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Appendix S7: Section S1: Trend Simulation Model and Study Design 

A simulation study was used to assess the quality of the trend estimates over the ten-year 

study period, 2007-2016. The study used spatially explicit simulations to generate data 

with specified trends while also capturing important aspects of the species’ habitat use 

and the citizen science observation process, both learned from training data. The power, 

error rate, and bias of the signal filter were assessed along with errors between known 

and estimated trends. There are three steps in the study:  

1) Simulate data derived from populations with known trends,

2) Using simulated data, estimate trends, and

3) Compare known and estimated trends and record statistics to describe errors,

power, and bias of estimates.  

The remainder of this section describes the simulation model, how the model was used to 

generate simulated data, the study design, and an evaluation of the breeding and 

nonbreeding trend estimates for Wood Thrush.  

S1.1 The Simulation Model  

The simulation model was based on a ZI-BRT, as described above, modified to learn 

specified trends along with ecological and observational patterns in the training data. Let 
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(", $, %&, %', ()*+) be the set of training data for a given region, season, and species 

where: 

• " is the -	/	1 vector of observed counts on the n surveys in the training data,  

• $ is the -	/	1 vector that indicates the checklists with count greater than zero,  

• %& is the -	/	1 matrix of k predictors that describe the ecological process,  

• %' is the -	/	2 matrix of j predictors that describe the observation process, and  

• ()*+	is the -	/	1 vector of the year each survey was conducted. 

For the given species, the region and season selected for the trend analysis and simulation 

must be large enough to achieve sufficient sample sizes for good model performance, 

controlling variance, and small enough to assume stationarity, controlling bias. We 

conduct two seasonal analyses for Wood Thrush, one across the breeding range from 

May 30–July 3 and the second across the non-breeding range from Dec 1–Feb 28. 

 

First, we set notation and describe the unmodified ZI-BRT and then we explain the 

modifications used for the simulation. In the first step of the unmodified ZI-BRT, a 

Bernoulli response BRT is trained to predict the probability of occurrence: 

 $	~	4)+-56778(9) 

 75:8;(9) 	= 	=(	%&, %', ()*+	) 

where π is the probability of occurrence and the function =() is fit using boosted decision 

trees. In the second step, the Poisson response BRT,  

 "	~	>58??5-(@) 

 75:(@) 	= 	=(	%&, %', ()*+	) 
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is trained to predict the expected counts @, using the subset of the training data observed 

and/or predicted to be occupied.   

 

To simulate the data we modify the ZI-BRT as follows. The first modification permutes 

the ()*+ predictor variable. This ensures that the ZI-BRT cannot learn year-to-year 

variation from the training data and effectively removes all trends in the learned 

ecological and observation processes. The only temporal trend maintained is the increase 

in the volume of data collected in later years. The second modification trains the ZI-BRT 

using the year-permuted training data along with an offset constructed with the specified 

trend. In general terms, the trend offset is A	 = 	:(()*+B) where :() is a function of the 

permuted year value, ()*+B. The modified fitting procedure begins with the Bernoulli 

response BRT, 

$	~	4)+-56778(9) 

 75:8;(9) 	= 	=(	%&, %', ()*+B	), 

and for the Poisson response BRT is: 

 "	~	>58??5-(@) 

 75:(@) 	+ 	A = 	=(	%&, %', ()*+B	). 

Being on the right side of this equation, the offset can be considered as an adjustment to 

the observed counts on the log-link scale. Thus, the boosting procedure that adaptively 

fits =() has information to estimate :(()*+B) from the offset.  
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S1.2 Simulating New Data  

After the modified ZI-BRT is trained, new data are simulated in three steps. First, a new 

set of eBird observations is generated by sampling checklists with replacement, without 

regard to the search year, from the training data. Sampling this way replicates the 

variation observed among participant site selection, search effort, and observer effects. 

Year-to-year increases in the sample sizes were replicated by repeating this sampling 

process, independently for each year. In the second step the modified ZI-BRT is used to 

predict the expected occurrence and abundance, 9∗ and @∗, for the set of new 

observations, (%', %&, ()*+)∗, where the * denotes the simulated data.  Finally, the 

binary occurrence is simulated $∗~4)+-56778(9∗) and the count, conditional on $∗ is 

simulated "∗~>58??5-(@∗), generating the simulated data set, (", $, %&, %', ()*+)∗. 

 

S1.3 Simulation Study Design  

The simulation study was used to assess the power to detect changes in seasonal 

population sizes at moderately fine (25.2km x 25.2km) spatial resolution using citizen 

science data. Qualitatively, we want to understand how performance varies with the 

strength of the trend and if the method can detect spatial patterns in local trends.  

 

To test how power varied with trend strength, simulations were constructed with 

increasing and decreasing trends across a range of magnitudes. To test if the method 

could detect spatial patterns in local trends both spatially constant and spatially varying 

trends were constructed. Spatially varying trends were constructed so that trend direction 

and magnitude varied as a function of local population density, giving rise to different 
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trend directions at the core and edges of population distributions. Flat population trends 

were also included in the design to assess false positive rates. All together the study 

consisted of 22 combinations of spatial pattern and magnitude.   

 

The three types of spatial trend offsets constructed were: 1) spatially constant trends, 2) 

spatially varying trends and 3) no trend. We used the following linear model to construct 

the trend offsets, A = E	()*+ + EF()*+%F, where α controls the strength and direction of 

the overall year-to-year changes in the expected log count and EF controls the strength of 

the interaction between ()*+ and %F, the interacting variable. Note that because an 

intercept is fit as part of =(), we do not include an additional intercept term in the offset.  

 

Spatially uniform trends were generated by setting EF = 0. Trends that affect a 

population uniformly over a region may indicate the indirect effects of broad-spatial scale 

processes like climate change. Spatially varying trends can be generated by setting E = 0 

and specifying a spatially patterned variable %F to interact with ()*+. To assess if spatial 

patterns associated with density dependent population processes can be detected, we 

selected %F to be the PLAND cover class predictor with the largest Spearman rank 

correlation between itself and 9∗, used here as an index of population density. Processes 

like habitat loss, disease, and dispersal can interact with population density to generate 

spatially varying trend patterns, e.g. Channell and Lomolino (2000) and Massimino, et al. 

(2015).  
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Using two parameter sweeps, the spatially constant models were generated with the E 

ranging from -0.08 to 0.08 in 11 values spaced 0.016 apart and the spatially varying 

models were generated with EF ranging from -0.40 to 0.40 in 11 values spaced 0.08 apart 

for a total of 22 simulation treatments. The strongest trends were parameterized to 

generate relatively large regions within the species’ range experiencing changes in 

population size of at least 6.7% per year over 10 years, one of the IUCN red-list criteria 

for endangered populations (IUCN 2019).  

 

S1.4 Simulation Evaluations 

Trend estimation proceeds in two steps, as described above, where the signal filter first 

detects local trends and the trend magnitude is estimated in locations where the direction 

of trends is consistent. For each simulation we evaluated the power, error rate, and bias of 

the signal filter along with the correspondence between the magnitude of known and 

estimated trends. The false detection proportion (FDP) was calculated as the number of 

locations on the 25km grid where trends were erroneously detected, as a proportion of 

the total number of locations where trends were detected. The power was calculated as 

the proportion of locations where a trend was correctly identified out of all locations 

known to have non-zero trends. To understand how power varied as a function of the 

local trend strength, power was also evaluated across all locations with known trends 

with a minimum magnitude, ranging from 0 to 15% per year. Where the signal filter 

detected local trends, the coefficient of determination (HI) was computed to describe the 

proportion of variation in the known magnitudes explained by the estimates. 
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For each of the breeding and non-breeding seasons, a separate simulation study was 

conducted for each of the 22 simulation treatments. For each treatment, the training data 

was spatiotemporally sampled and the year predictor variable was permuted to fit the 

simulation model. The AdaSTEM base models for each simulation treatment were trained 

using 100 independent realizations of simulated data.  

 

We measured the performance of the trend estimates averaged across the full suite of 

simulation treatments to estimate the expected performance across a wide variety of trend 

scenarios.  An important part of this assessment was quantifying directional biases when 

detecting trends. When biases were found, we adjusted the signal filter to provide robust 

control against false detection of trends and conservative power estimates. If the FDP was 

found to exceed a specified error limit (e.g. 5, 10 or 20%) for more than 10% of the of all 

the locations in all of the simulations, we considered the trend estimator to be biased for 

that error limit and season. To quantify and adjust for this bias we modified the 

directional hypotheses used for the signal filter, JK: MN < (0.5 − 4S) and JK: MN >

(0.5 + 4U) where parameters 4U and 4S ∈ (0,0.5] describe the directional biases. As the 

values of each bias parameter increases, the signal filter requires more consistency in the 

direction of the trend estimates across the ensemble, thereby reducing the FDP and the 

subsequent power of the test. Thus, as the values of each bias parameter increases, the 

fewer locations on the trend map where trends can be identified while guaranteeing the 

FDR at the specified error limit.      
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To estimate the directional biases, we performed a parameter sweep evaluating FDP and 

power across all combinations of values of 4U, 4S ∈ (0.0, 0.01, 0.02, … ,0.25). Then we 

estimated the value of 4U, 4S that maximized power subject to the constraint that FDP 

was less than the specified limit (e.g. 5, 10, or 20%) across ≥ 90% of the simulations.   

 

All of trend estimates reported here, for both breeding and nonbreeding seasons, were 

made using a FDR limit of 5%. For each of the breeding and nonbreeding simulations we 

estimated the direction bias parameters (4U, 4S) and used them to estimate trends. Thus, 

all of the trend maps, power statistics, and  HI measurements reported in this paper were 

made using these bias corrections under a 5% FDR limit. 

 

S1.5 Wood Thrush Simulations 

Two simulation studies were conducted for the Wood Thrush over the 2007-2016 study 

period, one for the breeding season (May 30–July 3) across the species’ range in the 

northeastern North America and the second for the non-breeding season (Dec 1–Feb 28) 

across the species’ range in Central America.  

 

The simulations provide qualitative information describing the ability of the method to 

identify spatially varying trend patterns among locations. Fig.s S1-4 show simulated and 

estimated trend maps for a sample of simulation treatments across a broad array of 

spatially constant and spatially varying trends with trend magnitudes that vary in 

direction and magnitude. The trend magnitudes varied along the rows of each figure with 

weak (regions with trends ~|1%/(+|), medium (regions with trends ~|3.5%/(+|), and 
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strong (regions with trends ~|6.7%/(+|) trend magnitudes. This suite of spatial trend 

patterns is varied enough to begin to assess the method’s ability to estimate spatial 

patterns across locations. The quality of the trend estimates improves from weak to strong 

trend magnitudes, regardless of spatial pattern or direction. Regional patterns are 

identified, though with errors. Errors in detecting trends are most frequent when 

simulated trends are weak, and become less frequent as trends become stronger. The 

magnitude of the estimates generally varies with simulated trend strength, visible as the 

correspondence between the darkness of the colors shown for the estimate and simulation 

trend map pairs (Fig.s S1-4). However, in regions with declining trends the trend 

magnitude appears to be underestimated in the nonbreeding season and among the 

spatially varying treatments in the breeding season.  

 

The power curves for 5, 10, and 20% FDR constraints for both seasonal simulation 

analyses show the expected pattern of increasing power with increasing minimum trend 

magnitude (Fig. S5). The plots also show the expected tradeoff between FDR and power, 

with increasing power as the FDR constraint becomes more lenient. We recognize that in 

some conservation applications the false detection of declining trends, carries a far lower 

risk for a species than failing to detect a declining trend, and in such circumstances, it 

may make sense to increase the error limit to 10 or 20% to improve the power to detect 

trends as can be seen in Fig. S5. 

 

Finally, the correspondence between estimated and simulated known trend magnitudes 

was stronger in the breeding season (HI=75.6%) than the nonbreeding season 
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(HI=59.5%). Overall, these simulation results suggest that breeding season trend 

estimates will be more accurate, powerful, and less variable than those in the nonbreeding 

season. In general, this is expected because of the much higher density of data across the 

breeding range compared to the nonbreeding range.  
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Figure S1: Wood Thrush breeding season simulated and estimated trend maps for 

spatially constant treatments. The trend magnitude varies along the rows with weak 

(includes regions with trends ~|1%/(+|), medium (includes regions with trends 

~|3.5%/(+|), and strong (includes regions with trends ~|6.7%/(+|) trend magnitudes. 

The first two columns show estimated and simulated trends for decreasing trends. The 

third and fourth columns show estimated and simulated trends for decreasing trends. The 

black contours delineate the regions across which the expected False Discovery Rate is at 

most 5%.  
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Figure S2: Wood Thrush breeding season simulated and estimated trend maps for 

spatially varying treatments. The trend magnitude varies along the rows with weak 

(includes regions with trends ~|1%/(+|), medium (includes regions with trends 

~|3.5%/(+|), and strong (includes regions with trends ~|6.7%/(+|) trend magnitudes. 

The first two columns show estimated and simulated trends for decreasing trends. The 

third and fourth columns show estimated and simulated trends for decreasing trends. The 

black contours delineate the regions across which the expected False Discovery Rate is at 

most 5%.  
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Figure S3: Wood Thrush nonbreeding season simulated and estimated trend maps 

for spatially constant treatments. The trend magnitude varies along the rows with weak 

(includes regions with trends ~|1%/(+|), medium (includes regions with trends 

~|3.5%/(+|), and strong (includes regions with trends ~|6.7%/(+|) trend magnitudes. 

The first two columns show estimated and simulated trends for decreasing trends. The 

third and fourth columns show estimated and simulated trends for decreasing trends. The 

black contours delineate the regions across which the expected False Discovery Rate is at 

most 5%.  
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Figure S4: Wood Thrush nonbreeding season simulated and estimated trend maps 

for spatially varying treatments. The trend magnitude varies along the rows with weak 

(includes regions with trends ~|1%/(+|), medium (includes regions with trends 

~|3.5%/(+|), and strong (includes regions with trends ~|6.7%/(+|) trend magnitudes. 

The first two columns show estimated and simulated trends for decreasing trends. The 

third and fourth columns show estimated and simulated trends for decreasing trends. The 

black contours delineate the regions across which the expected False Discovery Rate is at 

most 5%.  
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Figure S5: Wood Thrush seasonal power curves as a function of the minimum 

simulated trend magnitude. Power varies as a function of the minimum trend 

magnitude for the (A) breeding and (B) nonbreeding season analyses. Power is reported 

as the percentage of all locations in range across the simulated known map that meet the 

minimum magnitude requirement that were identified with the correct trend direction 

when FDR was constrained at 5 (black), 10 (dark blue), and 20% (light blue). The 

maximum false detection proportion was 8% for the breeding season, so no light blue line 

is shown. The overall power corresponds to a minimum trend of zero, at the leftmost side 

of the graph. The black line corresponds to the black contour lines in Fig. 4 and 5.  

 


