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Experimental Section 

Titration experiments. A solution of calcium chloride (0.01M) was slowly dosed 

(0.01mL/min) into sodium carbonate solution using a Titrando 951 titration device operating 

two Dosino 800 dosing units. The temperature was maintained constant at the indicated 

values using a double-walled titration vessel (Metrohm 6.1418.250), through which oil was 

circulated utilizing a thermostat regulated by an external sensor Julabo FP50. The titration 

vessel was closed with a lid to further aid avoiding any temperature variations, CO2 in- or 

outgazing from the buffer, and water evaporation. The titration setup was controlled by the 

software Tiamo version 2.3, which allows simultaneous and precise dosing of reactant 

solutions, controlling pH and reading out the voltage of the electrodes. For each 

measurement, the titration vessel was filled with 50 mL of 10 mM carbonate buffer and 

brought to the desired temperature. The pH was initially set by mixing adequate ratios of 10 

mM sodium carbonate (Sigma-Aldrich 31432-1kg-R) and 10 mM sodium bicarbonate 

(Emsure 1.06329.1000). After the target temperature was achieved, the pH was finely re-

adjusted to the accurate value by adding small increments of 10 mM sodium hydroxide 

solution (Alfa Aesar 35620). Two additional sets of experiments were performed at higher 

addition rates of 0.1 and 1 mL⋅min-1. After each experiment, the titration vessel and 

electrodes tips were thoroughly washed with acetic acid (10%), Milli-Q water and dried with 
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dust—free tissue paper. Calcium potential and pH were recorded using a polymer-

membrane-based calcium ion selective electrode (ISE, Metrohm 6.0508.110) and glass 

electrodes (Metrohm Unitrode flat membrane 6.0256.100) with internal reference, 

respectively. The internal reference system of the pH electrode was also used as reference 

for the calcium ISE. Added volumes and potentials were automatically recorded every 10 

seconds during the titration experiments. The calcium ISE was calibrated by titration of 10 

mM calcium chloride solution into ultrapure water set to the desired temperature and pH 

(previously adjusted by addition of NaOH) while a gentle stream of nitrogen was flushed 

over the calibration sample to avoid CO2 uptake. A three-point calibration of the pH 

electrodes was performed using standard pH buffer solutions from Mettler-Toledo with the 

product numbers: pH = 4.01: 51302069; pH = 7.00: 51302047; pH = 9.21: 51302070. 

Potentiometric assessment of the spinodal regime. The spinodal regime was probed via 

direct mixing of 50 mL calcium chloride solution (0.4 M) with 50 mL sodium carbonate 

solution (0.4 M). The Carbonate solution in the vessel was rigorously stirred and initially 

adjusted to pH 11.0. Calcium chloride solution was added directly into the vessel. The 

calcium potential and pH upon mixing were measured as described above. Due to the 

formation of a gel, the magnetic stirrer was replaced by a vertical mixer (Metrohm 

2.804.0040) with a propeller of 94 mm in diameter (Metrohm 6.1909.010). The stirring 

speed was adjusted to assure formation of a vortex and optimal mixing but avoid the 

formation of bubbles affecting the electrode signals. During the experiments, the pH was 

kept constant via automatic counter titration of sodium hydroxide (1M) and hydrochloric 

acid (1M). Calibration of the free calcium concentration was performed in ionic strength 

adjusted environment as described in the literature and activity effects due to increased 

ionic strength were considered using the Davies equation.1 
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The data evaluation of titration experiments was carried out as described in the literature1,2 

to calculate the IAP values and microscopic and macroscopic binding equilibrium constants 

(supplementary discussions 1 and 2). 

Solid state ATR-FTIR: ATR-FTIR spectra of precipitated ACC were recorded on a Perkin Elmer 

spectrometer 100 equipped with a diamond ATR crystal from 760 to 4000 cm-1 with a 

spectral resolution of 4 cm-1 allowing the detection of the characteristic calcium carbonate 

bands noted n1, n2, n3 and n4 corresponding to the symmetric stretch, out-of-plane bending, 

asymmetric stretch and in-plane bending vibrational modes, respectively. 

Liquid state ATR-FTIR. Time-resolved IR measurements provide insights into kinetic reaction 

mechanisms as we have shown previously with various applications.3-5 In this study we 

performed rapid-scan measurements using a Bruker vertex 80V FTIR spectrometer equipped 

with a photoconductive mercury cadmium tellurium (MCT) detector (Kolmar Technology) 

and an ATR diamond single reflection unit (Golden GateTM Heated Diamond ATR, Specac 

GS10540) and ZnSe lenses, restricting the spectral range at a lower wavenumber of 800 cm-1, 

thus the carbonate n4 spectral region was not accessible. A custom-made ATR-FTIR stopped-

flow with a mixing cell 50 µL (TgK Scientific SF-61/FT-IR) was mounted on top of the heated 

diamond window. The temperature was kept constant at 25˚C during the experiments using 

a built-in temperature controller. A Lauda thermostat (Ecoline E300) was used for pre-

heating reactants within the umbilical tubes linking a syringe pump to the ATR-FTIR stopped-

flow mixing cell on top of the ATR-FTIR unit. Calcium chloride, CaCl2, and sodium carbonate 

(Na2CO3) (0.4M, 0.3M, 0.2M, 0.1M, 0.08M, 0.06M) were mixed at a 1:1 volume ratio within 

the ATR-FTIR stopped-flow mixing cell. After reactant mixing 100 scans were recorded in 

rapid-scan mode between 800-1900 cm-1 with a scanner velocity of 320 Hertz and a spectral 

resolution of 4 cm-1 and averaged. A waiting time of one second was set in-between each of 
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the scans. This procedure was repeated 5000 times. Averaged spectra were calculated and 

off-set corrected between 889-891 cm-1, where no absorption band occurs. The transients 

were extracted at 869 cm-1 corresponding to the second derivative minimum of the n2 

carbonate vibrational band. In order to compare the reaction kinetics, all transients were 

normalised to their maximum plateau values reached at the end of each experiment. 

Fitting of ATR-FTIR time transients. The equations6 used for fitting of the transients consist 

of a combination of at least one exponential growth and one logistic growth regimes as 

follows: 

 
where Ifit(t) is the fitted IR intensity over time; α the inverse of the exponential growth 

amplitude factor; t the time constant; Ki the logistic growth saturation value in arbitrary 

units for level i in this regime, i.e. the heights of each single plateau once the growth rate is 

minimum; Fi accounting for an evolution of the saturation time (∆Ri in seconds) from 10% to 

90% for level i defined as 

 
according to ref.6; Bi the mid-point of growth for level i in seconds; and y0 the offset. 

For all measurements, the same fitting procedure was performed using the built-in Curve 

Fitting app in MatlabTM (using the bi-square weight method of nonlinear least-squares 

regression). It first consisted of fitting Ifit(t) for n=1 and i=1. If fitting procedure did not 

converge or reach the maximum iteration number set at 10 000, a second level of logistic 

growth was added to the fit equation – such as n = 1 and i = 2. Addition of a second level was 

considered successful if the Pearson product-moment correlation coefficient (r2) increased 

by at least 10%.  

 4 

flow with a mixing cell 50 µL (TgK Scientific SF-61/FT-IR) was mounted on top of the heated 

diamond window. The temperature was kept constant at 25˚C during the experiments using 

a built-in temperature controller. A Lauda thermostat (Ecoline E300) was used for pre-

heating reactants within the umbilical tubes linking a syringe pump to the ATR-FTIR stopped-

flow mixing cell on top of the ATR-FTIR unit. Calcium chloride, CaCl2, and sodium carbonate 

(Na2CO3) (0.4M, 0.3M, 0.2M, 0.1M, 0,08M, 0,06M) were mixed at a 1:1 volume ratio within 

the ATR-FTIR stopped-flow mixing cell. After reactant mixing 100 scans were recorded in 

rapid-scan mode between 800-1900 cm-1 with a scanner velocity of 320 Hertz and a spectral 

resolution of 4 cm-1 and averaged. A waiting time of one second was set in-between each of 

the scans. This procedure was repeated 5000 times. Averaged spectra were calculated and 

off-set corrected between 889-891 cm-1, where no absorption band occurs. The transients 

were extracted at 869 cm-1 corresponding to the second derivative minimum of the n2 

carbonate vibrational band. In order to compare the reaction kinetics, all transients were 

normalised to their maximum plateau values reached at the end of each experiment. 

Fitting of ATR-FTIR time transients. The equations (6)  used for fitting of the transients 

consist of a combination of at least one exponential growth and one logistic growth regimes 

as follows: 

"#$%(') = α ∙ ,
t
. + 01

1 + ,-Fi∙(t-Bi) + 78 

where Ifit(t) is the fitted IR intensity over time; α the inverse of the exponential growth 

amplitude factor; 9, the time constant; Ki the logistic growth saturation value in arbitrary 

units for level i in this regime, i.e. the heights of each single plateau once the growth rate is 

minimum; Fi accounting for an evolution of the saturation time (∆Ri in seconds) from 10% to 

90% for level i defined as ∆;$ = ln	(81)
@$A  according to ref. (6); Bi the mid-point of growth 

for level i in seconds; and y0 the offset. 

 4 

flow with a mixing cell 50 µL (TgK Scientific SF-61/FT-IR) was mounted on top of the heated 

diamond window. The temperature was kept constant at 25˚C during the experiments using 

a built-in temperature controller. A Lauda thermostat (Ecoline E300) was used for pre-

heating reactants within the umbilical tubes linking a syringe pump to the ATR-FTIR stopped-

flow mixing cell on top of the ATR-FTIR unit. Calcium chloride, CaCl2, and sodium carbonate 

(Na2CO3) (0.4M, 0.3M, 0.2M, 0.1M, 0,08M, 0,06M) were mixed at a 1:1 volume ratio within 

the ATR-FTIR stopped-flow mixing cell. After reactant mixing 100 scans were recorded in 

rapid-scan mode between 800-1900 cm-1 with a scanner velocity of 320 Hertz and a spectral 

resolution of 4 cm-1 and averaged. A waiting time of one second was set in-between each of 

the scans. This procedure was repeated 5000 times. Averaged spectra were calculated and 

off-set corrected between 889-891 cm-1, where no absorption band occurs. The transients 

were extracted at 869 cm-1 corresponding to the second derivative minimum of the n2 

carbonate vibrational band. In order to compare the reaction kinetics, all transients were 

normalised to their maximum plateau values reached at the end of each experiment. 

Fitting of ATR-FTIR time transients. The equations (6)  used for fitting of the transients 

consist of a combination of at least one exponential growth and one logistic growth regimes 

as follows: 

"#$%(') = α ∙ ,
t
. + 01

1 + ,-Fi∙(t-Bi) + 78 

where Ifit(t) is the fitted IR intensity over time; α the inverse of the exponential growth 

amplitude factor; 9, the time constant; Ki the logistic growth saturation value in arbitrary 

units for level i in this regime, i.e. the heights of each single plateau once the growth rate is 

minimum; Fi accounting for an evolution of the saturation time (∆Ri in seconds) from 10% to 

90% for level i defined as ∆;$ = ln	(81)
@$A  according to ref. (6); Bi the mid-point of growth 

for level i in seconds; and y0 the offset. 



 5 

Supplementary Figures 

 

Figure S1. Temperature dependent potentiometric titrations. Calcium chloride solution 

(0.01M) was added to sodium carbonate buffer (0.01M) at a rate of 0.01 mL/min, while the 

pH was maintained at a constant level (A: pH 9.00, B: pH 10.0) by automatic counter-

titration with 10 mM NaOH. The initial linear increase in ion activity product (IAP) occurs in 

thermodynamic equilibrium and allows assessing pre-nucleation ion association 

thermodynamics.2 At pH 10.0 (B), the prenucleation slopes do not vary significantly with 

temperature, but they seem to increase with increasing temperature at pH 9.00 indicating 

that the temperature dependence of ion association is distinct at the two pH levels. Upon 

nucleation of the solid, the IAP drops and assumes a constant threshold, corresponding to 

the solubilities of proto-calcite amorphous calcium carbonate (A) and proto-vaterite 

amorphous calcium carbonate (B).7 These solubilities identify the liquid-liquid binodal limit, 

as established by means of THZ spectroscopy elsewhere.8 At both pH values, the liquid-liquid 

binodal limit decreases with increasing temperature. Corresponding values are compiled in 

Table S1. 

 

 



 6 

  

Figure S2. Rate dependent potentiometric titrations. Calcium chloride solution (0.01M) was 

added to sodium carbonate buffer (0.01M) at different rates as indicated. A: pH 9.00, 

T=15˚C; B: pH 9.00, T=45˚C; C: pH 10.0, T=15˚C; D: pH 10.0, T=45˚C.  
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Figure S3. Rate dependent potentiometric titrations at pH 9.0 (also see Fig. S2). With 

increasing mixing rate, the increasing solubilities of the formed ACCs reflect the higher 

metastability of the liquid precursors. 
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Figure S4. ATR-FTIR spectra of pc-ACC formed for different addition rates, 10 µmol min-1 

(red) and 0.1 µmol min-1 (black). The n1, n2, n3 and n4 vibrational modes of the carbonate ion 

correspond to the symmetric stretching, out of plane bending, asymmetric stretch vibrations 

and in plane bending, respectively, and the nO-H mode to the O-H water stretching vibration. 

The proto-structure remains unaffected by the addition rate,9 but the water content 

increases. 
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Figure S5. Example time development of the IAP obtained from direct mixing of calcium 

chloride (0.4M) and pure sodium carbonate solution (0.4M) at a 1:1 volume ratio. The IAP 

profiles present a strong increase right after mixing and rapidly decrease to stabilise towards 

an ACC solubility plateau characteristic of the spinodal limit. After an induction time, the IAP 

drops to a second plateau due to the complete transformation of the ACC precursor. The 

corresponding temperature dependent data is compiled in Table S3. 
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Figure S6. Evolution of the optical density (OD) over time for the carbonate out-of-plane 

vibrational band (n2) at 25˚C after direct mixing of calcium and carbonate solutions with 

the indicated starting concentrations (at a 1:1 volume ratio). For each starting 

concentration (i.e. prior mixing), three replicated measurements were normalised and 

averaged. 
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Supplementary Tables 

Table S1: Ion activity products (IAP) defining the liquid-liquid binodal limit for pH 9.00 and 

pH 10.0 at 15-45 °C. Values are given as means of N=3 repetitions, SD is the corresponding 

standard deviation.  

Temperature 

(˚C) 

IAP pH 9.00 

(·10-8 M2) 
± SD (·10-10 M2) 

IAP pH 10.0 

(·10-8 M2) 
± SD (·10-10 M2) 

15 4.00 5.37 5.08 8.19 

20 3.36 5.74 4.21 4.43 

25 3.15 2.18 3.86 3.84 

30 2.93 8.04 3.41 6.26 

35 2.78 3.50 2.78 0.83 

40 2.37 3.81 2.26 2.74 

45 2.02 6.27 2.04 1.85 

 

 

Table S2: Standard enthalpies and entropies of PNC formation. 

 
∆S0(cluster) 

(JK-1·mol-1) 

∆H0(cluster) 

(kJ·mol-1) 

pH 9.00 57.0 ± 8.6 -1.00 ± 0.15 

pH 10.0 83.0 ± 12.5  7.05 ± 1.05 
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Table S3: Ion activity product defining the liquid-liquid spinodal limit between 15-45˚C. 

Values are given as means of N=3 repetitions, SD is the corresponding standard deviation. 

Temperature (˚C) 
Liquid-liquid spinodal 

pH 10.0 (·10-7 M2) 
± SD (·10-7 M2) 

15 4.45 2.07 

20 4.20 1.64 

25 5.49 2.58 

30 3.35 1.92 

35 2.56 0.58 

40 2.27 1.11 

45 2.86 1.13 
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Supplementary Discussion 1 

Proof: Pre-nucleation ion association and consistency of pre-nucleation cluster formation 

with experimental binding data 

Ion association yielding pre-nucleation clusters (PNCs) may be described by an infinite series 

of inter-connected equilibria; 

 

... 

The first equilibrium (Fehler! Verweisquelle konnte nicht gefunden werden.1) describes 

simple ion pairing yielding [CaCO3]0 and the corresponding equilibrium constant K(1) is 

defined by the law of mass action according to; 

 

eq. 5 

where a(i) is the activity of species i defined as; 

 
eq. 6 

with activity coefficient and molar concentration of species i, g(i) and c(i), respectively, and 

standard concentration c0=1mol/L. For the dimerization equilibrium of ion pairs (eq. 2), the 

law of mass action yields; 

 

eq. 7 

The activity of the ion pair in the denominator can be expressed by re-arranging and 

inserting eq. 5, and we can re-write eq. 7 as; 
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eq. 8 

The activity of the dimer of ion pairs in the numerator can be expressed by re-arranging and 

inserting eq. 7, and we obtain from eq. 8; 

 

eq. 9 

All subsequent equilibria for the formation of higher associates are of the form; 

 eq. 10 

where M is the monomeric ion pair and P is a polymer of ion pairs, including the dimer of ion 

pairs, and the polymer of ion pairs grown by one ion pair MP. Thus, the equilibrium 

constants K(3), K(4), K(5), ... can be defined as; 

 

eq. 11 

In this notation, the activity of the ion pair M can be calculated from eq. 5 according to; 

 
eq. 12 

whereas the activity of the polymer of ion pairs grown by one ion pair MP is obtained by; 

 eq. 13 

where K(P-1) is the equilibrium constant for the previous association step. By inserting eqs. 

12 and 13 into eq. 11, we obtain; 

 

eq. 14 

We recall the assumption that all association steps are equal and independent, as originally 

introduced in the first publication on PNCs.2 In the meantime, the validity of this assumption 

has been corroborated based on computer simulations,10 and can now also be rationalized 

mechanistically: since ion association is driven by the entropy gain due to the release of ionic 
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hydration waters upon calcium and carbonate ions binding together,11 the thermodynamic 

driving force should not differ if, e.g., a carbonate ion binds to a single calcium ion, or to a 

calcium ion that is the end member of a larger, chain-like PNC (the structural form of PNCs is 

a chain-like, dynamically-ordered liquid-like oxyanion polymer, DOLLOP10). In other words, it 

can be assumed2,10 that the values of all equilibrium constants K(1), K(2), K(3),... are equal; 

 eq. 15 

Combining eq. 5, eq. 9 and eq. 14, we can thus write with eq. 15; 

 

eq. 16 

This shows that as per the assumption made, i.e., the values of all equilibrium constants are 

equal, also the form of the law of mass action becomes identical for each association step. 

Hence, for the situation that all equilibrium constants of consecutive associations of ion pairs 

have the same equilibrium constant (eq. 15), the ion pairing equilibrium cannot be 

distinguished from the formation of higher associated states, namely, PNCs. We can thus re-

formulate eq. 16, writing; 

 

eq. 17 

where K(cluster)=K(1)=K(2)=K(3)=...=K(P-1)=K(P). That is, PNC formation with equal 

equilibrium constants for all association steps of ion pairs can be described by the generic 

equilibrium; 

 
eq. 18 

In the experiments with the calcium-ion selective electrode (ISE), the free calcium 

concentration upon constant addition of dilute calcium solution into dilute carbonate buffer 

is monitored, yielding a linear increase in free calcium in the pre-nucleation stage. The 
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difference between the added calcium and detected free calcium thus yields the bound 

calcium, which also increases linearly. We then expect a relation of the form; 

 
eq. 19 

where C is a constant and a(Cabound2+ ) is the activity of bound calcium. For the free calcium 

activity in dependence of the bound calcium, we may write, using eq. 17; 

 

eq. 20 

This is a linear relationship for the case that a(CO3,aq2- )=constant, i.e., 

C=1/[K(cluster)	a(CO3,aq2- )]. This precondition is met within only minor deviations for the 

titration experiments: In the pre-nucleation stage, the total carbonate concentration, 

including carbonate, bicarbonate and carbon dioxide, is much larger than the calcium 

concentration, whereas the pH is kept constant and the fraction of the different species 

constituting the carbonate buffer consequently does not vary. Thereby, the binding of 

carbonate ions is buffered by the equilibrium with bicarbonate, and the free carbonate 

activity remains essentially constant. 

Last, it should be noted that the formation of defined, neutral clusters with n, and only n, 

calcium carbonate units does not represent the PNC notion and is inconsistent with the 

experimentally found, linear binding profiles; 

 
eq. 21 

We define the corresponding equilibrium constant K(n); 

 

eq. 22 

The dependence between free calcium activity and bound calcium then becomes the non-

linear relation; 
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nCaaq
2++nCO3,aq

2- ⇌[CaCO3]n,aq
0  eq. 21 

We define the corresponding equilibrium constant K(n); 

K(n)=
aE[CaCO3]n,aq

0 F
aECaaq

2+Fn
·aECO3,aq

2- Fn =
aECabound

2+ F
aECaaq

2+Fn
·aECO3,aq

2- Fn 
eq. 22 

The dependence between free calcium activity and bound calcium then becomes the non-

linear relation; 
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eq. 23 

While the cluster with n constituents forms also in the PNC model, eq. 23 does not account 

for the convolution of the ion binding with all other association equilibria. Thus, eq. 23 does 

not invalidate eq. 20. The convolution of ion binding in a series of coexisting clusters yields a 

linear binding for equal equilibrium constants for each association step (eq. 20).  
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Supplementary Discussion 2 

Pre-nucleation Ion Association Evaluated based on a Multiple Binding Model 

As demonstrated previously,2 the binding of ions in PNCs can be evaluated in more detail 

based on a model that was originally derived for assessing protein-ligand binding 

equilibria.12 The basic assumption is that upon binding calcium ions to a carbonate ion, all 

possible binding events are equal and independent. This assumption mirrors eq. 15 (see 

section 1). 

The multiple-binding equilibrium is formulated for the binding of calcium ions on a 

carbonate ion, because carbonate ions are present in excess in typical titration experiments, 

serving as a 'lattice' for calcium binding, and can thus be written as; 

 
eq. 24 

This model is considered a microscopic model for the binding of calcium ions to a carbonate 

ion, where the calcium ions may or may not have already bound another carbonate ion, due 

to the basic assumption of equal and independent binding made. It can thus only assess the 

number of binding sites x for calcium ions on a carbonate ion, which must be larger than one 

if clusters can form. The formed clusters of ion pairs can still be macroscopically uncharged, 

consistent with the experimentally observed ratio of bound calcium to bound carbonate of 

1:1,2 because the calcium ions binding to the carbonate ion considered within a microscopic 

perspective may already have bound another carbonate ion, and the model is thus 

consistent with the macroscopic polymerization of ion pairs discussed in the previous 

section. As shown in detail elsewhere,2,12 the model yields; 

 

eq. 25 
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1+
nECO3,aq

2- F
nECabound

2+ F =
1

x
+

1

x·Kmb
·

1

aECaaq
2+F 

eq. 25 

Here, n(i) denotes the moles of species i. A plot of the left-hand side of eq. 25 versus the 

reciprocal calcium activity yields a straight line, where the ordinate intercept gives the 
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Here, n(i) denotes the moles of species i. A plot of the left-hand side of eq. 25 versus the 

reciprocal calcium activity yields a straight line, where the ordinate intercept gives the 

reciprocal number of binding sites 1/x and the slope gives the reciprocal product of binding 

sites and corresponding microscopic equilibrium constant 1/(xKmb). Comparison of eq. 17 

and eq. 25 shows that the microscopic binding parameters yield the macroscopic association 

constant (eq. 17) according to; 

 eq. 26 

In other words, the microscopic multiple-binding model 'subdivides' the macroscopically 

observed binding into dimerization and an additional contribution of further association 

steps (SI section 1, eqs. 1-4), which, in this microscopic view, become evident in a number of 

binding sites x>1, which are energetically equivalent with the first association step (eq 1). 

The x-parameter is thereby defined as the number of binding sites for calcium ions on 

carbonate ions (eq. 25) but since the same amounts of calcium and carbonate ions are 

bound in PNCs,2,11 it follows that the number of binding sites for carbonate ions on calcium 

ions must be identical. Since this microscopic x-parameter thus represents the average 

number of binding sites for all calcium and carbonate ions present in the solution, the 

fraction of bound ions f has to be taken into account in order to calculate the calcium-

carbonate coordination number only within PNCs from the x parameter;10 

 

eq. 27 

The average coordination number N of calcium by carbonate (and vice versa) for ions bound 

in PNCs can then be obtained from; 

 
eq. 28 
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f=
nECabound

2+ F
nECabound

2+ F+nECafree
2+ F 

eq. 27 

The average coordination number N of calcium by carbonate (and vice versa) for ions bound 

in PNCs can then be obtained from; 

N=
x
f
 eq. 28 

Experimentally and computationally, N=2 within experimental accuracy, which is consistent 

with a chain-like structural form of PNCs called a 'dynamically-ordered liquid-like oxyanion 

polymer' (DOLLOP) (2). 
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Experimentally and computationally, N=2 within experimental accuracy, which is consistent 

with a chain-like structural form of PNCs called a 'dynamically-ordered liquid-like oxyanion 

polymer' (DOLLOP).10 

The corresponding Gibbs standard free energy of PNCs can thus be obtained by; 

 eq. 29 

with absolute temperature T and the universal gas constant R.  

Similarly, Gibbs standard free energy corresponding to the microscopic binding of calcium 

and carbonate only, without PNC formation, can be obtained by; 

 eq. 30 
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The corresponding Gibbs standard free energy of PNCs can thus be obtained by; 

ΔG0(cluster)=-RT∙lnK(cluster) eq. 29 

with absolute temperature T and the universal gas constant R.  

Similarly, Gibbs standard free energy corresponding to the microscopic binding of calcium 

and carbonate only, without PNC formation, can be obtained by; 

ΔG0(micro)=-RT∙lnKmb eq. 30 
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Supplementary Discussion 3 

Prediction of spinodal and binodal limits based on pre-nucleation ion association 

thermodynamics 

As described in Supplementary Discussions 1, the PNC model assumes that all equilibrium 

constants of successive association equilibria (eqs. 1-4) have equal values. The standard free 

energy of the ion pair (eqs. 1 and 6) can thus be calculated according to; 

 eq. 31 

where DG0(i) is the standard free energy of species i, R is the universal gas constant, and T 

the absolute temperature. As per eq. 16, the individual standard free energies of all 

associated states are equal, and this value thus represents an average over all associated 

states (eq. 16), ΔG0(cluster). However, this does not represent the gross stability of 

individual clusters, i.e. when formed from the monomeric ions. For the formation of the 

dimer of ion pairs directly from the free ions, we can write; 

 eq. 32 

and, with it, define; 

 

eq. 33 

By re-arranging and inserting eqs. 5 and 7 in the denominator and numerator of eq. 33, 

respectively, we realize with eq. 17; 

 eq. 34 

and for the corresponding standard free energy of the dimer of ion pairs; 

 eq. 35 

Due to eqs. 11-17, we can generally express the standard free energy of a specific PNC 

consisting of m ion pairs as; 
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 eq. 36 

This shows that the PNCs become, considerably, more and more stable with increasing 

cluster size m. Owing to the properties of the law of mass action, however, the larger 

clusters will still be less and less abundant than the smaller ones, but only at low IAPs. A 

direct consequence is that the interconnected PNC equilibria break down at a specific IAP, at 

which the activity of the species of a particular higher association step becomes larger than 

that of the previous one. In this case, every higher associated state draws the available 

substance from all previous association equilibria and phase separation will occur 

spontaneously, based on ion association. This is spinodal liquid-liquid demixing. Because all 

equilibria subsequent to the first association steps (eqs. 1-4) have the same form (eqs. 11-

17), this is the case for; 

 eq. 37 

Re-arranging eq. 5 and inserting the activity of the ion pair in the denominator of eq. 8 yields 

with eq. 16; 

 

eq. 38 

Solving eq. 38 for IAP yields; 

 

eq. 39 

We define the specific IAP, above which eq. 37 becomes true, as IAP(spinodal), and with 

a<[CaCO3]2,aq0 ?=a<[CaCO3]aq0 ? as the limiting case eq. 39 gives; 

 

eq. 40 

At the binodal limit, liquid-liquid phase separation from PNC precursors is a question of the 

probability of a structural change occurring within PNCs from a mechanistic point of view. At 
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ΔG0E[CaCO3]m,aq
0 F=-mRT·lnK(cluster) eq. 36 
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aE[CaCO3]2,aq
0 F≥aE[CaCO3]aq

0 F eq. 37 

Re-arranging eq. 5 and inserting the activity of the ion pair in the denominator of eq. 8 yields 

with eq. 16; 

K(2)=
aE[CaCO3]2,aq0 F
[K(cluster)∙IAP]2

=
aE[CaCO3]aq0 F

IAP
 

eq. 38 

Solving eq. 38 for IAP yields; 

aE[CaCO3]2,aq0 F

aE[CaCO3]aq0 F[K(cluster)]2
=IAP 

eq. 39 

We define the specific IAP, above which eq. 37 becomes true, as IAP(spinodal), and with 

aE[CaCO3]2,aq
0 F=aE[CaCO3]aq

0 F as the limiting case eq. 39 gives; 

IAP(spinodal)=
1

[0(hijk',l)]m
 

eq. 40 

At the binodal limit, liquid-liquid phase separation from PNC precursors is a question of the 

probability of a structural change occurring within PNCs from a mechanistic point of view. At 
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0 F=aE[CaCO3]aq

0 F as the limiting case eq. 39 gives; 

IAP(spinodal)=
1

[0(hijk',l)]m
 

eq. 40 

At the binodal limit, liquid-liquid phase separation from PNC precursors is a question of the 

probability of a structural change occurring within PNCs from a mechanistic point of view. At 
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the same time, it is a question of the probability for the direct formation of the different 

polymorphs, p(polymorph), versus the probability of liquid-liquid demixing, p(demix). Hence, 

both parameters have to be assessed as a function of the IAP of a given solution. From the 

viewpoint of Boltzmann statistics, we may write; 

 
eq. 41 

where DG0(polymorph) is the standard free energy of calcite, aragonite, or vaterite that can 

be calculated from the corresponding solubility Ksp(polymorph) according to; 

 

eq. 42 

Combination of eqs. 41 and 42 yields; 

 

eq. 43 

where the parameter Y is a (unknown) function f of the actual IAP in the mother liquid, 

f(IAP). As shown in previous work, at the liquid-liquid binodal limit, the barrier for the direct 

nucleation of crystals is formidable,8 and hence, the probability p(polymorph) is essentially 

zero; 

 

eq. 44 

Given the values of Ksp(polymorph), with regards to the function Y, we can thus conclude 

that at the liquid-liquid binodal limit; 

 eq. 45 

In analogy with eq. 41, we can express the probability for liquid-liquid demixing as; 

 eq. 46 
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where DG0(l-l)=-RTlnK(l-l) is the standard free energy of liquid-liquid demixing with 

corresponding equilibrium constant K(l-l). As noted previously,8 the fact that there is no 

discontinuity or kink in the pre-nucleation ion binding upon liquid-liquid demixing implies 

that the values of K(l-l)=K(cluster). We can thus rewrite eq. 46; 

 eq. 47 

where X is another unknown function g of the IAP, g(IAP). Again, previous work8 showed 

that liquid-liquid demixing occurred readily upon crossing the liquid-liquid binodal limit, at 

least at sufficiently slow mixing rates, that is, there is no major barrier associated with this 

event, and at the binodal limit, p(demix)≈1. We can thus re-write eq. 47; 

 eq. 48 

Thus, at the liquid-liquid binodal limit, eqs. 48 and 44 are approximately equal; 

lnX + lnK(cluster) ≈ Y
1

Ksp(polymorph)
 eq. 49 

Both sides of eq. 49 are approximately zero at the binodal limit. In the following, we thus 

neglect a possible contribution of infinitesimals of different orders, which might cause that 

eq. 49 does not hold exactly. All of the following depends on this assumption. Re-arranging 

eq. 49 yields; 

 eq. 50 

Using eq. 45, eq. 50 can be simplified; 

 eq. 51 

A trivial solution of equation 51 is obviously lnX = -lnK(cluster). Still, the left-hand-side of eq. 

51 represents the product of a (unknown) function of the IAP in the mother solution, lnX, 

and the solubility of the given polymorph, which represents an ion activity product itself. Eq. 
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event, and at the binodal limit, p(demix)≈1. We can thus re-write eq. 47; 

0=lnX+lnK(cluster) eq. 48 

Thus, at the liquid-liquid binodal limit, eqs. 48 and 44 are identities; 

lnX+lnK(cluster)=Y 1
Ksp(polymorph)

 eq. 49 

Re-arranging eq. 49 yields; 

lnX∙Ksp(polymorph)=Y-Ksp(polymorph)lnK(cluster) eq. 50 

Using eq. 45, eq. 50 can be simplified; 

lnX∙Ksp(polymorph)=-Ksp(polymorph)lnK(cluster) eq. 51 

The left-hand-side of eq. 51 is the product of a (unknown) function of the IAP in the mother 

solution, lnX, and the solubility of the given polymorph, which represents an ion activity 

product itself. Moreover, eq. 51 is valid only at the binodal limit. Thus, we can write for the 

specific ion activity product defining the liquid-liquid binodal limit, IAP(binodal), irrespective 

of the (unknown) IAP-dependence of lnX; 

IAP(binodal)	∝	Ksp(polymorph)∙lnK(cluster) eq. 52 

Thus, we finally obtain; 
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51 is valid only at the binodal limit. Thus, we propose that the left-hand-side of eq. 51 can be 

interpreted to be proportional to the specific ion activity product defining the liquid-liquid 

binodal limit, IAP(binodal), and we obtain; 

 eq. 52 

Thus, we propose that the liquid-liquid binodal limit is given by; 

 eq. 53 

where A(polymorph) is a (a priori unknown) constant. We stress that eq. 53 has not been 

derived definitely here, and relies on the assumptions and interpretations outlined above. 

Eq. 53 poses a conjecture—which has its foundation in our assessment of the probability of 

liquid-liquid demixing versus that of the direct formation of crystalline polymorphs—rather 

than an unambiguously proven equation. 

The dense liquid adjusts its composition according to that of the mother liquid; the 

underlying equilibrium between mother liquid L1 and dense liquid L2 can be formally written 

as; 

 
eq. 54 

With; 

 

eq. 55 

Macroscopically, this equilibrium is indistinguishable from ion association yielding PNCs (eq. 

17), as the dense liquid droplets formally belong to a new phase but are structurally very 

similar to PNCs.10 Since no change in pre-nucleation slope is observed upon liquid-liquid 

separation (also see above and eqs. 46 and 47), the value of the corresponding equilibrium 

constant K(l-l) is identical with that of K(cluster),13  
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Thus, we finally obtain; 
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IAP(binodal)=A(polymorph)∙Ksp(polymorph)∙lnK(cluster) eq. 53 

where A(polymorph) is a (a priori unknown) constant.  

The dense liquid adjusts its composition according to that of the mother liquid; the 

underlying equilibrium between mother liquid L1 and dense liquid L2 can be formally written 

as; 

YCaaq
2++CO3,aq

2- Z
L1
⇌YCaaq

2++CO3,aq
2- Z

L2
 eq. 54 

With; 

K(l-l)=
aECaaq

2+F
L2

aECO3,aq
2- F

L2

aECaaq
2+F

L1
aECO3,aq

2- F
L1

=
IAP(L2)

IAP(L1)
 

eq. 55 

Macroscopically, this equilibrium is indistinguishable from ion association yielding PNCs (eq. 

17), as the dense liquid droplets formally belong to a new phase but are structurally very 

similar to PNCs (2). Since no change in pre-nucleation slope is observed upon liquid-liquid 

separation (also see above and eqs. 46 and 47), the corresponding equilibrium constant K(l-l) 

is identical with K(cluster) (9),  

K(l-l)=
IAP(L2)
IAP(L1)=K(cluster) 

eq. 56 

At the critical point, IAP(L1)=IAP(L2), i.e. K(cluster)=1. The critical temperature Tcrit. can thus 

be calculated using; 

ΔG0(cluster)=-RTln1=0=ΔH0(cluster)-Tcrit.ΔS0(cluster) eq. 57 

that is; 

Tcrit.=
ΔH0(cluster)
ΔS0(cluster)  

eq. 58 

Notably, the spinodal limit becomes IAP(spinodal)=1 at Tcrit. (eq. 40), which is a lower critical 

solution temperature. That is, phase separation via spinodal demixing of PNCs cannot occur 

below Tcrit., because higher associated states are inherently unstable in this temperature 
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At the critical point, IAP(L1)=IAP(L2), i.e. K(cluster)=1. The critical temperature Tcrit. can thus 

be calculated using; 

 eq. 57 

that is; 

 

eq. 58 

Notably, the spinodal limit becomes IAP(spinodal)=1 at Tcrit. (eq. 40), which is a lower critical 

solution temperature, categorically. That is, phase separation via spinodal demixing of PNCs 

cannot occur below Tcrit., because higher associated states are inherently unstable in this 

temperature regime, where K(cluster)<1 and DG0(cluster)>0, for any IAP below the critical 

temperature. Consistently, the binodal limit vanishes at the critical temperature, where 

lnK(cluster)=ln1=0 (eq. 53). 
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