## Supplementary Online Content

Xu A, Ma J, Guo X, et al. Association of a province-wide intervention on salt intake and hypertension in Shandong Province, China, 2011-2016. *JAMA Intern Med*. Published online April 27, 2020. doi:10.1001/jamainternmed.2020.0904

eTable 1. The SMASH Multi-sectoral Brief Roles Summary

**eFigure 1.** Sampling Flowchart for Physical and Questionnaire Survey in 2011 & 2016

eFigure 2. Sampling Flowchart for Urinary Excretion Collection in 2011 & 2016

eTable 2. Questions in Knowledge Attitude and Behaviors on Sodium-reduction

Between Baseline and Post-intervention Survey: Shandong-Ministry of Health

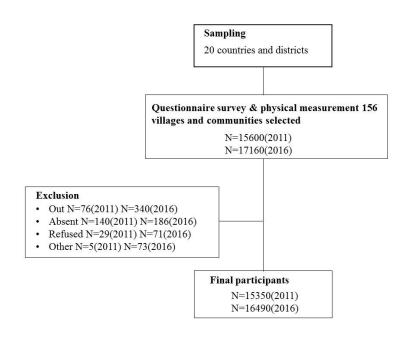
Action on Salt and Hypertension (SMASH) Program 2011-2016

eMethods 1. Methods for Sample Size Calculation

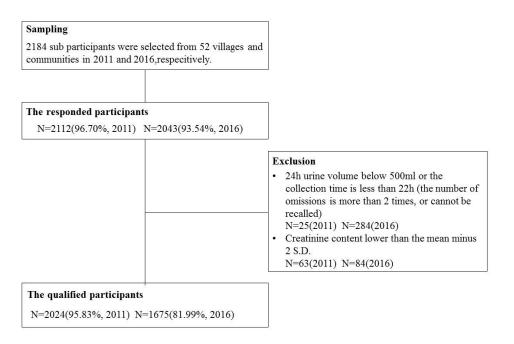
**eMethods 2.** Methods for Physical Measurement 24-hour Urine Collection and Quality Control and Sample Size Calculation

**eTable 3.** Unweighted Differences in 24-hour Urinary Sodium Potassium and Sodium-to-potassium Molar Ratio

eTable 4. Unweighted Differences in SBP and DBP


eTable 5. Unweighted Differences in Knowledge Attitude and Behavior

This supplementary material has been provided by the authors to give readers additional information about their work.


| Multi sector name                              | Brief role                                            |
|------------------------------------------------|-------------------------------------------------------|
| Bureau of Health                               | Protocol development implementation and evaluation    |
|                                                | Technical support of salt reduction for other sectors |
| Bureau of Education                            | School teacher and children health education          |
| Public Urban Department                        | Implement the health education campaign               |
| Develop and Reform Committee                   | Engaging in policy and environment creation           |
| Economy and Informatization Commission         | Engaging food industry salt reduction                 |
| Bureau of Science and Technology               | Research on salt reduction and hypertension control   |
| Bureau of Finance                              | Financial support                                     |
| Bureau of Human Resource and Social Security   | Human resource support                                |
| Bureau of Commerce                             | Engaging in food industry salt reduction              |
| Bureau of Industry and Commerce Administration | Engaging in food industry salt reduction              |
| Bureau of Quality Inspection                   | Food labeling implementation                          |
| Tourist Administration                         | Engaging in the low salt advertising                  |
| Food and Drug Administration                   | Training and advertising in restaurants;              |
|                                                | Restaurant salt reduction                             |
| Bureau of Salt Administration                  | Salt sales monitoring and advertising                 |
| Women Federation                               | Engage in the house-cookers salt reduction            |

eTable 1. The SMASH Multi-sectoral Brief Roles Summary

eFigure 1. Sampling Flowchart for SMASH Evaluation Survey in 2011 & 2016



## eFigure 2. Sampling Flowchart for Urinary Excretion Collection in 2011 & 2016



**eTable 2.** Questions in Knowledge Attitude and Behaviors on Sodium-reduction between Baseline and Post-intervention Survey: Shandong–Ministry of Health Action on Salt and Hypertension (SMASH) Program 2011–2016

| Qu    | Questions in knowledge attitude and behaviors                                 |  |  |  |  |  |  |  |  |  |
|-------|-------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| Kno   | Knowledge:                                                                    |  |  |  |  |  |  |  |  |  |
| a.    | What is the limit on grams of salt that should be taken by an adult in a day? |  |  |  |  |  |  |  |  |  |
| Attit | nude:                                                                         |  |  |  |  |  |  |  |  |  |
| a.    | Should processed food have sodium content on the label?                       |  |  |  |  |  |  |  |  |  |
| Beh   | aviors:                                                                       |  |  |  |  |  |  |  |  |  |
| a.    | Does your family ever use the scaled salt spoon?                              |  |  |  |  |  |  |  |  |  |
| b.    | Do you pay attention to sodium content of processed food labels?              |  |  |  |  |  |  |  |  |  |
| c.    | Are you reducing salt in your diet?                                           |  |  |  |  |  |  |  |  |  |

## eMethods 1. Methods for Sample Size Calculation

The sample size for the questionnaire survey and physical measurement component of the 2011 survey was calculated based on a hypertension prevalence estimate of 25.1% allowing a margin of error within 10% of the prevalence estimate (or +/-2.51%) with a 5% type I error 85% response rate stratification factor 6 and design effect 2. Based on these parameters it is estimated each stratum requires a sample size of 2699 for a total sample size of 16194 in the 2011 survey and 15350 participants completed the survey with participation rate of 98.4% in 2011. In the 2016 the sample size was estimated based on the same parameters except the hypertension prevalence was changed to 23.4% and response rate to 90% which led to a sample size estimate of 2796 in each stratum and total sample size of 16773 and 16490 participants complete the survey with a participation rate 96.1%.

The sample size for the 24h urinary sodium sample in 2011 was based on an estimated population mean sodium excretion of 4480 mg/day standard deviation of 1354 mg/day allowing a margin of error of 299 mg/day with a 5% type I error 50% successful sample collection rate stratification factor 6 and design effect 2. The estimated sample size in each stratum was 316 for a total sample size of 1896 and 2112 participants completed the 24h urine sample with a participation rate 96.7% in 2011. In the 2016 survey the estimated population mean sodium excretion was changed to 5347 mg/day (based on the mean urinary sodium excretion from the 2011 survey) standard deviation 1955 mg/day allowing a margin of error of 391 mg/day with a 5% type I error 60% successful sample collection rate stratification factor 6 and design effect 2. The estimated sample size in each stratum was 320 for a total sample size of 1920 and 2043 participants completed 24h urine sample with participation rate 93.5%. These sample sizes can detect a 15% sodium reduction with a power of 80% and 5% type I error. Among 2112 and 2043 participants completed 24h urine collection in 2011 and 2016 we excluded 88 and368 incomplete 24h urinary samples in 2011 and 2016 respectively. The final sample size for 24h urinary sodium and potassium excretion were 2024 and 1675 participants for 2011 and 2016 survey respectively.

eMethods 2. Methods for Physical Measurement, 24-hour Urine Collection and Quality Control

- Blood pressure measurement: HEM-7071 Omron electronic blood pressure monitors were used for blood pressure measurement. The participants were resting in a seated position then measured 3 times every 5 minutes by trained technicians.
- 2. Body weight, height, and waist circumference measurement: the participants wore light indoor clothing without shoes during clinical examination. Waist circumference was measured by soft plastic tape at 1 cm above the navel at minimal respiration.
- 3. 24 hour urine collection: the first urine of the day was discarded and all urine over the following 24-hour period was collected in a plastic bottle with cap. The urine from one participant was carefully stirred and volume was measured. A 20mL aliquot of urine was immediately frozen at 20°C and sent to Jinan ADICON Clinical Laboratory for analysis. Trained staff were responsible for quality control at each field site and they recorded both the beginning and ending time of urine collection for each participant. The eligibility of the 24h urine samples was judged with reference to US NIH GenSalt's salt sensitivity-related standards. If the collection time was less than 22h, or more than two urine samples were not collected, or participant recall regarding timing or missed collections was uncertain, or urine volume was <500 ml, or urinary creatinine was not within ±2 standard deviation of the gender-specific mean, then 24h urine samples were deemed as ineligible. Quality control</p>
- 4. Quality control in the field
- 4.1 Survey preparation:

4.1.1 Random principle: Samplings in all stages were centrally controlled by Shandong Center for Disease Control and Prevention and strictly implemented according to the random sampling plan.

4.1.2 Material preparation: Survey materials included questionnaire tools (laptops, tablet PCs, routers, code scanners, printers, blood pressure meters, weight scales, body fat scales, tapes, consumables required in glucose tolerance test, and consumables required in collection of urine samples) and souvenirs to survey respondents.

4.1.3 Organizational coordination: County/district health departments (CDCs) cooperated in the local survey and city/neighborhood committee staff and village doctors assisted in assembling local survey resources and sites.

4.2 Investigator competence and training

Training textbooks were prepared, along with site survey manuals. Investigators participated in survey training. Only those who successfully passed training examinations could perform survey assessments.

4.3 Data collection on survey sites

4.3.1 Investigator self-examination: After completing one questionnaire the investigator checked if there were any missing items.

4.3.2 Site inspection of provincial inspectors: At least one CDC staff was appointed to each survey site as an inspector to observe if site survey procedures strictly followed operational regulations. 5% of

© 2020 American Medical Association. All rights reserved.

surveys were sampled for physical examination review and review of core questions every day and judged if the physical examination conformed to standards and if the core questions were accurate. A regular meeting was held on the first day of survey for each village (neighborhood committee) to address any issues found on-site.

4.3.4 Questionnaire: A provincial inspector randomly checked 5% of questionnaires each day through listening to audio recordings after survey completion to ensure completeness and logical correctness of questionnaires.

5. Quality control of lab test

5.1 Lab quality control: Urine potassium and sodium tests were performed with the ion selective electrode method and urine creatinine was tested with the enzyme method. Before testing urine samples it was necessary to maintain the instruments and calibrate them, and to evaluate the reliability (including accuracy, precision, and range) of the measuring system. Internal variation was controlled within the established tolerance (mean +/-2 standard deviations).

5.2 Quality control of standard samples: QC thresholds were established and QC samples of urine were tested during analysis of each lot of investigative samples so as to monitor test quality. A pair of QC samples was set for every 100 urine samples and each pair consisted of one high-concentration QC sample and one low-concentration QC sample.

5.3 Blind sample analysis: For each village/neighborhood surveyed, samples were classified into three subgroups in accordance with low medium and high urine concentrations. One blind sample was selected from each subgroup, and was re-processed with a separate patient code, hiding from the lab that this was a repeat sample. After the lab produced the test results, researchers compared consistency between the blind (repeat) sample and the corresponding original sample to judge the precision of tests. If technical error > 5%, it was considered a meaningful difference, suggesting that the blind sample and the original sample were not consistent.

5.4 Recheck of abnormal samples: Samples with abnormal urinary test values was tested again in labs. Definition for abnormal samples: K>100mmol Na>250mmol.

5.5 Recheck method: Diluted with distilled water

5.6 Data input and cleaning: The input data quality was checked by the data management team. In cases of questionable data, the investigator contacted survey subjects to verify the data in order to ensure their accuracy.

| Group         | Difference in 24h urinary sodium<br>excretion (mg/day 95 CI) |                        |                                |       |   |                           | ce in 24h u<br>n (mg/day  | rinary pota<br>95 CI) | sodi  | Difference in 24h urinary<br>sodium-potassium molar<br>ratio (95 CI) |                           |                        |       |
|---------------|--------------------------------------------------------------|------------------------|--------------------------------|-------|---|---------------------------|---------------------------|-----------------------|-------|----------------------------------------------------------------------|---------------------------|------------------------|-------|
|               | Pre-<br>intervention                                         | Post-<br>intervention  | Difference                     | Р     | ] | Pre                       | Post                      | Difference            | Р     | Pre                                                                  | Post                      | Difference             | Р     |
| Total         | 5347 (5260<br>to 5435)                                       | 4056 (3969<br>to 4143) | -1291 (-<br>1415 to -<br>1168) | <.001 | ( | 1591<br>(1558 to<br>1624) | 1843<br>(1803 to<br>1884) | 252 (201<br>to 305)   | <.001 | 6.7<br>(6.6 to<br>6.9)                                               | 4.3<br>(4.2<br>to<br>4.4) | -2.4 (-2.6<br>to -2.2) | <.001 |
| Gender        |                                                              |                        |                                |       |   |                           |                           |                       |       |                                                                      |                           |                        |       |
| Male          | 5561 (5431<br>to 5690)                                       | 4378 (4244<br>to 4512) | -1183 (-<br>1369 to -<br>997)  | <.001 | ( | 1556<br>(1513 to<br>1600) | 1833<br>(1772 to<br>1894) | 277 (204<br>to 350)   | <.001 | 7.1<br>(6.8 to<br>7.3)                                               | 4.7<br>(4.5<br>to<br>4.8) | -2.4 (-2.7<br>to -2.1) | <.001 |
| Female        | 5113 (4998<br>to 5228)                                       | 3735 (3628<br>to 3843) | -1378 (-<br>1535 to -<br>1220) | <.001 | ( | 1628<br>(1578 to<br>1679) | 1853<br>(1800 to<br>1907) | 225 (151<br>to 299)   | <.001 | 6.3<br>(6.1 to<br>6.6)                                               | 3.9<br>(3.7<br>to<br>4.0) | -2.4 (-2.7<br>to -2.2) | <.001 |
| Age Range y   |                                                              |                        |                                |       |   |                           |                           |                       |       |                                                                      |                           |                        |       |
| Youth (18-44) | 5399 (5280<br>to 5517)                                       | 4157 (4031<br>to 4282) | -1242 (-<br>1415 to -<br>1069) | <.001 | ( | 1572<br>(1530 to<br>1614) | 1743<br>(1689 to<br>1796) | 171 (104<br>to 238)   | <.001 | 6.8<br>(6.6 to<br>7.1)                                               | 4.5<br>(4.4<br>to<br>4.7) | -2.3 (-2.6<br>to -2.0) | <.001 |

eTable 3. Unweighted Differences in 24h Urinary Sodium, Potassium and Urinary Sodium-to-potassium Molar Ratio

© 2020 American Medical Association. All rights reserved.

| Middle aged (45-59)<br>Aged (60-69) | 5372 (5204<br>to 5540)<br>5082 (4891<br>to 5273) | 4105 (3965<br>to 4245)<br>3512 (3286<br>to 3739) | -1267 (-<br>1486 to -<br>1048)<br>-1570 (-<br>1486 to -<br>1048) | <.001 | 1720)<br>1561          | to<br>to | 1948<br>(1876 to<br>2020)<br>1931<br>(1819 to<br>2043) | 298 (197<br>to 398)<br>370 (197<br>to 398) | <.001 | 6.5<br>(6.2 to<br>6.8)<br>6.5<br>(6.0 to | 4.1<br>(4.0<br>to<br>4.3)<br>3.5<br>(3.3<br>to | -2.4 (-2.7<br>to -2.0)<br>-3 (-2.7 to -<br>2.0) | <.001 |
|-------------------------------------|--------------------------------------------------|--------------------------------------------------|------------------------------------------------------------------|-------|------------------------|----------|--------------------------------------------------------|--------------------------------------------|-------|------------------------------------------|------------------------------------------------|-------------------------------------------------|-------|
| Urban/Rural                         |                                                  |                                                  |                                                                  |       |                        |          |                                                        |                                            |       | 6.9)                                     | 3.8)                                           |                                                 |       |
| Urban                               | 5151 (5006<br>to 5295)                           | 4176 (4022<br>to 4330)                           | -975 (-<br>1187 to -<br>762)                                     | <.001 | 1563<br>(1502<br>1623) | to       | 1916<br>(1840 to<br>1991)                              | 353 (256<br>to 450)                        | <.001 | 6.7<br>(6.4 to<br>7.0)                   | 4.2<br>(4.0<br>to<br>4.3)                      | -2.5 (-2.9<br>to -2.2)                          | <.001 |
| Rural                               | 5438 (5329<br>to 5547)                           | 4003 (3897<br>to 4108)                           | -1435 (-<br>1587 to -<br>1284)                                   | <.001 | 1604<br>(1564<br>1643) | to       | 1811<br>(1763 to<br>1860)                              | 207 (145<br>to 270)                        | <.001 | 6.7<br>(6.5 to<br>6.9)                   | 4.3<br>(4.2<br>to<br>4.5)                      | -2.4 (-2.6<br>to -2.2)                          | <.001 |
| BMI status                          |                                                  |                                                  |                                                                  |       |                        |          |                                                        |                                            |       |                                          |                                                |                                                 |       |
| Normal                              | 5043 (4927<br>to 5159)                           | 3673 (3553<br>to 3794)                           | -1370 (-<br>1543 to -<br>1197)                                   | <.001 | 1530<br>(1484<br>1576) | to       | 1718<br>(1658 to<br>1778)                              | 188 (113<br>to 262)                        | <.001 | 6.6<br>(6.3 to<br>6.8)                   | 4.1<br>(4.0<br>to<br>4.3)                      | -2.5 (-2.7<br>to -2.1)                          | <.001 |
| Overweight                          | 5475 (5329<br>to 5621)                           | 4118 (3973<br>to 4262)                           | -1357 (-<br>1564 to -<br>1151)                                   | <.001 | 1636<br>(1578<br>1693) | to       | 1929<br>(1858 to<br>2000)                              | 293 (202<br>to 385)                        | <.001 | 6.6<br>(6.4 to<br>6.9)                   | 4.2<br>(4.0<br>to<br>4.4)                      | -2.4 (-2.8<br>to -2.1)                          | <.001 |

| Obese                           | 5940 (5696<br>to 6183) | 4559 (4362<br>to 4755) | -1381 (-<br>1695 to -<br>1068) | <.001 | 1671<br>(1587 t<br>1755) | to | 1911<br>(1827 to<br>1995) | 240 (121<br>to 360) | <.001 | 7.3<br>(6.8 to<br>7.7) | 4.6<br>(4.4<br>to<br>4.9) | -2.7 (-3.2<br>to -2.2) | <.001 |
|---------------------------------|------------------------|------------------------|--------------------------------|-------|--------------------------|----|---------------------------|---------------------|-------|------------------------|---------------------------|------------------------|-------|
| Education                       |                        |                        |                                |       |                          |    |                           |                     |       |                        |                           |                        |       |
| Primary middle school and under | 5382 (5281<br>to 5484) | 4041 (3943<br>to 4138) | -1341 (-<br>1484 to -<br>1199) | <.001 | 1600<br>(1560 t<br>1639) | to | 1841<br>(1794 to<br>1888) | 241 (180<br>to 303) | <.001 | 6.7<br>(6.5 to<br>6.9) | 4.3<br>(4.2<br>to<br>4.4) | -2.4 (-2.7<br>to -2.2) | <.001 |
| High school and above           | 5248 (5076<br>to 5420) | 4104 (3913<br>to 4295) | -1144 (-<br>1402 to -<br>887)  | <.001 | 1566<br>(1505 t<br>1627) | to | 1850<br>(1769 to<br>1931) | 284 (183<br>to 386) | <.001 | 6.6<br>(6.3 to<br>6.9) | 4.2<br>(4.0<br>to<br>4.4) | -2.4 (-2.8 to -2.0)    | <.001 |
| Blood Pressure Status           |                        |                        |                                |       |                          |    |                           |                     |       |                        |                           |                        |       |
| Normal                          | 5208 (5084<br>to 5333) | 3850 (3732<br>to 3967) | -1358 (-<br>1532 to -<br>1184) | <.001 | 1594<br>(1545 t<br>1644) | to | 1811<br>(1752 to<br>1870) | 217 (139<br>to 293) | <.001 | 6.4<br>(6.2 to<br>6.7) | 4.1<br>(3.9<br>to<br>4.2) | -2.3 (-2.6<br>to -2.1) | <.001 |
| Pre-hypertension                | 5405 (5241<br>to 5568) | 4127 (3969<br>to 4284) | -1278 (-<br>1505 to -<br>1051) | <.001 | 1613<br>(1552 t<br>1675) | to | 1889<br>(1818 to<br>1961) | 276 (181<br>to 370) | <.001 | 6.7<br>(6.4 to<br>7.0) | 4.2<br>(4.0<br>to<br>4.4) | -2.5 (-2.9<br>to -2.2) | <.001 |
| Hypertension                    | 5550 (5366<br>to 5733) | 4347 (4147<br>to 4546) | -1203 (-<br>1474 to -<br>932)  | <.001 | 1551<br>(1487 t<br>1616) | to | 1848<br>(1760 to<br>1937) | 297 (189<br>to 406) | <.001 | 7.2<br>(6.8 to<br>7.6) | 4.7<br>(4.4<br>to<br>5.0) | -2.5 (-3.0 to -2.0)    | <.001 |

| Occupation                                                                     |                        |                        |                                |       |                        |                           |                     |       |                        |                           |                        |       |
|--------------------------------------------------------------------------------|------------------------|------------------------|--------------------------------|-------|------------------------|---------------------------|---------------------|-------|------------------------|---------------------------|------------------------|-------|
| (Hard physical work) Farmer/Peasant/Manual worker                              | 5430 (5314<br>to 5545) | 4120 (4004<br>to 4237) | -1310 (-<br>1473 to -<br>1145) | <.001 | 1617<br>(1573<br>1662) | 1881<br>(1825 to<br>1938) | 264 (192<br>to 336) | <.001 | 6.7<br>(6.5 to<br>6.9) | 4.3<br>(4.2<br>to<br>4.5) | -2.4 (-2.6<br>to -2.1) | <.001 |
| (Light physical work)<br>Service/Administrative/Technical/Professionals/Others | 5201 (5058<br>to 5343) | 4002 (3858<br>to 4146) | -1199 (-<br>1402 to -<br>995)  | <.001 | 1554<br>(1503<br>1605) | 1749<br>(1690 to<br>1808) | 195 (117<br>to 272) | <.001 | 6.6<br>(6.4 to<br>6.9) | 4.3<br>(4.1<br>to<br>4.5) | -2.3 (-2.7<br>to -2.0) | <.001 |
| Underemployment/Retired                                                        | 5263 (4934<br>to 5592) | 3765 (3458<br>to 4072) | -1498 (-<br>1963 to -<br>1033) | <.001 | 1463<br>(1295<br>1630) | 2034<br>(1849 to<br>2220) | 571 (318<br>to 824) | <.001 | 7.6<br>(6.6 to<br>8.7) | 3.7<br>(3.3<br>to<br>4.1) | -3.9 (-4.9<br>to -2.9) | <.001 |
| Frequencies of eating outside home                                             |                        |                        |                                |       |                        |                           |                     |       |                        |                           |                        |       |
| 0                                                                              | 5368 (5243<br>to 5494) | 3958 (3837<br>to 4078) | -1410 (-<br>1585 to -<br>1236) | <.001 | 1653<br>(1605<br>1701) | 1899<br>(1841 to<br>1956) | 246 (171<br>to 320) | <.001 | 6.5<br>(6.2 to<br>6.7) | 4.1<br>(3.9<br>to<br>4.2) | -2.4 (-2.7<br>to -2.1) | <.001 |
| >0 ≤50%                                                                        | 5371 (5180<br>to 5563) | 4277 (4051<br>to 4503) | -1094 (-<br>1391 to -<br>796)  | <.001 | 1580<br>(1503<br>1657) | 1806<br>(1707 to<br>1904) | 226 (102<br>to 350) | <.001 | 6.8<br>(6.4 to<br>7.1) | 4.5<br>(4.2<br>to<br>4.8) | -2.3 (-2.7<br>to -1.8) | <.001 |
| >50% ≤100%                                                                     | 5304 (5139<br>to 5470) | 4245 (4068<br>to 4422) | -1059 (-<br>1302 to -<br>817)  | <.001 | 1503<br>(1446<br>1561) | 1787<br>(1702 to<br>1872) | 284 (181<br>to 386) | <.001 | 7.1<br>(6.8 to<br>7.4) | 4.6<br>(4.4<br>to<br>4.8) | -2.5 (-2.9<br>to -2.0) | <.001 |

| Group SBP (mmHg 95 CI) DBP (mmHg 95 CI) |                        |                        |                     |       |  |                     |                     |                     |       |  |
|-----------------------------------------|------------------------|------------------------|---------------------|-------|--|---------------------|---------------------|---------------------|-------|--|
| Group                                   | SBP (mmHg 95 CI)       | 1                      | 1                   | 1     |  | DBP (mmHg 95 CI)    | )                   | 1                   | - [   |  |
| •                                       | Pre-intervention       | Post-intervention      | Difference          | Р     |  | Pre                 | Post                | Difference          | Р     |  |
| Total                                   | 121.5 (121.3 to 121.8) | 120.7 (120.5 to 121.0) | -0.8 (-1.2 to -0.4) | <.001 |  | 79.2 (79.0 to 79.3) | 77 (76.8 to 77.1)   | -2.2 (-2.5 to -2.0) | <.001 |  |
| Gender                                  |                        |                        |                     |       |  |                     |                     |                     |       |  |
| Male                                    | 124.7 (124.4 to 125.1) | 124.3 (123.9 to 124.6) | -0.4 (-1.0 to 0.0)  | .07   |  | 80.7 (80.5 to 81.0) | 78.7 (78.4 to 78.9) | -2 (-2.4 to -1.7)   | <.001 |  |
| Female                                  | 118.3 (117.9 to 118.8) | 117.3 (117.0 to 117.7) | -1 (-1.6 to -0.4)   | .001  |  | 77.6 (77.3 to 77.9) | 75.3 (75.1 to 75.6) | -2.3 (-2.6 to -1.9) | <.001 |  |
| Age Range y                             |                        |                        |                     |       |  |                     |                     |                     |       |  |
| Youth (18-44)                           | 116.1 (115.8 to 116.4) | 115.8 (115.5 to 116.1) | -0.3 (-0.8 to 0.1)  | .12   |  | 76.9 (76.7 to 77.2) | 74.4 (74.2 to 74.7) | -2.5 (-2.8 to -2.2) | <.001 |  |
| Middle aged (45-59)                     | 126.9 (126.3 to 127.5) | 125.1 (124.7 to 125.6) | -1.8 (-2.5 to -1.0) | <.001 |  | 82.5 (82.1 to 82.9) | 80.2 (79.9 to 80.5) | -2.3 (-2.8 to -1.9) | <.001 |  |
| Aged (60-69)                            | 134.3 (133.5 to 135.2) | 130.2 (129.4 to 131.1) | -4.1 (-2.5 to -1.0) | <.001 |  | 82.4 (81.9 to 82.9) | 78.8 (78.4 to 79.3) | -3.6 (-2.8 to -1.9) | <.001 |  |
| Urban/Rural                             |                        |                        |                     |       |  |                     |                     |                     |       |  |
| Urban                                   | 119.4 (118.8 to 119.9) | 119.3 (118.8 to 119.7) | -0.1 (-0.8 to 0.6)  | .77   |  | 78.4 (78.0 to 78.7) | 76.8 (76.5 to 77.1) | -1.6 (-2.0 to -1.1) | <.001 |  |
| Rural                                   | 122.5 (122.2 to 122.9) | 121.4 (121.1 to 121.7) | -1.1 (-1.6 to -0.7) | <.001 |  | 79.5 (79.3 to 79.7) | 77 (76.8 to 77.2)   | -2.5 (-2.8 to -2.2) | <.001 |  |
| BMI status                              |                        |                        |                     |       |  |                     |                     |                     |       |  |
| Normal                                  | 116.8 (116.4 to 117.1) | 115.1 (114.8 to 115.5) | -1.7 (-2.2 to -1.1) | <.001 |  | 75.1 (74.8 to 75.3) | 72.3 (72.1 to 72.5) | -2.8 (-3.1 to -2.4) | <.001 |  |
| Overweight                              | 124.1 (123.6 to 124.6) | 122.2 (121.8 to 122.6) | -1.9 (-2.6 to -1.3) | <.001 |  | 81.2 (80.9 to 81.5) | 78 (77.7 to 78.2)   | -3.2 (-3.6 to -2.8) | <.001 |  |
| Obese                                   | 130.3 (129.5 to 131.0) | 128.6 (128.0 to 129.1) | -1.7 (-2.6 to -0.8) | <.001 |  | 87 (86.6 to 87.5)   | 83.7 (83.3 to 84.1) | -3.3 (-3.9 to -2.7) | <.001 |  |
| Education                               |                        |                        |                     |       |  |                     |                     |                     |       |  |
| Primary middle school and under         | 122.8 (122.5 to 123.2) | 121.9 (121.6 to 122.3) | -0.9 (-1.4 to -0.4) | <.001 |  | 79.7 (79.5 to 79.9) | 77.6 (77.4 to 77.8) | -2.1 (-2.3 to -1.8) | <.001 |  |
| High school and above                   | 117.3 (116.8 to 117.8) | 117.5 (117.0 to 118.0) | 0.2 (-0.5 to 0.9)   | .58   |  | 77.5 (77.1 to 77.8) | 75.2 (74.8 to 75.5) | -2.3 (-2.8 to -1.8) | <.001 |  |
| Blood Pressure Status                   |                        |                        |                     |       |  |                     |                     |                     |       |  |
| Normal                                  | 107.1 (106.9 to 107.3) | 107.5 (107.3 to 107.6) | 0.4 (0.1 to 0.6)    | .002  |  | 70.1 (69.9 to 70.2) | 68.8 (68.7 to 68.9) | -1.3 (-1.5 to -1.1) | <.001 |  |
| Pre-hypertension                        | 124.3 (124.1 to 124.5) | 125.8 (125.6 to 126.0) | 1.5 (1.2 to 1.7)    | <.001 |  | 81.3 (81.2 to 81.4) | 79.7 (79.5 to 79.9) | -1.6 (-1.8 to -1.4) | <.001 |  |

## eTable 4. Unweighted Differences in SBP and DBP

 $\ensuremath{\textcircled{\sc c}}$  2020 American Medical Association. All rights reserved.

| Hypertension                       | 144.9 (144.4 to 145.5) | 142.5 (142.0 to 143.1) | -2.4 (-3.2 to -1.6) | <.001 | 93.4 (93.1 to 93.7) | 90.8 (90.5 to 91.2) | -2.6 (-3.0 to -2.1) | <.001 |
|------------------------------------|------------------------|------------------------|---------------------|-------|---------------------|---------------------|---------------------|-------|
| Occupation                         |                        |                        |                     |       |                     |                     |                     |       |
| (Hard physical work)               | 122.9 (122.5 to 123.3) | 122.6 (122.3 to 123.0) | -0.3 (-0.8 to 0.2)  | .26   | 79.7 (79.5 to 79.9) | 78 (77.7 to 78.2)   | -1.7 (-2.1 to -1.4) | <.001 |
| Farmer/Peasant/Manual worker       |                        |                        |                     |       |                     |                     |                     |       |
| (Light physical work)              | 118.5 (118.0 to 119.0) | 117.7 (117.3 to 118.1) | -0.8 (-1.4 to -0.2) | .01   | 78 (77.7 to 78.3)   | 75.2 (75.0 to 75.5) | -2.8 (-3.2 to -2.3) | <.001 |
| Service/Administrative/Technical/P |                        |                        |                     |       |                     |                     |                     |       |
| rofessionals/Others                |                        |                        |                     |       |                     |                     |                     |       |
| Underemployment/Retired            | 125.3 (123.7 to 127.0) | 121.8 (120.6 to 123.0) | -3.5 (-5.5 to -1.5) | .001  | 80.5 (79.6 to 81.5) | 78.1 (77.3 to 78.9) | -2.4 (-3.7 to -1.2) | <.001 |

| 0                                                              |                      | 0                     |                    |       |
|----------------------------------------------------------------|----------------------|-----------------------|--------------------|-------|
| Group                                                          | Pre-intervention (%) | Post-intervention (%) | Difference         | Р     |
| Knowledge                                                      |                      |                       |                    |       |
| Chinese nutrition guidelines<br>recommended salt intake (6g/d) | 22.9(22.3 to 23.6)   | 47.3(46.6 to 48.1)    | 24.4(23.4 to 25.4) | <.001 |
| Attitude                                                       |                      |                       |                    |       |
| Processed food should have its label<br>with sodium content    | 79.3(78.6 to 79.9)   | 83.2(82.7 to 83.8)    | 4.0(3.1 to 4.8)    | <.001 |
| Behaviors                                                      |                      |                       |                    |       |
| Use salt spoon                                                 | 7.4(7.0 to 7.8)      | 27.5(26.8 to 28.1)    | 20.0(19.2 to 20.8) | <.001 |
| Pay attention to sodium content of<br>processed food labels    | 10.8(10.3 to 11.3)   | 24.4(23.8 to 25.1)    | 13.6(12.8 to 14.4) | <.001 |
| Self-assessment reducing salt in diet                          | 38.4(37.6 to 39.2)   | 63.4(62.7 to 64.2)    | 25.0(24.0 to 26.1) | <.001 |

eTable 5. Unweighted Differences in Knowledge Attitude and Behavior