
calculated.   
 
Data simulation  
For our initial guesses, we took the cutoffs as one standard deviation from the mean of 
the velocity distributions of stuck segments, SDresdistribution of processive segments 
and SDposdistribution of stuck segments in Fig. S2 F-H; Vcut = 151 nm/s, SDpos_cut = 12 
nm, and SDres_cut = 12 nm. The initial cutoffs used to assign the three motility states 
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were chosen subjectively, so to refine the cutoffs, we carried out simulations with 
defined switches between states and analyzed the simulated data with our state 
detection algorithm.  The first step in the simulations was to identify clear processive, 
diffusive and stuck episodes in our traces that were a minimum of 0.5 s long.  We chose 
10 P segments (17.3 s total), 5 D segments (3.2 s total), and 11S segments (7.5 s 
total);examples are shown in Fig. S2 C-E. For each trace, we calculated V, SDpos and 
SDresfor every timepoint using a 10-frame sliding window and analyzed their 
distributions (Fig. S2 F – H). Particular features are apparent, such as the wide velocity 
distributions for processive and stuck segments (Fig. S2F), which result in part because 
they are calculated over only 100 msec intervals, as well as the fact that the stuck and 
processive velocity distributions overlap significantly.  Secondly, there are reasonable 
separations of the SDpos distributions for stuck and diffusive states (Fig. S2E) and the 
SDres distributions for processive and diffusive states (Fig. S2F). Although it is possible 
to define cutoffs by eye from these distributions, we chose to identify optimum cutoffs 
using simulations and optimizing the algorithm to the simulated data with known state 
transition points.  
 
To simulate P segments, segment velocitieswere chosen by sampling from the velocity 
distribution of processive segments in Fig.S2 F. Fluctuations around that mean velocity, 
which correspond to actual velocity fluctuations as well as experimental error and fitting 
uncertainty, were simulated by adding a white noise term that sampled from the SDres 
distribution for processive segments in Fig. S2 H. For simulating S segments, velocity 
was set to zero, and positional variation was accounted for by adding a white noise term 
with a SD sampled from the stuck state SDposdistribution shown in Fig. S2G.  Finally, D 
states were modeled by computing an effective 1D diffusion constant from mean-
squared displacement analysis of the diffusive traces (Fig. S2D inset). To confirm the 
validity of how each state was simulated, we compared the distribution of 10-frame 
calculated V, SDpos and SDres from the simulations to those of the experimental data 
(Fig. S3 D-F).  
 
Simulations were performed by starting motors in the S state, setting the mean state 
transition rate to 1 s-1 for every transition, choosing an exponentially distributed random 
number for the switch time to the two possible states (P and D in this case), and 
transitioning to the state with the smaller switching time. This process was repeated to 
generate a 500 s trace containing many transitions between motility states. Note that 
because each state could be exited by two possible transitions, the mean transition rate 
out of each state was 2 s-1, corresponding to a 0.5 s mean state duration time for each 
state in the simulations. 
 
Parameter optimization 
Akey determinant of the accuracy of the switch detection algorithm is the choice of the 
cutoff parameters used to delineate the different states, Vcut, SDpos_cutand SDres_cut. To 
optimize our cutoff parameter choices, we applied our algorithm to the simulated 
data(Fig. S3A), quantified how well the algorithm correctly identified the known motility 
states (Fig. S3 B, C), and iteratively adjusted the cutoff parameters to achieve optimal 
performance of the algorithm. For a given cutoff parameter set, the performance of the 
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algorithm took into account both the overall fraction of time the correct state was 
identified, as well as the relative error in calculating the duration of each motility state. 
The goodness of fit (GOF) parameter(where 1.0 is defined as a perfect fit) was 
calculated as: 
 

 
 
Here, State accuracyis the proportion of timepoints where the state was correctly called 
(Fig. S3C), and the accuracy of mean state durations is defined as: 
 

 
 
The first problem we encountered was that Vcut, used to delineate processive from stuck 
states,was poorly constrained. This issue can be seen in the overlap of Processive and 
Stuck velocities in Fig. S2 F, and means that any hard cutoff will miscall some 
segments.The mechanistic origin of broad distribution of DDB velocities, which has 
consistently been observed by others in both raw kymographs and in velocity 
distribution plots 2–6, is not understood. The relationships between the P and S velocity 
distributions can be seen more clearly when plotted as cumulative distributions (Fig. S4 
A). Based on this visual analysis, we chose a compromise Vcutof 100 nm/s, which 
results in a nearly equal balance of 78% of processive states and 81% of stuck states 
being correctly called.  
 
To identify the optimal SDpos_cut and SDres_cut parameters, these two parameters were 
varied while holding Vcutconstant at 100 nm/s, and for each parameter set, a goodness 
of fit (GOF) value was calculated.  A GOF heat map (Fig. S4 B) shows that a GOF 
maximum of 80% was identified for SDpos_cut = 10 nm and SDres_cut = 18 nm.  These 
parameter choices were used in all subsequent analysis of the experimental data.  To 
confirm that the 100 nm/s velocity cutoff (chosen based on Fig. S4A) was consistent 
with the GOF optimization, the GOF optimization was repeated while varying all three 
parameters. As can be seen in Fig. S4 C, D, for any SDpos_cut or SDres_cut parameter 
choice along the x-axis, changing Vcut along the y-axis produced minimal color changes.  
Specifically, increasing Vcut above 100 nm/s led to negligible improvements in the GOF 
(all GOF > 80%), validating our Vcut choice of 100 nm/s. However, it should be noted 
that even with this cutoff, it means that segments where DDB is moving steadily at 
below 100 nm/s are defined as stuck states. The molecular mechanism underlying 
these slow-moving states is not known.  We hypothesize that either the motors are 
partially active or else there is a non-motor portion of DDB that binds tightly to the 
microtubule under some conditions, resulting in long-duration slow motility.  To conclude, 
from the simulation-based parameter optimization, the final cutoff values were:Vcut=100 
nm/s, SDres_cut= 18 nm, and SDpos_cut=10 nm.  
 
Sensitivity analysis for experimental data 
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Toassess how sensitive the results are to the specific choices of parameters, we varied 
the cutoff values up and down by 20% and calculated the changes in the mean state 
durations and fraction of time spent each state.  As shown in Fig. S5 and S6, the state 
durations and state fractions did vary somewhat with changes in the cutoff parameters. 
For instance, changing Vcut led to reciprocal changes in mean durations of Processive 
and Stuck segments (Fig. S5 A and G) and in the fraction of time in Processive and 
Stuck states (Fig. S6 A and G). However, in all cases, the differences between 
durations and state fractions between DDB control and DDB in the presence ofp150 
antibody were robust against 20% changes in parameters. Thus, the qualitative 
differences identified between DDB control and in the presence of Abp150 are not 
dependent on the specific choices used for the cutoff parameters. 



  6

 
 

Figure S1: Supplementary data for Figure 2 and 3. 
(A; related to Figure 2C)As a control for the specificity of the p150 antibody, the DDB landing rate was 
measured in the presence of a nonspecific mouse IgG antibody(Abcam, Mouse IgG2a, Kappa 
Monoclonal [MOPC-173] - Isotype Control - ChIP Grade (ab18413)). The landing rate was not different 
from control DDB (two-tailed t-test, p = 0.70, n.s, n = 10 for each group).(B; related to Figure 2E) 
Average fraction of processive, diffusive and stuck landing events across n = 10 microtubules for control 
(black) and n = 10 microtubules for Abp150 group (blue). Error bars are SEM; n.s., not significantly 
different (two-tailed t-test). (C; related to Figure 3C) Frequency of processive, diffusive and stuck 
events following release from Apo-lock for control DDB and DDB in the presence of Abp150. N=10 
kymographs 50 s long for each group, error bars are SEM; n.s., not significantly different by two-tailed t-
test. 

.
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Figure S2: Data processing and characteristics of processive, diffusive and stuck states 
(A) Sample trace of x-y position of particle-tagged DDB. (B) Time-dependent displacement parallel 
(blue) and perpendicular (black) to the microtubule. (C-E) Representative traces of processive, diffusive 
and stuck episodes. D inset:Mean-squared displacement analysis of5 diffusive segments, resulting in a 
calculated diffusion constant, D = 20,000 nm2/s. (F) Distribution of velocities from 10-frame (100 ms) 
windows for processive (red), stuck (black) and diffusive (blue dashed) segments. (G) Distribution of 
residual standard deviation following subtraction of slope for processive (red) and diffusive (blue) 
segments. (H) Distribution of positional standard deviation for stuck (black) and diffusive (blue) 
segments. For all distributions, V, SDpos and SDres values were calculated over 10-frame windows from 
100 frame/s videos. Dashed lines indicate parameter cutoff choices based on simulation analysis 
described below. 
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Figure S3: Simulations used to refine switch detection algorithm  
(A) Simulated trace with states identified by the switch point detection algorithm using initial guesses for 
cutoff parameters. (B) Corresponding plot of actual (blue) and algorithm-identified (orange) states. (C) 
Corresponding plot of correct versus incorrect state identification using this cutoff parameter set. (D, E, 
F) Comparison of distributions for 10-frame running windows for simulated data (purple) and 
experimental data (green; taken from Fig. S2F-H) for processive segment velocity (D), processive 
segment SDres (E) and stuck segment SDpos (F).  
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Figure S4: Parameter optimization and comparison of segment velocity distributions  
(A) Cumulative distributions of stuck (black) and processive (red) segment velocities from experimental 
data (replotted from distributions in Fig. S2 F). Blue line denotes Vcut of 100 nm/s where 78% of stuck 
velocities are below and 81% of processive velocities are above the cutoff. (B) Heat map of goodness of 
fit (GOF) parameter from algorithm analysis of simulated data. Vcut was set to 100 nm/s, and 
performance shown for different SDpos_cut and SDres_cut values. Optimal algorithm detection results (GOF 
= 80 %) were obtained at SDpos_cut = 10 nm and SDres_cut =18 nm (denoted by black dot). (C) GOF heat 
map to simulated data using algorithm with SDres_cut fixed at 18 nm and varying Vcut and SDpos_cut. 
Optimal results (GOF> 80%) were obtained when SDpos_cut = 10 nm and Vcut > 100 nm/s (black dot). (D) 
GOF heat map to simulated data using algorithm with SDpos fixed at 10 nm and varying Vcut and SDres_cut.  
Optimal results (GOF> 80%) were obtained when SDRes_cut = 18 nm and Vcut> 100 nm/s (black dot). 
Based on this analysis, the cutoff parameters for subsequent analysis were: Vcut = 100 nm/s, SDpos_cut = 
10 nm, and SDres_cut = 18 nm.    
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Figure S5: Cutoff parameter sensitivity analysis for identifying segment durations in 
experimental data.  Each plot shows mean P, D and S segment durations for DDB control (red solid 
lines) and Abp150 (blue dashed lines) for the simulation-optimized cutoff values (vertical dashed lines) 
and variations of each by +/- 20%. Importantly, although the precise estimates of the mean durations 
change somewhat with changes in the cutoff parameters, the relative difference between durations for 
control and Abp150 groups remains relatively constant. Thus, the segment duration results are robust (not 
strongly sensitive) with regard to the cutoff parameter choices. 
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Figure S6: Cutoff parameter sensitivity analysis for identifying fraction of time spent in each 
state in experimental data.  Each plot shows fraction of time spent in P, D or S states for DDB control 
(red solid lines) and Abp150 (blue dashed lines) for the simulation-optimized cutoff values (vertical dashed 
lines) and variations of each by +/- 20%. Importantly, although the precise estimates of the fractions of 
time spent in each state change somewhat with changes in the cutoff parameters, the relative 
differences between control and Abp150 groups remains relatively constant. Thus, results for the fraction 
of time spent in each state are robust (not strongly sensitive) with regard to the cutoff parameter choices. 
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Figure S7: (Related to Figure 6): Velocity distributions.  
(A) Distribution of velocities of processive segments identified by the detection algorithm for DDB control 
(blue, n = 81) and Abp150 (red, n = 84). Velocities were calculated by linear regression to each processive 
segment.(B) Comparison of mean processive segment velocities, showing no statistical difference (n.s., 
p = 0.72 using two-tailedt-test) between DDB control (blue) and Abp150 (red). (C) Distribution of whole-
trace velocities for DDB control (blue, n = 32) and Abp150 (red, n = 31). Velocities were calculated by 
linear regression to entire traces.(D) Comparison of mean whole-trace velocities, showing no statistical 
difference (n.s., p = 0.10 using two-tailedt-test) between DDB control (blue) and Abp150 (red). 
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Figure S8 (Related to Figure 6): Analysis of diffusion in absence and presence of Abp150.  
(A) Mean-squared displacement (MSD) analysis for 9 diffusive segments from control DDB group. 
Based on MSD = 2Dt for 1-D diffusion, D = 16,000 ± 4,100 nm2/s. (B) MSD analysis of 21 diffusive 
segments in p150 group; from slope, D = 17,000 ± 1,300 nm2/s. The diffusion constants for the two 
groups are not significantly different; p = 0.90 for two-tailed test of the null hypothesis that slopes are 
identical (Prism-GraphPad). 
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Figure S9: (Related to Figure 6): Relative changes in switching rates. 
(A) Relative changes in switching rates when dynactin p150 is able to interact with microtubules.  The 
prominent increase in the switching rate from diffusive to processive is denoted by red, and the 
prominent decrease in switching from diffusive to processive is denoted by blue. (B) Relative changes in 
overall switching rates into and out of each state when dynactin p150 is blocked by antibody. Most 
notably, the presence of p150 causes an increase in switching into the processive state and a decrease 
in switching out of the processive state. These changes primarily result from changes into and out of the 
diffusive state and not to changes into or out of the stuck state. 
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Video S1: Motility of gold-labeled DDB by iSCAT. 
DDB complexes functionalized with 30-nm gold nanoparticles were imaged moving 
along immobilized microtubules at 100 frames/s by iSCAT microscopy.  Movies were 
processed by subtracting still images of microtubule and inverting to produce bright 
particle on dark background. 
 
Video S2: Bidirectional transport of kinesin-1 – DDB complexes by TIRF. 
Images at right are Qdot channel, showing kinesin-DDB complexes moving slowly and 
bidirectionally along microtubules. Images at left are from GFP channel, showing 
streaming of excess free kinesin-1 motors to the microtubule plus-end; this information 
is used to assign microtubule polarity. Qdot and GFP movies were taken over different 
time windows.  Arrows in first frame denote: cargos transported to the plus end (yellow 
arrow),cargos transported to the minus end (red arrow), and cargos that switch from 
plus-end to minus-end direction (white arrow). 
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