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model for cervical multi-class prediction using pap-smear images. 

2. An ensemble classifier is introduced by combining three best architectures for the same 
classification problem.

3. To the best of our knowledge, this is the first work doing a comparative assessment of deep 
learning models using pap-smear images for the four-class (multi-class) prediction following 
The Bethesda System- NILM (normal class), LSIL (pre-cancerous class), HSIL (pre-
cancerous class) and SCC (cancer class).
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classification accuracy.
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Abstract: The diagnosis of cervical dysplasia, carcinoma in situ and confirmed carcinoma cases is more 
easily perceived by commercially available and current research-based decision support systems when 
the scenario of pathologists to patient ratio is small. The treatment modalities for such diagnosis rely 
exclusively on precise identification of dysplasia stages as followed by The Bethesda System. The 
classification based on The Bethesda System is a multiclass problem, which is highly relevant and vital. 
Reliance on image interpretation, when done manually, introduces inter-observer variability and makes 
the microscope observation tedious and time-consuming. Taking this into account, a computer-assisted 
screening system built on deep learning can significantly assist pathologists to screen with correct 
predictions at a faster rate. The current study explores six different deep convolutional neural networks- 
Alexnet, Vggnet (vgg-16 and vgg-19), Resnet (resnet-50 and resnet-101) and Googlenet architectures 
for multi-class (four-class) diagnosis of cervical pre-cancerous as well as cancer lesions and 
incorporates their relative assessment. The study highlights the addition of an ensemble classifier with 
three of the best deep learning models for yielding a high accuracy multi-class classification. All six 
deep models including ensemble classifier were trained and validated on a hospital-based pap smear 
dataset collected through both conventional and liquid-based cytology methods along with the 
benchmark Herlev dataset.

Keywords: cervical dysplasia; classification; deep learning; convolutional neural network; pap smear

1. Introduction

Pap smear test is considered as a renowned periodic screening tool for the detection of cervical pre-
cancerous lesions or premalignant cells based on detailed microscopic observation. Diagnosis of 
cervical cancer is reliant on the Pap test by means of either conventional method or liquid-based 
cytology which is recommended by a clinician on subjective clinical assessment. An ideal Pap test 
report identifies the degree of malignancy if any and then confirms the classification category based on 
The Bethesda System (TBS) (Nayar and Wilbur, 2017) related to cervix cancer. It has been established 
that the liquid-based cytology(LBC) Pap test is more efficient and convenient than the conventional 
method (Cheung et al., 2003; Massad et al., 2001; Zhu et al., 2007) due to the mere fact that LBC can 
produce a cleaner and uniform slide for microscopic observations than the conventional method. LBC 
technique facilitates the breaking down of all heavier molecular particles like blood and mucus in the 
specimen with the help of centrifugation which confers a uniform slide at the end. LBC based results 
give better identification of cervical transformation zone cell-level components provided that the 
collected vial samples can also be used for the Human Papilloma Virus (HPV) testing. However, the 
option of using any of the screening tools does not produce any change in diagnosis results but might 
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be important for automating the overall screening system to assist a pathologist with disease diagnosis. 
Conventional images have more debris like red blood cells, inflammatory cells, etc. which have to be 
dealt with subsequent image pre-processing steps that may not be required for LBC images. 

With the advent of artificial intelligence in the health care domain, predictions made by a 
decision support system can tackle issues on observer biases. A Pap test is used as a cervical cancer 
screening tool to detect squamous intraepithelial lesions or malignant growth if any. The Pap test report 
can exemplify early detection of the squamous intraepithelial lesion or cervical dysplasia where a rapid 
treatment plan can prevent its further development into invasive cancer. While prognosis based on Pap 
test report states that 57% of confirmed low grade squamous intraepithelial lesion (LSIL) cases regress 
to normal but more than 32% also progress to high grade squamous epithelial lesion (HSIL) or 
carcinoma in situ and almost 12% to invasive carcinoma (Maniar and Wei, 2017). With a limited 
skewed ratio of patients to pathologists, this screening test takes time to analyze the slides where a 
majority of cases are often confirmed as normal and without any dysplastic changes or sometimes even 
one cell with LSIL or HSIL characteristic confirmed its belonging to the LSIL and HSIL class. That is 
why the screening requires rigorous observation of individual cell characteristics for a multi-class 
diagnosis which is why automated prediction holds its significant relevance. There is yet another issue 
in most of the developing and underdeveloped countries where mass screening and awareness 
campaigns are dependent on cost-effective health resources with additional skilled manpower. 
Commercialized FDA-approved cervical screening systems do exist like the Focal Point GS Imaging 
System by BD (Becton Dickinson) (Wilbur et al., 2009)and Thin Prep Imaging system by HOLOGIC, 
Inc. (Biscotti et al., 2005) particularly for cervical cancer diagnosis but in countries like India, such 
systems may not be feasible because their high cost and maintenance are not effective during mass 
screening or even rural-based health check-ups. Consequently, this comprehensive study based on pap 
smear images holds strong in putting forward few recent deep learning networks for automated 
classification of cervical dysplasia into multiple classes which may assist pathologists in disease 
quantification and early detection where artificial intelligence may play a significant role and finally in 
planning abrupt prognosis treatment.

According to The Bethesda System (Nayar and Wilbur, 2017) cervical cell classification, there 
are two types of squamous epithelial lesions or premalignant lesions prior to normal class or negative 
for intraepithelial malignancy (NILM): (1)  low-grade squamous intraepithelial lesion (LSIL) and, (2) 
high-grade squamous intraepithelial lesion (HSIL). In the case of LSIL class, dysplastic changes in the 
nuclear morphometry are observed as just starting off phase because of which they come under mild 
dysplasia category. Unlike LSIL, HSIL class cells have an abnormal nuclear size which is three or more 
times enlarged than normal class cells. Apart from nuclear enlargement, there are numerous cytological 
descriptions related to LSIL, HSIL, and squamous cell carcinoma (SCC) classes which are discussed in 
the reference book (Gray and Kocjan, 2010).

While automated diagnosis using machine learning algorithms rely on handcrafted features, 
deep learning methods can provide end-to-end classification by visual learning vast complex 
dimensional features without selective handcrafted feature engineering.  The current study provides 
whole slide image analysis without relying on previous pipelined methods such as segmentation 
algorithms followed by feature extraction, and feature selection methods. This study using deep learning 
resulted in an automated diagnostic prediction of cervical cancer class from normal or healthy, dysplasia 
and carcinoma samples which may contribute to reducing observer biases or even sometimes manual 
workload of a pathologist. 

Contributions of this paper can be summarized as:
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(1) Development of an ensemble classifier that outperforms the classification accuracy yielding best 
result from selective deep learning models using majority voting technique (three best models selected 
under our problem domain).
(2) The current study is emphasized mainly on cervical dysplasia sub-types which is to our best of 
knowledge the first work doing ensemble classification on multi-class diagnosis using deep 
convolutional neural networks (CNN) with an inclusive study of six different deep CNN models using 
pap smear image analysis.
(3) We aim to reduce misclassification error by generalizing the ensemble classifier with real-world 
clinical pap smear datasets as well as validating the performance on a benchmark dataset.

This paper is organized as follows. Section 2 describes the prior art related to automated 
diagnosis on cervical dysplasia using machine learning or deep learning. Section 3 presents the 
experimental methodology and Section 4 and 5 highlights the results and discussion of our tentative 
findings. We conclude in Section 6.

2. Prior art

Literature related to an automated cervical cancer diagnosis can be categorized into (1) study dataset 
whether cell level or smear level (whole slide image) and (2) whether classification persuaded using 
machine learning algorithms or deep learning algorithms. It is significant that smear level or whole slide 
image analysis will contribute to more rapid diagnosis reducing manual screening time which is why 
cell level dataset is not applied in the present study. Machine learning algorithms have been employed 
for the classification of cervical cancer but classification accuracy using such algorithms relies on a 
precise segmentation algorithm. Therefore, such segmentation algorithms configure into pipeline 
formats usually preceded with added numerous pre-processing steps which may destabilize 
classification output or may likewise increase misclassification rate. Few of the segmentation methods 
applied on cervical pap smear datasets and mentioned in the literature are radiating gradient vector flow 
(GVF) snake (Li et al., 2012), maximally stable extremal region (Bora et al., 2017), multi-scale 
hierarchical segmentation (Gençtav et al., 2012), morphological reconstruction and clustering(Plissiti 
et al., 2011)and global and local graph-cuts algorithm (Zhang et al., 2014). A few deep learning-based 
segmentation methods also exist in the same literature related to pap smear images (Song et al., 2015, 
2014; Zhang et al., 2017b) but no further classification technique has been put forward using them. 
Litjens et. Al (Litjens et al., 2017) in his article have mentioned deep learning concepts on medical 
image classification and other tasks which is indeed becoming an emerging research field of medical 
imaging.

Work on multi-class diagnosis for pap smear images has been mentioned by Bora et. al (Bora 
et al., 2017), Marinakis et al. (Marinakis et al., 2008) and Changkong et al. (Chankong et al., 2014). 
Most of these conventional methods are able to efficiently remove clustered nuclei as well as unwanted 
debris like red blood cells and inflammatory cells leading to more accurate predictions. Bora et al. have 
mentioned about modified Maximally Stable Extremal Region (MSER) algorithm to specifically 
segment cellular artifacts. Changkong et al. have mentioned performance testing of five different 
classifiers – Bayesian classifier, linear discriminant analysis, k-nearest neighbor and artificial neural 
network out of which artificial neural network yielded best results for 2-class (binary) as well as 7-class 
(multi-class) prediction. Ensemble classifier using majority voting from three different classifier’s 
decisions namely least square support vector machine, multi-layer perceptron, and random forest have 
been proposed by Bora et al. for NILM, LSIL, HSIL, and SCC diagnosis. Such methods are highly 
reliant on accurate segmentation output which only succeeds the rest of the pipeline thus making it slow 
and increasing the chance of classification error. With deep learning, the aforesaid multi-class 
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prediction or diagnosis may be incorporated without prior segmentation using only the smear level 
images. Most of these deep learning works on pap smear images deal with either binary classification 
problems or using only a single cell-level (cropped-out) dataset. Srishti et al. (Gautam et al., 2018) have 
reported an F-score of 0.90 on the benchmark dataset using a proposed patch-based CNN classifier to 
address the 2-class classification problem but applied only for the single cell-level pap smear dataset. 
Binary classification using such single-cell images has also been proposed by Zhang et al. (Zhang et 
al., 2017a) using Convnet architectures that have achieved 98.3% test accuracy on comparison with 
benchmark dataset. A deep convolutional neural network architecture namely a Deep-cerv network has 
been proposed for binary classification of pap smear images by Nirmaljith et al. (Jith et al., 2018) that 
has achieved 99.6% test accuracy as reported. Thus, from literature, it has been clear that no such deep 
learning models have been introduced so far for automated multi-class diagnosis of cervical cancer 
using the pap-smear images. 

3. Materials and Methodology

3.1. Image acquisition intended for generating the image datasets

A hospital-based dataset of pap smear samples was collected to deal with real-world clinical setup. 
Developed algorithms hold their ground by comparing results with the publicly available benchmark 
datasets (Herlev University dataset for pap smear images). This will work as a base for the development 
of further new algorithms with module wise improvement that deals with real-world scenarios while 
keeping global standards within sight. A total of 1670 image datasets using the liquid-based cytology 
Pap test belonging to patients who came for cervical screening tests were collected from three 
distinguished medical diagnostic centers of the North-eastern regions of India namely Babina 
Diagnostic Pvt. Ltd, Imphal, Gauhati Medical College and Hospital, Guwahati and Dr B. Borooah 
Cancer Institute, Guwahati. Another 1320 images were collected using the conventional Pap test from 
AyursundraPvt. Ltd, Guwahati and Dr B. Borooah Cancer Institute, Guwahati. All slides were prepared 
following standard Pap staining protocol. Ethical permission was taken for the study from the 
institutional ethics board (Registration number ECR/248/Indt/AS/2015 of Rule 122DD, Drugs and 
Cosmetics Rule, 1945 of India) of the Institute of Advanced Study in Science and Technology, 
Guwahati [No. IEC. IEC(HS)/IASST/1082/2015-16/3]. All samples used in the study also involve 
appropriate patient consent from the respective diagnostic centers. The true class according to TBS 
cervical cell classification (NILM, LSIL, HSIL, and SCC) to which the pap smear images belong were 
first manually confirmed by an expert pathologist. This is used as ground truth labels in the study for 
confirming our experimental findings respectively. The images were captured using a Leica ICC50 
high-definition microscope with 400× magnification. Table. 1 gives an overview of the captured images 
in detail. The benchmark Herlev University dataset consists of seven classes, where superficial 
squamous, intermediate squamous and columnar squamous were grouped into the normal class or 
NILM, mild dysplasia grouped as LSIL class, moderate dysplasia and severe dysplasia as HSIL class 
and carcinoma in situ as SCC class. Herlev dataset is downloaded from the URL: 
http://labs.fme.aegean.gr/decision/downloads

3.2. Building a classifier model

Transfer learning comes into play when building a convolutional neural network from scratch is just 
impractical in medical research. This is because of a scarcely available clinical dataset and requisite 
computation resources. As an alternative, publicly available CNN models that are already pre-trained 
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with a natural image dataset can be fine-tuned with their own dataset in specific application areas to 
which transfer learning comes into account. Transfer learning refers to the fine-tuning of a pre-trained

Table. 1: Details of data acquired for the study

LBC dataset (own) Images acquired
NILM 900
LSIL 360
HSIL 250
SCC 160
Total no. of  images 1670

Conventional dataset (own)
NILM 796
LSIL 247
HSIL including SCC 278
Total no. of  images 1320

Herlev dataset(benchmark)
Superficial squamous 74
Intermediate squamous 70
Columnar squamous 98
Mild dysplasia 182
Moderate dysplasia 146
Severe dysplasia 197
Carcinoma in situ 150
Total no. of images 917

NILM: Negative for Intraepithelial malignancy; LSIL: low grade squamous intraepithelial lesion; HSIL: high grade squamous 

epithelial lesion; SCC: squamous cell carcinoma.

network on a labeled large-scale natural image dataset. Fine-tuning involves adjusting the weights of 
the pre-trained network by continuing with backpropagation. Typically, apart from weight adjustment, 
fine-tuning also involves resetting or truncating the last fully connected layers, which can be viewed as 
a classification layer along with a smaller learning rate being applied to the pre-trained layers. The goal 
is to adapt deep features to the new datasets. More different is the latter from the original dataset, more 
parameters or layers must be reset. Traditional supervised machine learning paradigm breaks down due 
to limited labeled datasets to train a model whereas in solving similar problems, we can directly transfer 
the knowledge to our target domain. 

Initially, publicly available pre-trained models namely, Alexnet (Krizhevsky et al., 2012), 
Vggnet (Vgg-16, Vgg-19) (Simonyan and Zisserman, 2015), Resnet (resnet-50, resnet-101) (He et al., 
2016) and Googlenet (Szegedy et al., 2015) were used as candidate training models for pap smear 
images. The model selection was made based on their well-known performance for different 
classification tasks. Accordingly, transfer learning was used for classifying the cervical classes- NILM, 
LSIL, HSIL, and SCC. Since this is a four-class classification task, the last fully connected layers for 
each pre-trained models were replaced with a modified fully connected layer comprising of four output 
nodes representing these four classes. Model training was conducted using Adam optimizer for 30 
epochs with a batch size of 32 images. For the pre-trained models including ensemble the hyper-
parameters used were momentum being 0.9 with a weight decay of 0.0005 and a network learning rate 
of 0.001, which was decreased by a factor of 10 at every 10 epochs till the networks reach a convergence 
point. Network training was implemented using Keras package with python environment on a GPU 
based system having Intel®Core i7® 8750H processor with 6GB memory and GTX® 1060 graphics 
card.
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3.2.1 Ensemble classifier

An Ensemble classifier scheme works on seeking a maximum number of classifiers' decisions and 
weighing their decisions at the same time to increase efficiency and performance of the final 
classification task. For this, the output of the six publicly available deep models namely, Alexnet, Vgg-
16, Vgg-19, Resnet-50, Resnet-101, and Googlenet were evaluated based on performance and three best 
models (Resnet-50, Resnet-101, and Googlenet) were combined to generate an ensemble classifier 
using majority voting technique. The ensemble model chooses a class based on its highest number of 
votes received so far. Thus, the decision of ith classifier can be defined as D(a,b)∈(0,1) such that 
a=1,2,3...,M and b=1,2,3...,N, where M is the number of classifiers and N is the number of classes. In 
such cases if ith classifier chooses class ωb, then D(a,b) = 1 and 0 otherwise. An extensive analysis of 
majority voting can be found in (Polikar, 2006). The ensemble decision for majority voting can be 
described as follows: 

                                                  (1)∑M
a = 1D(a,b) =   max N

b = 1∑T
a = 1D(a,b)

3.3. Performance metrics for evaluation of the classification task

The prediction made by the classifiers can be evaluated using the following metrics meant for multi-
class classification (Sokolova and Lapalme, 2009). Here, true-positives and true-negatives denote the 
number of positive and negative classes correctly predicted by individual classifiers; false-positive and 
false-negative denotes the number of positive and negative classes that are incorrectly predicted by 
individual classifiers. Accuracy increases the rate of true predicted classes.

Table. 2: Performance measures for multi-class classification. Here, for many classes,  represents true-positive class;  𝐶𝑖,𝑡𝑝𝑖

represents false-positive class; represents true-negative class;  represents false-negative class; l denotes total 𝑓𝑝𝑖 𝑡𝑛𝑖 𝑓𝑛𝑖

classes

Performance metrics Formula Focus 
Average Accuracy ∑𝑙

𝑖 = 1

𝑡𝑝𝑖 +  𝑡𝑛𝑖

𝑡𝑝𝑖 + 𝑡𝑛𝑖 + 𝑓𝑝𝑖 + 𝑓𝑛𝑖

𝑙

Calculates average prediction efficiency 
of individual classifiers for each class

Precision or Positive Predictive Value ∑𝑙

𝑖 = 1

𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑝𝑖

𝑙

Agreement of class labels with positive 
labels given by individual classifiers

Recall or Sensitivity ∑𝑙

𝑖 = 1

𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑓𝑛𝑖

𝑙

Calculates individual classifier’s 
efficiency for identifying positive labels. 

This gives the true positive rate.

Specificity ∑𝑙

𝑖 = 1

𝑡𝑛𝑖

𝑡𝑛𝑖 + 𝑓𝑝𝑖

𝑙

Calculates individual classifier’s 
efficiency for identifying negative labels. 

This gives the true negative rate.

False-positive rate
(or 1- Specificity) ∑𝑙

𝑖 = 1

𝑓𝑝𝑖

𝑡𝑛𝑖 + 𝑓𝑝𝑖

𝑙

Calculates individual classifier’s 
efficiency for identifying false positive 

labels. 

False-negative rate ∑𝑙

𝑖 = 1

𝑓𝑛𝑖

𝑡𝑛𝑖 + 𝑓𝑛𝑖

𝑙

Calculates individual classifier’s 
efficiency for identifying false-negative 

labels. 

Area Under Curve 1
2∑

𝑖 = 1
𝑙(

𝑡𝑝𝑖

𝑡𝑝𝑖 + 𝑡𝑛𝑖
+  

𝑡𝑛𝑖

𝑡𝑛𝑖 +  𝑓𝑝𝑖
)

Calculates individual classifier’s 
effectiveness in avoiding false 

classification
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4. Results

In this study, we evaluated and analyzed the performance of six different deep learning models using 
transfer learning and compared the ensemble classifier’s performance with the individual pre-trained or 
fine-tuned models for cervical dysplasia multi-class diagnostic prediction. Classification using publicly 
available benchmark datasets (Herlev University dataset) and pap smear images collected through two 
different methods- liquid-based cytology and conventional pap test are evaluated. Results were verified 
with manually annotated images by an expert pathologist that served as ground-truth. This performance 
evaluation is presented by following steps mentioned below:

(a) Resize all raw pap smear images from three different datasets into a uniform dimension of 
987×654pixels.

(b) Split the dataset into training, validation and test dataset based on the train-test split strategy 
(Mohanty et al., 2016). From a total of 3907 pap smear images, 3125 images were used for 
network training whereas 781 images were used for model validation from which again 316 
images were used as test datasets.

(c) Train the classifiers (Alexnet, VggNet-16 and 19, Resnet-50 and 101, Googlenet and Ensemble) 
using a training dataset for prediction.

(d) Use the trained classifiers for predicting the test dataset.
(e) Analyze the performance metrics: average accuracy, precision, recall, specificity, false-positive 

and false-negative rate and area under the curve.

4.1 Evaluation of the pre-trained classifier models 

An assessment of suitable classifiers from existing deep convolutional neural networks (Alexnet, vgg-
16, vgg-19, resnet-50, resnet-101 and googlenet) pre-trained on ImageNet and fine-tuned for the task 
of cervical dysplasia prediction using pap-smear images was done. These networks require large 
datasets for optimal training and to overcome this, we have fine-tuned the pre-trained networks for our 
problem. Fine-tuning the individual models is carried out particularly as specified in Section 3.2. On 
the basis of the loss and accuracy consistency during training, validation and testing for the individual 
models, three classifier models showed the best performance. Results highlighted in Table. 3. prove 
that fine-tuned Googlenet followed by Resnet-50, and Resnet-101 converges better than Alexnet, Vgg-
16, and Vgg-19. 

Googlenet performed the classification task gaining the highest accuracy and lowest log-loss 
whereas Alexnet acquired the least accuracy and highest log-loss in the same classification problem. At 
epoch 30, only three classifier models – Resnet-50, Resnet-101 and Googlenet had accuracy above 90% 
consistently for liquid-based cytology, conventional and Herlev pap smear datasets with considerably 
minimized log-loss. Deeper networks like Googlenet perform better than shallower networks like 
Alexnet with a 37% reduced number of trainable parameters. This establishes that fine-tuned Googlenet, 
Resnet-50, and Resnet-101 can converge easily and can significantly learn more visual deep features of 
pap smear images than the other pre-trained models.

4.2 Evaluation of the multi-class classification task

The three best-performance classifiers were chosen for the ensemble classifier model. We validated the 
classification task with all six deep learning models as well as the ensemble model for a comparative 
assessment. For this, we performed receiver operating characteristic (ROC) analysis for fine-tuned 
Alexnet, Vgg-16, Vgg-19, Resnet-50, Resnet-101, Googlenet and the proposed ensemble classifier. Fig. 
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1 highlights the ROC curves for proposed and individual models considering all the multiple classes: 
normal or healthy (NILM), LSIL, HSIL and SCC cases. The area under the curve (AUC) was computed 

Table. 3: Comparison of fine-tuned models using estimated accuracy and loss during training, validation, and testing. Bold 
values indicate the best performance classifier.

Datasets Fine-tuned 
models

No. of 
trainable 

Parameter
(millions)

Training 
accuracy 
at epoch 

30 
(%)

Training 
loss at 

epoch 30 

Validation 
accuracy 
at epoch 

30 
(%)

Validation 
loss at 

epoch 30

Testing 
accuracy 
at epoch 

30 
(%)

Testing 
loss at 
epoch 

30 

Alexnet 61 84.41 0.851 84.34 0.678 82 0.578
Vgg-16 138 87.19 0.674 86.67 0.456 87.16 0.341
Vgg-19 144 85 0.773 84.47 0.712 85.16 0.702

Resnet-50 25.6 91 0.025 90.12 0.019 91.78 0.015
Resnet-101 45.6 92.57 0.020 93 0.024 92.61 0.024

Liquid based 
cytology

Googlenet 23 95.45 0.011 96.67 0.014 95.12 0.014

Alexnet 80 0.567 79.67 0.671 82 0.670

Vgg-16 87.43 0.709 88.89 0.666 87 0.545
Vgg-19 86.14 0.145 86.45 0.146 87.33 0.122

Resnet-50 91.13 0.023 93 0.023 92 0.021
Resnet-101 94 0.028 92.67 0.013 94.89 0.015

Conventional

Googlenet

Same as 
above

96.67 0.017 96 0.011 97.18 0.016

Alexnet 83 0.613 83.74 0.555 80 0.644
Vgg-16 85.67 0.267 84.11 0.232 83.37 0.545
Vgg-19 87.01 0.471 86.23 0.418 84.55 0.333

Resnet-50 93.51 0.054 90 0.056 89.37 0.034
Resnet-101 92.22 0.022 94.16 0.021 90.45 0.029

Herlev

Googlenet

Same as 
above

96.17 0.015 97 0.015 95.67 0.015

considering a 97% confidence interval (Hanley et al., 1983). From Fig. 1 it is clearly seen that for each 
of the four classes, the proposed ensemble classifier achieved the highest AUC. Five-fold cross-
validation was performed which involves dividing the data into five parts and fitting the model using 
90% of the split data and then finally predicting with the remaining 10%. A comparison of different 
performance metrics of classification results is presented in Fig. 1 below. 

In order to visualize our clinical findings based on the multi-class classification task, we have 
checked the AUC (Area Under the Curve) ROC (Receiver Operating Characteristics) curve for the 
individual classifier models. AUC-ROC is a good performance metric used in diagnostic tests to analyze 
how well a classifier model is capable of correctly distinguishing normal or healthy patients (negative 
class) and actual patients suffering from a certain disease (positive class). In other words, the AUC-
ROC illustrates the diagnostic decision by comparing the trade-off between true positive rate (TPR) and 
false-positive rate (FPR) as the two operating characteristics criterion. The false-positive case occurs 
when a healthy person is predicted wrongly to have a disease and its minimization is considered as an 
intuitive problem for any diagnostic test. For this, a good classification result is only reciprocated by 
the points lying above the diagonal line (random). Fig. 2 illustrates the ROC curve plotted with TPR 
against FPR for NILM, LSIL, HSIL and SCC classes. From the figure, it is clear that the ensemble 
classifier displays the best criterion achieving an AUC 0.97, which means 97% of the classifier model 
has been able to distinguish positive and negative class. 
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Fig. 1: Comparison of different performance metrics for evaluation of classifier models using (a)liquid-based cytology 
dataset, (b) conventional dataset and (c) Herlev dataset.
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Fig. 2: Comparison of AUC-ROC curve across all experimental datasets

McNemar’s test was conducted to confirm the statistical significance of the consistency of the classifiers 
against ground-truth by evaluating the number of classified and not classified instances of the individual 
class. This analysis confirmed the superiority of the proposed ensemble method to be statistically 
significant (p< 0.01) than the other networks. The findings are presented in the table below (Table. 4).

Table. 4: p-values of McNemar’s test conducted for different networks and for the four classes.

Models NILM LSIL HSIL SCC

Alexnet 0.789 0.677 0.789 0.567

Vgg-16 0.555 0.321 0.677 0.578

  Vgg-19 0.078 0.456 0.067 0.291

Resnet-50 0.058 0.056 0.057 0.067

Resnet-101 0.051 0.042 0.025 0.034

 Ensemble 0.01 0.01 0.00 0.01
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5. Discussion

From our findings, it can be considered that automatic multi-class prediction of cervical dysplasia can 
pave way for decision support systems that can help pathologists in disease quantification and prognosis 
treatment. From the experimental observations, it is also clear that the proposed ensemble classifier can 
predict the four target classes with high accuracy, precision and recall than other candidate classifier 
models. Based on our observations, we have summarized below the main observations to highlight the 
proposed method:

1. We have given emphasis to validate our diagnostic test by taking into account the rate of 
occurrence of false-positive and false-negative results. In our case, false negative is interpreted 
as patients with cervical dysplasia or carcinoma but the diagnostic test shows negative result 
whereas false-positive implies patients with cervical dysplasia but diagnosed with a positive 
result. The proposed ensemble classifier outperforms the other models with a low false-positive 
and false-negative rate.

2. The ensemble model can be considered as the most suitable and generalized model for cervical 
pap smear image classification since it is combined by three optimized base deep learning 
models in terms of training and testing accuracy and with the reduced number of trainable 
parameters. The proposed model is efficient in terms of AUC values which are more than 90% 
than Alexnet, Vggnet, Resnet and Googlenet.

3. This method can classify whole slide pap smear images without relying on segmentation 
techniques which makes the framework more robust.

6. Conclusion

Patients with low-grade and high-grade squamous intraepithelial lesions are at a high risk of progressing 
into cervical squamous cell carcinoma or even invasive carcinoma if not detected early. The screening 
test through pap smear allows routine examination of lesions by a pathologist. The present article 
explains a deep learning method for assisting a pathologist for automatic and rapid diagnostic prediction 
using pap smear image analysis. This method overcomes incorrect predictions and does not require 
segmentation and hand-engineered feature extraction steps, unlike other conventional methods.  The 
proposed method is evaluated using three datasets: liquid-based cytology, conventional and Herlev 
datasets where the better result is reported by the ensemble classifier with 0.989 accuracy, 0.978 
sensitivity and 0.979 specificity. Findings prove that this ensemble method is advantageous as the 
emphasis is given on all the stages of dysplasia and suggests potential utility for early-stage disease 
diagnosis. With an alarming growth of cervical cancer patients where the ratio of pathologists for 
disease diagnosis is very limited prior to screening patients, the suggested method may ease the overall 
screening protocol.
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consent from 460 patients visiting the O&G department of the public hospital with various gynaecological 
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Specifications Table 

Subject Computer Science, Computer Vision and Pattern Recognition, 

Specific subject area Medical Image Processing, Cervical Cancer, Cell segmentation, Cell 
classification

Type of data Images

How data were 
acquired

Images were captured using a Leica DM 750 microscope with camera model 
ICC50 HD, in 400x (40x objective lens× 10x eyepiece) magnifications (size 2048 
× 1536 pixels).

Data format Raw
JPG

Parameters for data 
collection

Images were captured in 400x (40x objective lens× 10x eyepiece) 
magnifications.  The size of the images is 2048 × 1536 pixels.

Description of data 
collection

Liquid-based cytology provides more uniform fixation with a cleaner 
background and well-preserved samples for further HPV tests other than 
conventional Pap tests and hence it is preferred here. The LBC pap smear slides 
were collected from three distinguished medical diagnostic centers of the NER 
regions, India namely Babina Diagnostic Pvt. Ltd, Imphal, Gauhati Medical 
College and Hospital, Guwahati and Dr B. Barooah Cancer Institute, Guwahati. 
All samples involve ethical clearance protocol from the three diagnostic 
centers along with patient consent from total of 460 patients undergoing 
cervical screening tests. The images were captured in 400x magnifications 
using Leica DM 750 microscope, model ICC50 HD connected with the camera 
and a high-configured computer and software. The images represent the sub-
categories of cervical lesions (malignant and pre-malignant) as NILM (Negative 
for Intraepithelial lesions), LSIL (Low-grade intraepithelial lesions), HSIL (High-
grade intraepithelial lesions), and SCC (Squamous Cell Carcinoma).

Data source location 1. Babina Diagnostic Pvt. Ltd, Imphal, India
2. Dr B. Borooah Cancer Research Institute, Guwahati, Assam, India
3. Gauhati Medical College and Hospital, Guwahati, Assam, India

Data accessibility Hussain, Elima; (2019), “Liquid-based cytology pap smear images for multi-
class diagnosis of pre-cancerous and cancer lesions related to cervical cancer”, 
Mendeley Data, V4, doi: 10.17632/zddtpgzv63.4

Related research 
article

Co-submitted in Tissue and Cell entitled ”A comprehensive study on the multi-
class diagnosis of Pap smear images using a fusion-based decision from 
ensemble deep convolutional neural network”



Value of the Data
 This dataset can be used for a comparative assessment of one’s experimental findings against 

publicly available benchmark conventional (Bora et al., 2017; Jantzen and Dounias, 2006; Lu et al., 
2015; M. E. Plissiti, P. Dimitrakopoulos, G. Sfikas, C. Nikou, O. Krikoni, 2018) and Thin-Prep LBC 
datasets (Phoulady and Moutan, 2018).

 Researchers can use this dataset for computer-assisted diagnosis of cervical cancer which enables 
interpretation of such images for different image segmentation algorithms, feature extraction or 
feature selection methodologies and in final classification step (both binary as well as multi-class 
classification). In the case of binary classification (normal vs. abnormal class), the NILM category 
can be grouped as normal whereas LSIL, HSIL, and SCC further grouped as abnormal classes. 

 Deep learning methodologies concerned with classification or semantic segmentation tasks can 
also be incorporated with further data augmentation techniques using these images. 

Data
The dataset has been sub-divided into four categories each depicting the four classes of cervical cancer as 
per TBS standards. Table 1. quantifies the total images belonging to each category, a few samples of which 
are illustrated in Figure 1. The images can be used for binary and multi-class classification tasks using 
machine learning as well as deep learning approaches. The classification step can be integrated with image 
pre-processing, image segmentation and feature extraction steps which require quantitative analysis of 
detection of abnormal features based on cell-level morphometry like shape, color or texture analysis. This 
will enable automated or computer-assisted diagnosis for early detection of pre-cancerous lesions to 
combat cervical cancer disease. This will contribute to rapid prognosis therapy.

Table 1:  Dataset arrangement
Category No. of images

NILM 613
LSIL 163
HSIL 113
SCC 74

Total images 963



(A)

(B)
Figure. 1: (A) Images belonging class NILM and LSIL and (B) Images belonging to class HSIL and SCC

Experimental Design, Materials, and Methods

Images in the datasets were collected using liquid-based cytology (LBC) (sure-path) technique in the 
Obstetric and Gynecology department of Gauhati Medical College and Hospital, the primary public 
healthcare center of the region. LBC technique basically involves a small brush to collect the sample with 
target from transformation zone (where columnar epithelial cell undergoes changes into squamous 
epithelial cell) in the same way as a conventional smear test, but instead of transferring the smear 
specifically to a microscopic slide, the samples are kept into a container with additive fluid. This fluid deals 
with evacuating different types of unwanted debris, like mucus, blood cells, etc., prior to setting a layer 
of cells on the slides. The vial containing cervical samples was finally placed at a vortex with 3000 rpm for 
15-20 seconds in order to break mucotic and blood particles. After adding density reagent to the sample, 
it undergoes sedimentation and centrifugation at 2500 rpm for 5 minutes. This is mainly done so that 
particles having heavy molecular weight get settled down at the bottom of the slide. After one or two 
alcohol wash, the slides were stained using Haemotoxylin and Eosin (H&E) staining protocol. 

These slides were then used to capture images using Leica ICC50 HD microscope at 400x. 400x 
magnification provides better view of smear level image per slides than 100x and 200x with distinct 
cellular features as per the concerned categories. Ten best quality images per slides were acquired and 
maintained in a simple excel file along with medical reports per patient. While capturing these images, it 
is ensured that minimal overlap of image sections in a particular slide is happening. So images were 
essentially acquired by moving the microscope eyepiece over the slides in a  sequential pattern. Although 
there is a probability of subjective error in this process, this sequence is repeated throughout to keep this 
error at a minimal percentage. The images were categorized as NILM, LSIL, HSIL and SCC based on the 
patient's report and finally confirmed with an expert pathologist’s review from pathology department. 



These images may now undergo different image processing tasks subjective to computer vision and 
machine learning fields.
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