CHEMISTRY A European Journal

Supporting Information

Functionalization of Piperidine Derivatives for the Site-Selective and Stereoselective Synthesis of Positional Analogues of Methylphenidate

Wenbin Liu,^[a] Tobias Babl,^[a, b] Alexander Röther,^[b] Oliver Reiser,^{*[b]} and Huw M. L. Davies^{*[a]}

chem_201905773_sm_miscellaneous_information.pdf

Content

1. General Considerations	2
2. Full Conditions Optimization Tables 2.1. C2 Functionalization	
2.2. C3 Functionalization	6
2.3. C4 Functionalization	8
3. Acquisition and Preparation of Compounds	
4. C–H Insertion Reactions	
4.1 General Procedures	17
5. Cyclopropanation and Ring-Opening Reactions for C3-Analogs	42
5.1 General Procedures	42
5.2. Diastereomer and Enantiomer Ratios Determination	42
5.3. Characterization Data for Cyclopropanation and Ring-Opening Products	43
6. Reference	59
7. Crude NMR for Diastereo- (and/or Regio-) Selectivity Determination:	60
8. Characterization NMR Spectra	109
9. HPLC Spectra for Enantioselectivity Determination	173
10.1. C2 Functionalization Products	
10.2. Cyclopropanation and C3 Functionalization Products	
10.3. C4 Functionalization Products	
10. X-Ray Crystallographic Data of the Products for Absolute Stereochemistry	290
10.1. X-Ray Crystallographic Data for 6a	
10.2. X-Ray Crystallographic Data for 8b	
10.3. X-Ray Crystallographic Data for <i>N</i> -COCF ₃ -9a	
10.4. X-Ray Crystallographic Data for 13b	

1. General Considerations

All solvents for reactions were purified and dried by a *Glass Contour Solvent System* unless otherwise stated. The dichloromethane used in reactions was dried and degassed at reflux over activated 4 Å molecular sieves for 1 hours under argon, then stored with activated 4 Å molecular sieves under argon atmosphere and was used directly.

Thin layer chromatographic (TLC) analysis was performed on Kieselgel 60 F254 aluminum-backed silica plates, visualizing with UV light and/or staining with aqueous KMnO₄ stain.

Flash chromatography was used for product purification and performed on a Biotage[®] IsoleraTM device. Depending on the scale of the reactions, different sizes of columns were employed. The normal phase silica columns were purchased from RediSep[®] and Biotage ZIP[®]. Ethylacetate (EtOAc) in combination with hexanes or Methanol (MeOH) in combination with dichloromethane (DCM) was used in a certain gradient as the mobile phase.

¹H and ¹³C NMR spectra were recorded at 600 MHz (¹³C at 150 MHz) on Bruker-600 spectrometer or IVONA-600 spectrometer, or 500 MHz (¹³C at 126 MHz) on INOVA-500 spectrometer. ¹⁹F NMR spectra were recorded at 565 MHz on Bruker-600 spectrometer or 283 MHz on Mercury 300. Unless otherwise stated, NMR spectra were run in solutions of deuterated chloroform (CDCl₃) with tetramethylsilane (TMS) as an internal standard (0 ppm for ¹H, and 0 ppm for ¹³C), and were reported in parts per million (ppm). Abbreviations for signal multiplicity are as follow: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublet, etc. Coupling constants (*J* values) were calculated directly from the spectra.

IR spectra were collected on a Nicolet iS10 FT-IR spectrometer and reported in unit of cm⁻¹.

Mass spectra were taken on a Thermo Finnigan LTQ-FTMS spectrometer with APCI, ESI or NSI.

Melting points (mp) were measured in open capillary tubes with a Mel-Temp Electrothermal melting points apparatus and are uncorrected.

Optical rotations were measured on Jasco P-2000 polarimeters.

Analytical enantioselective chromatographs were measured on either Varian Prostar instrument or Agilent-1100 series instrument, and used isopropanol/hexane as gradient. Chiral HPLC conditions were determined by obtaining separation of the racemic products using $Rh_2(OAc)_4$, $Rh_2(R/S-DOSP)_4$ or $Rh_2(R/S-2-Cl-5-BrTPCP)_4$.

2. Full Conditions Optimization Tables

Structures of the dirhodium catalysts that are relevant to this paper:

2018, 140, 12247)

(Davies, JACS, **2011**, *133*, 19198)

(Davies, JACS, 2014, 136, 9792)

2016, 533, 230)

Structure of protecting groups:

Ö

 CH_3

Ö

-Ms

2.1. C2 Functionalization

		PG N ₂	<u>_</u> 0	0.5 mol% RI	n ₂ L ₄	H N H	+	Br	
			\ _	solven	t		i i i i i i i i i i i i i i i i i i i		
	1.5	equiv. Br v 1.0 equiv.	R	tempt.		\sim '	'/~0 R		
entry	PG	L	R	solvent	tempt. (°C)	yield (%)	^b d.r. ^c	ee (%) ^d (major d)	ee (%) ^d (minor d)
1	Boc	S-DOSP	CH_3	pentane	23	69	1.5:1	-69%	-44%
2		S-DOSP	CH_3	CH_2CI_2	23	53	1.1:1	-41%	-29%
3		<i>R</i> -PTAD	CH_3	CH_2CI_2	23	62	2.2:1	-70%	-14%
4		R-TCPTAD	CH_3	CH ₂ Cl ₂	23	69	1.4:1	66%	72%
5		<i>R-p-</i> BrTPCP	CH_3	CH_2CI_2	23	41	1.2:1	27%	-30%
6		<i>R-p</i> -PhTPCP	CH_3	CH_2CI_2	23	40	1.5:1	33%	-45%
7		<i>R</i> -3,5-di(<i>p</i> - ^{<i>t</i>} BuC ₆ H ₄)TPCP	CH_3	CH_2CI_2	23	55	2.0:1	44%	20%
8		S-2-CI-5-BrTPCP	CH_3	CH_2CI_2	23	83	5.3:1	83%	85%
9		R-TPPTTL	CH ₃	CH_2CI_2	23	69	1.5:1	54%	-32%
10		R-PTTL	CH_3	CH_2CI_2	23	69	2.3:1	-69%	-10%
11	Boc	R-DOSP	CH ₂ CCI ₃	CH ₂ Cl ₂	23	52	3.4:1	14%	
12		<i>R</i> -PTAD	CH ₂ CCI ₃	CH_2CI_2	23	58	16.4:1	-80%	
13		R-TCPTAD	CH_2CCI_3	CH ₂ Cl ₂	23	83	10.5:1	93%	
14		S-2-CI-5-BrTPCP	CH_2CCI_3	CH_2CI_2	23	73	3.6:1	65%	
15		R-TPPTTL	CH_2CCI_3	CH_2CI_2	23	80	27.0:1	69%	
16		R-PTTL	CH ₂ CCI ₃	CH ₂ Cl ₂	23	78	23.7:1	-84%	

Table S1. Catal	yst and Condition	Optimization for	r C2 Functionalization	(Boc-protected) ^a
		1		

^aReaction condition are using general procedures with varients as indicated in the table. Results were determined on free secondary amines obtained after N-Boc deprotection by treatment of TFA. ^bIsolated yield of the C2-H insertion product. ^cDetermined from crude ¹H-NMR. ^dDetermined by chiral HPLC analysis of isolated product.

Variation of catalysts and conditions were examined for C–H functionalization at C2 position of N-Bocpiperidine. Using methyl diazoacetates (entry 1-10), most the dirhodium tetracarboxylate catalysts gave 1-2:1 diatereomeric ratio (d.r.), while the sterically demanding catalyst, $Rh_2(S-2-Cl-5-BrTPCP)_4$, gave highest d.r. (5.3:1, entry 8). Due to the recent advance in improving selectivity by using trichloroethyl (TCE) diazoacetates¹, some of the typical catalysts were examined. The d.r. for $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction was decreased significantly, while the phthalimido-base dirhodium catalysts gave better d.r.. The highest enantioselectivity was obtained by using $Rh_2(R-TCPTAD)_4$ with good d.r. (10.5:1 d.r., 93% ee in entry 13).

Noticeably, the $Rh_2(R$ -TPPTTL)₄-catalyzed reaction gave nearly single diastereomer (27:1 d.r. in entry 15), but its enantioselectivity was only moderate. Therefore, further exploration by changing the protecting group on the piperidine substrate was conducted (Table S2).

Table S2. Catalyst and Condition Optimization for C2 Functionalization (Sulfonyl-protected)^a

	PG _ _N	N L	0_	0.5 mol% Rh		PG N H	ј	
			r –	solvent				
	1.5 equi	Br´ ∽ iv. 1.0 eq	R uiv.	tempt.			R	
entry	PG	L	R	solvent	tempt.	(°C) yield (%) ^b	d.r. ^c	ee (%) ^d
1	Ts	R-DOSP	CH ₂ CCI ₃	CH ₂ Cl ₂	23	38	8.2:1	57%
2		S-2-CI-5-BrTPCP	CH ₂ CCI ₃	CH_2CI_2	23	13*	7.3:1	84%
						(other C-H insertion	products: (@ C4 and CH ₃)
3		<i>R</i> -TPPTTL	CH_2CCI_3	CH_2CI_2	23	65	10.2:1	76%
4	Bs	<i>R</i> -DOSP	CH ₂ CCI ₃	CH ₂ Cl ₂	23	61	17.7:1	67%
5		R-DOSP	CH_2CCI_3	pentane/TFT	23	13	>30:1	76%
6		R-DOSP	CH_2CCI_3	TFT	23	no C-H inser	rtion produ	ct
7		<i>R</i> -PTAD	CH ₂ CCI ₃	CH ₂ Cl ₂	23	67	13.5:1	-72%
8		R-TCPTAD	CH ₂ CCI ₃	CH_2CI_2	23	75	3.2:1	97%
9		<i>R-p</i> -BrTPCP	CH ₂ CCI ₃	CH_2CI_2	23	trace C-H insertion	product in	crude ¹ H-NMR
10		<i>R-p</i> -PhTPCP	CH ₂ CCI ₃	CH ₂ Cl ₂	23	trace C-H insertion	product in	crude ¹ H-NMR
11		R-3,5-di(<i>p-^t</i> Bu C ₆ H₄)TPCP	CH ₂ CCI ₃	CH_2CI_2	23	trace C-H insertion	product in	crude ¹ H-NMR
12		S-2-CI-5-BrTPCP	CH_2CCI_3	CH_2CI_2	23	16*	>30:1	66%
						(other C-H insertion	on products	s: @ C4)
13		<i>R</i> -TPPTTL	CH_2CCI_3	CH_2CI_2	23	76	>30:1	77%
14		<i>R</i> -PTTL	CH_2CCI_3	CH_2CI_2	23	65	7.1:1	-74%
15		<i>R</i> -TPPTTL	CH_2CCI_3	CH_2CI_2	39	87	21.5:1	76%
16		R-TPPTTL	CH ₂ CCl ₃	CH_2CI_2	0	42	26.4:1	72%

^aReaction condition are using general procedures with varients as indicated in the table. ^bIsolated yield of the C2-H insertion product. ^cDetermined from crude ¹H-NMR. ^dDetermined by chiral HPLC analysis of isolated product.

When the piperidine was protected by tosyl group, the standard catalyst, $Rh_2(R-DOSP)_4$, resulted in improved d.r. comparing to its selectivity on Boc-protected piperidine, but its yield and enantioselectivity were declined largely (entry 1). In additional, other C–H insertion products were observed in the reaction using $Rh_2(S-2-Cl-5-BrTPCP)_4$, in which the dirhodium carbene intermediate was reacted with the primary benzylic C–H bonds, so *p*-bromobenzenesulfonyl group was applied for further examination.

When the piperidine was protected by *p*-bromobenzenesulfonyl group, $Rh_2(R$ -TPPTTL)₄ gave highest diastereoselectivity (entry 13, >30:1 d.r.). The yield for $Rh_2(R$ -TPPTTL)₄-catalyzed reaction could be improved using higher temperature with small decrease in diastereoselectivity (entry 15), while the lower temperature (0 °C) resulted in significant lose in yield and decreased enantioselectivity.

Noticeably, most of the triarylcyclopropanated (TPCP)-based dirhodium gave only trace amount of C–H functionalization product, while $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction produced C–H functionalization product at C4 position of the piperidine in additional to the C2-products. It led to the further studies on C4 functionalization using $Rh_2(S-2-Cl-5-BrTPCP)_4$ (Section 2.4.)

2.2. C3 Functionalization

	$\mathbb{N}_{\mathbb{N}}^{Boc}$ $\mathbb{N}_{\mathbb{N}}^{N_2}$ $\mathbb{N}_{\mathbb{N}}^{N_2}$		0.5 mol% Rh	B⊂ N	Boc O N H H R ²		
	+		solvent tempt.		H		
	1.5 equiv.	1.0 equiv.	•			$^{R^1}$	
entry	L	R^1/R^2	solvent	tempt. (^o C)	yield (%) ^b	ee (%) ^c	
1	S-DOSP	H / CH ₃	pentane	23	83	92	
2	S-DOSP	H / CH ₃	pentane	0	87	95	
3	S-DOSP	H / CH ₃	pentane	-40	85	95	
4	R-DOSP	H / CH ₃	trifluorotoluene	23	87	-79	
5	R-DOSP	H / CH ₃	dichloromethane	23	52	-71	
6	R-DOSP	H / CH ₃	toluene	23	76	-87	
7	R-DOSP B	sr / CH ₂ CCI ₃	pentane	23	70	-80	
8	R-DOSP	Br / CH ₃	pentane	23	76	-89	
9	S-TCPTAD	Br / CH ₃	pentane	23	75	3	
10	<i>R-p</i> -BrTPCP	Br / CH ₃	pentane	23	85	-46	
11	S-o-CITPCP	$\operatorname{Br}/\operatorname{CH}_3$	pentane	23	92	-33	
12	<i>R</i> -PTAD	$\operatorname{Br}/\operatorname{CH}_3$	pentane	23	70	58	
13	S-PTTL	$\operatorname{Br}/\operatorname{CH}_3$	pentane	23	86	-43	
14	S-TPPTTL	$\operatorname{Br}/\operatorname{CH}_3$	pentane	23	79	5	
15	S-p-BrTPCP	Br / CH ₃	dichloromethane	23	73	8	
16	<i>R-p</i> -PhTPCP	Br / CH ₃	dichloromethane	23	85	-30	
17	S-2-CI-5-BrTPCP	Br / CH ₃	dichloromethane	23	77	-69	

Table 55. Catalyst and Condition Optimization for Cyclopropanation at C_2/C_5 s

^aReaction condition are using general procedures with varients as indicated in the table. ^bIsolated yield of the cyclopropanation product. ^cDetermined by chiral HPLC analysis of isolated product.

 $Rh_2(DOSP)_4$ gives good yields using non-polar solvents (pentane, trifluorotoluene and toluene in entry 1, 4 and 6). Remarkable decrease of the yield as well as the ee is observed with DCM as solvent (entry 5). This behavior was already observed in other reactions using $Rh_2(DOSP)_4^{2-3}$. The performance of trichloroethyl (TCE) diazoacetates¹ was also examine here in comparison to its methyl analog (entry 8), and decreased enantioselectivity was observed with TCE diazoacetates (80% ee in entry 7). Further examination of different dirhodium catalysts was conducted using methyl 2-(4-bromophenyl)-2-diazoacetate, and $Rh_2(R-DOSP)_4$ was found unmatched for this type of cyclopropanation (76% yield and 89% ee in entry 8), while all other dirhodium catalysts tested gave 3-69% ee (entry 9-17) in either pentane or dichloromethane as solvents.

In an attempt of further enhancing the ee, the reaction was carried out at lower temperatures. Using $Rh_2(DOSP)_4$ as catalyst, in combination with methyl 2-diazo-2-phenylacetate in pentane, 0 °C as well as -40 °C

gave a very good ee of 95% while the yields stayed the same. As 0 $^{\circ}$ C is easier to handle as it only takes a bath of ice in water, further reactions were carried out at 0 $^{\circ}$ C.

In order to synthesize the 3-substitued piperidines that are aim of this part of the work, the cyclopropanes had to be opened in an acid catalyzed way. According to the strategies of Pilsl *et al.*,⁴ the same reaction with the cyclopropanated piperidines as substrate. In contrast to Pilsl's substrate the ring-opened product would contain two chiral centers and one of them would be affected by the enol-form during the transition state. The desired product was able to be obtained *via* Brønsted and Lewis acid catalyzed ring-openings in good to excellent yields. The Lewis acid, BF₃·OEt₂, gave yields of 95% with a good d.r. of 1:12. The ring-opening of Boc-protected substrate was then conducted using the BF₃·OEt₂ condition, and the deprotection of Boc group was observed, so the reaction was extended to 2 days to ensure the full conversion.

Scheme S1. Ring-opening of Ts-protected 2-azabicyclo[4.1.0]heptanes.

2.3. C4 Functionalization

N-Boc-1,4-dihydropyridine was chosen as substrate for the synthesis of 4-substituted piperidines. The double vinyl position and the +M effect of the nitrogen in addition should give this substrate an enormous reactivity and chemoselectivity towards C–H insertion making the possible cyclopropanation less favored.⁵

In the initial attempt for 4-substituted piperidine, a combination of methyl 2-diazo-2-phenylacetate and 0.5 mol% $Rh_2(DOSP)_4$ was applied. However, decomposition of the starting-material to pyridine and the poisoning of the catalyst was thought to be the major problem, as pyridine was found in the crude NMR-analysis of the reaction. A higher catalyst loading should ensure the presence of active catalyst (2.5 mol%). In addition, the freshly made N-Boc-1,4-dihydropyridine was used for the dirhodium carbene reaction, followed by immediately hydrogenation of the C–H insertion product after isolation to prevent lose due to decomposition.

Table S4. Catalyst and Condition Optimization for C–H Insertion at C4-position using 1,4-Dihydropyridine^a

1.5	Boc N + 5 equiv.	$ \begin{array}{c} $	h ₂ L ₄	ос) О-СН ₃	H ₂ (1 atm), Pd/C methanol, rt		⁾ `CH₃
	entry	L	solvent	tempt. (^o C)	yield (%) ^b	ee (%) ^c	_
	1	Rh ₂ (S-DOSP) ₄	pentane	23	no activity		
	2	Rh ₂ (S-DOSP) ₄	dichloromethane	e 23	no activity		
	3	Rh ₂ (S-DOSP) ₄	trifluorotoluene	23	no activity		
	4	Rh ₂ (S-DOSP) ₄	ethyl acetate	23	no activity		
	5	Rh ₂ (S-DOSP) ₄	(neat)	23	52	-55	
	6	Rh ₂ (<i>R</i> -DOSP) ₄	(neat)	0	54	61	
	7	Rh ₂ (<i>R</i> -PTAD) ₄	(neat)	23	62	-37	
	8	Rh ₂ (<i>R</i> -TCPTAD) ₄	(neat)	23	35	6	
	9	Rh ₂ (<i>R</i> -TPPTTL) ₄	(neat)	23	19	32	
	10	Rh ₂ (S-PTTL) ₄	(neat)	23	45	30	
	11	Rh ₂ (<i>R-p</i> -BrTPCP) ₄	(neat)	23	58	-13	
	12	Rh ₂ (<i>R</i> -3,5-di(^t BuC ₆ H ₄)TPCP) ₄ (neat)	23	no activity		
	13	Rh ₂ (S-2-CI-5-Br-TPCP) ₄	(neat)	23	68	6	

^aReaction condition are using general procedures with varients as indicated in the table. ^bIsolated yield of the product after hydrogenation. ^dDetermined by chiral HPLC analysis of isolated product.

No reaction activity was observed using various solvent. However, decomposition of diazoacetate (bubble formation and heat generated) was observed when solvent was removed under reduced pressure. The analysis of the crude ¹H-NMR clearly showed the formation of the desired product. Then, the reactions were carried out under neat conditions without any solvent. To obtain more reproduceable results, the setup of the reaction was changed. Instead of adding the diazo compound slowly to a solution of substrate and catalyst, the catalyst and the substrate were dissolved in small amounts of DCM (pentane for $Rh_2(DOSP)_4$). Stirring the mixture 1 min

before adding the diazo compound in one portion, makes sure that all catalyst is inactive. Afterwards, the solvent was removed under reduced pressure. Residues of solvent were removed under vacuum. The reaction started after a few minutes under HV conditions. In the course of the reaction, the viscosity of the mixture increased, inhibiting proper stirring. Therefore, the viscous mixture was dissolved again, stirred and then dried again twice. The catalysts were consecutively screened under the new conditions.

Screening the catalyst gave moderate yields of 50-60% in many cases. The highest yield of 68% was obtained using $Rh_2(2-Cl-5-Br-TPCP)_4$. However, this catalyst gives almost no chirality induction and only an ee of 5%. $Rh_2(DOSP)_4$ gives reasonable yields of up to 52% with the best value in enantiomeric excess of 55%. A lower temperature of 0 °C while using $Rh_2(DOSP)_4$ gives a small rise in yield (54%) as well as in enantiomeric access (61%).

As yields and enantioselectivity was not very good even after catalyst screening and experiments with lower temperatures, investigations using N-Boc-1,4-dihydropyridine were stopped. A more innovative approach was explored with direct C–H functionalization at C4 position on piperidines controlled by catalyst with appropriate combination of protection group.

Table S5. Catalyst and Condition Optimization for C4 Functionalization^a

entry		PG	L	temp. (°C)	r.r. (C4 : C2) ^b	yield (%) ^c	ee (%) ^d	
1			R-DOSP	23	<1:30			
2			R-TCPTAD	23	<1:30			
3			<i>R</i> -TPPTTL	23	<1:30			
4			<i>R-p</i> -BrTPCP	23	trace C-H	insertion	product in c	rude ¹ H-NMR
5			S-2-CI-5-BrTPCP	23	4.2:1	67	90	
6		O ₂ S-CH ₃	S-2-CI-5-BrTPCP	23	4.0:1	30	96	
7		O ₂ S-	S-2-CI-5-BrTPCP	23	3.9:1			
8			S-2-CI-5-BrTPCP	23	4.7:1	65	96	
9		O ₂ S-NO ₂	S-2-CI-5-BrTPCP	23	no C-H in	sertion pi	roduct in cru	de ¹ H-NMR
10	1e	O₂S−CH₃ ∽ૠ	S-2-CI-5-BrTPCP	23	5.6:1	78	97	
11	1f	O O	S-2-CI-5-BrTPCP	23	>30:1	50	97	
12	1f		S-2-CI-5-BrTPCP	39	>30:1	57	97	
13 ^e	1f	Br	S-2-CI-5-BrTPCP	39	>30:1	61	97	

^aReaction condition are using general procedures with varients as indicated in the table. ^bDetermined from crude ¹H-NMR. ^cIsolated yield of the C4-H insertion product. ^dDetermined by chiral HPLC analysis of isolated product. ^eProtected piperidine was used as limiting reagent, with 1.5 equivalent of diazoacetates.

Variation of catalysts and conditions were examined for C–H functionalization at C4 position of N-protected piperidines. The sterically demanding catalyst, $Rh_2(S-2-Cl-5-BrTPCP)_4$, was found to be the only catalyst gave C4-functionalization product (entry 5 vs entry 1-4). Variation of the substituent on the *para*-position of the benzenesulfonyl groups showed small change of the regioselectivity with electron-withdrawing CF₃ substituent giving highest selectivity for C4 product (4.7:1 r.r. in entry 8). When it was a simple methyl group next to the sulfonyl group (entry 10), which is expected to give lower selectivity due to diminished steric hindrance, the selectivity for C4 product is unexpectedly higher than arylsulfonyl-protected ones (5.6:1 r.r.). Significant improvement was achieved using strong electron-withdrawing oxalyl group, in which C4 product was observed as single regio-isomer with 97% ee.

3. Acquisition and Preparation of Compounds

The substrates and reagents were purchased from commercial sources (Sigma-Aldrich, Alfa-Aesar, Acros Organic, TCI America, Oakwood Chemical, Fisher Scientific and Strem Chemicals) and used directly without further purification. The chiral dirhodium catalysts are available in our lab and they were made according to literature procedures.

The following substrates were prepared by procedures adapted from literatures:

2,2,2-Trichloroethyl 2-(4-bromophenyl)-2-diazoacetate;¹ 2,2,2-trichloroethyl 2-diazo-2-phenylacetate;² 2,2,2-Trifluoroethyl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate;⁶ 2,2,2-Trichloroethyl 2-(4-acetoxyphenyl)-2diazoacetate;⁶ 2,2,2-Trifluoroethyl 2-diazoacetate;⁶ Methyl 2-(4-bromophenyl)-2-diazoacetate;⁶ Methyl 2diazo-2-phenylacetate;⁷ Methyl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate;⁷ Methyl 2-([1,1'-biphenyl]-4yl)-2-diazoacetate;⁸ *tert*-Butyl piperidine-1-carboxylate;⁹ 1-Tosylpiperidine;⁹ 1-(4-Bromophenyl)-2-(piperidin-1-yl)ethane-1,2-dione;¹⁰ *o*-NBSA (*o*-nitrobenzenesulfonyl azide);¹¹ 2-(3,4-Dibromophenyl)acetic acid;¹² *tert*-Butyl pyridine-1(4H)-carboxylate.¹³

Other sulfonyl protected piperidines were prepared using adapted procedure similar to the one for 1-tosylpiperidine:⁹

To a solution of corresponding sulfonyl chloride (50 mmol, 1.0 equiv.) in 150 mL of CH₂Cl₂, piperidine (5.9 mL, 60 mmol, 1.2 equiv.) was added drop-wise with the generation of white fume, followed by the slow addition of triethylamine (10.5 mL, 75 mmol, 1.5 equiv.). The mixture was allowed to stir at room temperature (23 °C) for 15 hours. The consumption of piperidine was monitored by TLC (30% ethyl acetate in hexane). The solvent was removed under reduced pressure and the residue was purified by flash silica gel column chromatography using gradient as indicated.

1-((4-Bromophenyl)sulfonyl)piperidine (1b)

Purification was carried out with 8-12% ethyl acetate in hexane to give **1b** as white solid in 78% yield (39 mmol, 11.9 g). The NMR data are consistent with literature values.¹⁴

¹**H NMR** (600 MHz, CDCl₃) δ 7.67 (d, *J* = 8.6 Hz, 2H), 7.62 (d, *J* = 8.6 Hz, 2H), 2.99 (t, *J* = 5.5 Hz, 4H), 1.69 – 1.61 (m, 4H), 1.48 – 1.39 (m, 2H).

¹³C NMR (151 MHz, CDCl₃) δ 135.5, 132.2, 129.1, 127.6, 46.9, 25.1, 23.5.

1-((4-(Trifluoromethyl)phenyl)sulfonyl)piperidine (1d)

It was done in 30 mmol scale of 4-(trifluoromethyl)benzenesulfonyl chloride. Purification was carried out with 8-15% ethyl acetate in hexane to give **1d** as white solid in 93% yield (28 mmol, 8.2 g). The NMR data are consistent with literature values.¹⁴

¹**H** NMR (500 MHz, CDCl₃) δ 7.90 (dt, *J* = 8.1, 0.7 Hz, 2H), 7.81 (dt, *J* = 8.3, 0.6 Hz, 2H), 3.03 (t, *J* = 5.5 Hz, 4H), 1.74 – 1.59 (m, 4H), 1.53 – 1.38 (m, 2H).

¹³**C NMR** (126 MHz, CDCl₃) δ 140.2, 134.3 (q, *J* = 32.9 Hz), 128.2, 128.0, 126.2 (q, *J* = 3.6 Hz), 123.4 (d, *J* = 272.6 Hz), 47.0, 25.2, 23.5.

¹⁹**F NMR** (282 MHz, CDCl₃) δ -63.12.

1-(Methylsulfonyl)piperidine (1e)

It was done in 30 mmol scale of methanesulfonyl chloride. Purification was carried out with 8-15% ethyl acetate in hexane to give 1e as white solid in 82% yield (24.5 mmol, 4.0 g). The NMR data are consistent with literature values.¹⁵

¹H NMR (500 MHz, CDCl₃) δ 3.18 (t, J = 5.6 Hz, 4H), 2.77 (s, 3H), 1.72 – 1.64 (m, 4H), 1.61 – 1.53 (m, 2H).
¹³C NMR (126 MHz, CDCl₃) δ 46.6, 34.1, 25.2, 23.5.

1-((4-(tert-Butyl)phenyl)sulfonyl)piperidine (1g)

Purification was carried out with 10-12% ethyl acetate in hexane to give 1g as white solid in 98% yield (49 mmol, 13.8 g). The NMR data are consistent with literature values.¹⁴

¹**H NMR** (600 MHz, CDCl₃) δ 7.67 (d, *J* = 8.2 Hz, 2H), 7.52 (d, *J* = 8.5 Hz, 2H), 2.99 (t, *J* = 5.5 Hz, 4H), 1.68 – 1.61 (m, 4H), 1.47 – 1.39 (m, 2H), 1.35 (s, 9H).

1-((4-Nitrophenyl)sulfonyl)piperidine (1h)

It was done in 30 mmol scale of 4-nitrobenzenesulfonyl chloride. Purification was carried out with 8-15% ethyl acetate in hexane to give **1h** as white solid in 83% yield (25 mmol, 6.7 g). The NMR data are consistent with literature values.¹⁶

¹**H** NMR (500 MHz, CDCl₃) δ 8.39 (d, *J* = 8.9 Hz, 2H), 7.96 (d, *J* = 8.9 Hz, 2H), 3.06 (t, *J* = 5.5 Hz, 4H), 1.67 (p, *J* = 5.9 Hz, 4H), 1.47 (tt, *J* = 8.3, 4.6 Hz, 2H).

¹³C NMR (126 MHz, CDCl₃) δ 150.1, 142.6, 128.8, 124.3, 47.0, 25.2, 23.4.

Other diazoacetate compounds were prepared using procedures in literatures from corresponding starting materials.^{1,6-7}

Methyl 2-diazo-2-(3,4-dibromophenyl)acetate (2e)

The synthesis is adapted from literatures:³ In a 250 mL round-bottom flask with argon atmosphere inside, 2-(3,4-dibromophenyl)acetic acid (4.6 g, 15.6 mmol, 1.0 equiv) was dissolved in 100 mL of methanol and cooled to 0 °C via ice bath. Acetyl chloride (2 mL, 18.8 mmol, 1.2 equiv) was added via a syringe. The reaction mixture was stirred for 15 hours, at which point it was warmed up to room temperature (23 °C). The reacted mixture was diluted with 100 mL of ethyl acetate and washed with NaHCO₃. The organic layer was concentrated under reduced pressure and purified by flash column chromatography (10% ethyl acetate in hexane) to afford the orange solid in 93% yield (4.5 g). It was used immediately in the next step.

Methyl 2-(3,4-dibromophenyl)acetate (3.0 g, 9.7 mmol) was added in a flame-dried round-bottom flask, together with *p*-ABSA (*p*-acetamidobenzenesulfonyl azide) (3.03 g, 12.6 mmol, 1.3 equiv.). After the flask was flushed with argon gas (3 times), 50 mL of dry acetonitrile was added to the mixture for dissolving. Then, the reaction mixture was cooled to 0 °C via ice bath. DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) (2.0 mL, 12.6 mmol, 1.3 equiv.) was added drop-wise at 0 °C. The mixture was allowed to stir at 0 °C for an additional 15 min, followed by 24 hours at room temperature (23 °C) after removing the ice bath. The resulting orange solution was quenched with 60 mL of saturated aqueous NH₄Cl. The aqueous layer was extracted with diethyl ether (50 mL X 3) and the combined organic layer was washed with brine. Then, it was concentrated under reduced pressure and purified by flash column chromatography (5-8% diethyl ether in hexane) to provide orange solid in 95% yield (3.1 g).

 $\mathbf{Rf} = 0.20$ (5% diethyl ether in hexane);

¹**H NMR** (500 MHz, CDCl₃) δ 7.77 (d, *J* = 2.3 Hz, 1H), 7.57 (d, *J* = 8.5 Hz, 1H), 7.25 (dd, *J* = 8.6, 2.3 Hz, 1H), 3.87 (s, 3H);

¹³**C NMR** (126 MHz, CDCl₃) δ 164.8, 133.9, 128.3, 126.9, 125.6, 123.5, 121.4, 52.4 (The resonance resulting from the diazo carbon was not observed);

IR (neat) 3091, 3005, 2952, 2092, 1702, 1470, 1358, 1238, 1196, 1160, 1049, 806, 737 cm⁻¹;

HRMS (+**p ESI**) calcd for C₉H₇Br₂N₂O₂ (M+H)⁺ 332.8869 found 332.88715.

2,2,2-Trichloroethyl 2-([1,1'-biphenyl]-4-yl)-2-diazoacetate (3c)

The synthesis is adapted from literatures:¹ A dry 100 mL round-bottom flask was charged with 2-([1,1'biphenyl]-4-yl)acetic acid (2.12g, 10 mmol, 1.0 equiv), DMAP (4-dimethylaminopyridine) (122.2 mg, 1 mmol, 0.1 equiv.) and 2,2,2-trichloroethanol (1.2 mL, 12 mmol, 1.2 equiv.). After the flask was flushed with argon gas (3 times), 20 mL of dry dichloromethane was added to the mixture. Then, the reaction mixture was cooled to 0 °C via ice bath. The solution of DCC (N,N'-dicyclohexylcarbodiimide) (2.27 g, 11 mmol, 1.1 equiv) in 20 mL of dry dichloromethane was then added slowly at 0 °C. The reaction mixture was stirred for 15 hours, at which point it was warmed up to room temperature (23 °C). The reacted mixture was filtered through Celite under reduced pressure and washed with dichloromethane. The filtrate was collected and concentrated under reduced pressure. The crude compound was purified by silica plug (3.8 cm *diameter*, 6 cm *height*, 5% ethyl acetate in hexane) to afford the white solid in 99% yield (9.9 mmol, 3.4 g). The product was used immediately in the next step.

The 2,2,2-trichloroethyl 2-([1,1'-biphenyl]-4-yl)acetate (3.4 g, 9.9 mmol, 1.0 equiv.) was added in a flamedried round-bottom flask, together with *o*-NBSA (*o*-nitrobenzenesulfonyl azide) (3.39 g, 14.85 mmol, 1.5 equiv.). After the flask was flushed with argon gas (3 times), 30 mL of dry acetonitrile was added to the mixture for dissolving. Then, the reaction mixture was cooled to 0 °C via ice bath. DBU (1,8-diazabicyclo[5.4.0]undec-7-ene) (3.3 mL, 21.78 mmol, 2.2 equiv.) was added drop-wise at 0 °C. The mixture was allowed to stir for 1 hour at 0 °C, followed by pouring into a separation funnel with 40 mL of saturated aqueous NH₄Cl for quenching. The aqueous layer was extracted with diethyl ether (30 mL X 2) and the combined organic layer was washed with brine. Then, it was concentrated under reduced pressure and purified by flash column chromatography (5-8% dichloromethane in hexane) to provide orange solid in 82% yield.

 $\mathbf{Rf} = 0.50$ (20% dichloromethane in hexane);

¹**H NMR** (500 MHz, CDCl₃) δ 7.62 (d, *J* = 8.5 Hz, 2H), 7.57 (d, *J* = 7.9 Hz, 2H), 7.54 (d, *J* = 8.5 Hz, 2H), 7.42 (t, *J* = 7.7 Hz, 2H), 7.33 (t, *J* = 7.4 Hz, 1H), 4.90 (s, 2H);

¹³**C NMR** (126 MHz, CDCl₃) δ 163.4, 140.2, 139.1, 129.0, 127.8, 127.6, 127.0, 124.4, 123.5, 95.1, 73.9 (The resonance resulting from the diazo carbon was not observed);

IR (neat) 3054, 3037, 2954, 2086, 1699, 1489, 1376, 1342, 1230, 1151, 1054, 760, 718, 582 cm⁻¹;

HRMS (+**p APCI**) calcd for C₁₆H₁₂Cl₃O₂ (M+H-N₂)⁺ 340.9897 found 340.99004.

2,2,2-Trichloroethyl 2-diazo-2-(3,4-dibromophenyl)acetate (3e)

The synthesis is adapted from literatures:² A 100-mL round-bottom flask was charged with 1,2-dibromo-4iodobenzene (3.62 g, 10 mmol, 1.0 equiv.), Pd(PPh₃)₄ (577.8 mg, 0.5 mmol, 5 mol%), PPh₃ (262.3 mg, 1 mmol, 10 mol%) and Ag₂CO₃ (1.38 g, 5 mmol, 0.5 equiv.). After the flask was flushed with argon, 40 mL of dry toluene was added, followed by the addition of NEt₃ (1.8 mL, 13 mmol, 1.3 equiv.) and 2,2,2-trifluoroethyl 2diazoacetate (2.18 g, 13 mmol, 1.3 equiv.). The resulted mixture was stirred at room temperature for 4 h and then, filtered through a short silica plug (3.5 cm *diameter*, 5 cm *height*), eluting with ethyl acetate (20 mL). The crude product was concentrated and purified by column chromatography (6% diethyl ether in pentane) to afford 2,2,2-trichloroethyl 2-diazo-2-(3,4-dibromophenyl)acetate as yellow solid in % yield (or 2,2,2-trifluoroethyl 2diazo-2-(4-nitrophenyl)acetate as yellow solid in 66% yield (6.6 mmol, 3.0 g).

 $\mathbf{Rf} = 0.69$ (10% diethyl ether in pentane);

¹**H NMR** (500 MHz, CDCl₃) δ 7.80 (d, *J* = 2.3 Hz, 1H), 7.60 (d, *J* = 8.5 Hz, 1H), 7.29 – 7.21 (m, 1H), 4.91 (s, 2H);

¹³C NMR (126 MHz, CDCl₃) δ 162.6, 134.1, 128.5, 126.0, 125.8, 123.6, 122.1, 94.9, 74.1 (The resonance resulting from the diazo carbon was not observed);

IR (neat) 3098, 2954, 2094, 1711, 1469, 1372, 1340, 1273, 1234, 1139, 1046, 790, 712, 579 cm⁻¹;

HRMS (+**p ESI**) calcd for C₁₀H₆Br₂Cl₃N₂O₂ (M+H)⁺ 448.7856 found 448.78616.

4. C-H Insertion Reactions

4.1 General Procedures

GP-I: A 16-mL reaction vial (21x70mm) with screw cap (open top with PTFE faced silicone septum) was charged with Rh_2L_4 (0.0025 mmol, 0.5 mol%) and corresponding substrate (0.75 mmol, 1.5 equiv.). The reaction vessel was then evacuated and back filled with argon (3 times), followed by the addition of dry degassed CH_2Cl_2 (2 mL). Corresponding donor/acceptor diazo compounds (0.5 mmol, 1.0 equiv.) was weighed in a 20-mL scintillation vial and dissolved in 4 mL of dry degassed CH_2Cl_2 under argon atmosphere. Then, under room temperature (23 °C) and argon atmosphere, the diazo solution was added to the reaction vessel dropwise via syringe pump over 2 h. The reaction mixture was stirred at room temperature (23 °C) for another 4 h, and crude ¹H NMR was obtained after the resulted mixture was concentrated under vacuum. Finally, the desired product was obtained after purification using flash column chromatography with indicated eluting gradient.

GP-II: Similar to GP-II, but an additional step was added after the completion of the reaction, before the concentration for crude ¹*H NMR:* After the reaction mixture was stirred at room temperature (23 °C) for another 4 h, 1 mL of TFA (trichluoroacetic acid) was added to the reaction mixture slowly and stirred at room temperature (23 °C) for 15 h. The resulted mixture was concentrated under reduce pressure and dissolved in 4 mL of dichloromethane, followed by addition of aqueous saturated NaHCO₃ drop-wise until no more bubble generated (~4 mL). The aqueous layer was extracted by 10 mL dichloromethane (3 times). The combined organic layer was concentrated for crude ¹H NMR and purified using flash column chromatography with indicated eluting gradient.

GP-III: In a round bottom flask, *tert*-butyl pyridine-1(4H)-carboxylate (91 mg, 0.5 mmol, 1.5 equiv.) and 2.5 mol% rhodium catalyst were dissolved in 5 mL dry solvent. Methyl 2-diazo-2-phenylacetate (59 mg, 0.333 mmol, 1 equiv.) was dissolved in 4 mL of the corresponding dry solvent and added within 2 h using a syringe pump. After addition, the reaction mixture was stirred for 30 min and the solvent was evaporated under reduced pressure.

GP-IV: In a round bottom flask, *tert*-butyl pyridine-1(4H)-carboxylate (91 mg, 0.5 mmol, 1.5 equiv.) and 2.5 mol% rhodium catalyst were dissolved in 5 mL dry pentane and stirred for 1 min. Methyl 2-diazo-2-phenylacetate (59 mg, 0.333 mmol, 1 equiv.) dissolved in 5 mL dry pentane was added to the mixture. The solvent was removed under reduced pressure and high vacuum was applied under stirring. After complete removal of the solvent the reaction starts under high vacuum conditions. With progressive conversion, the viscosity of the mixture increased. For better homogeneity solvent was added, the mixture was stirred for 1 min and the solvent was removed again before applying high vacuum. This was repeated for 2 times. The reaction is completed when gas formation stops. The crude product was purified by FC (EA/HEX: 2-10% EA gradient). As the product is decomposing under normal conditions complete analysis of the compound was not carried out. Enantiomeric excess was measured after hydrogenation of the 1,4-dihydropyridine.

4.2. Regioisomer and Diastereomer Ratios Determination

The crude ¹H NMR spectra in general procedures were utilized for regioisomer and diastereomer ratios determination, and it was obtained using Bruker-600 MHz spectrometer with a Prodigy probe, and the acquisition was done with 16 times of scans and 1 seconds of relaxation time.

4.3. Characterization Data of C-H Functionalization Products

Methyl (R)-2-(4-bromophenyl)-2-((S)-piperidin-2-yl)acetate (4a-erythro)

Following *GP-II* (*tert*-butyl piperidine-1-carboxylate as substrate, reacting with methyl 2-(4-bromophenyl)-2-diazoacetate), the desired C2-product (mixture of both diastereomers) was obtained using 0-4% methanol in dichloromethane as eluting gradient in flash column chromatography.

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in Rh₂(S-2-Cl-5-BrTPCP)₄-catalyzed reaction (83% ee).

Yellow oil

 $\mathbf{Rf} = 0.36$ (5% methanol in dichloromethane);

 $[\alpha]^{20}$ _D: +22.2° (c = 0.45, CHCl₃, 83% ee);

¹**H** NMR (500 MHz, CDCl₃) δ 7.47 (d, *J* = 8.4 Hz, 2H), 7.29 (d, *J* = 8.4 Hz, 2H), 3.66 (s, 3H), 3.43 (d, *J* = 10.0 Hz, 1H), 3.06 (td, *J* = 10.2, 2.3 Hz, 1H), 2.93 (d, *J* = 11.7 Hz, 1H), 2.50 (td, *J* = 11.5, 2.9 Hz, 1H), 1.88 – 1.70 (m, 2H), 1.61 – 1.54 (m, 1H), 1.46 – 1.33 (m, 2H), 1.30 – 1.17 (m, 1H);

¹³C NMR (126 MHz, CDCl₃) δ 172.8, 135.2, 132.1, 130.5, 122.1, 59.1, 57.9, 52.2, 47.2, 31.2, 25.9, 24.6;

IR (neat) 2934, 2854, 1734, 1488, 1435, 1331, 1161, 1119, 1011, 763 cm⁻¹;

HRMS (+p APCI) calcd for C₁₄H₁₉BrNO₂ (M+H)+ 312.0594 found 312.05941;

HPLC (ODH column, 1% *i*-propanol in hexane, 0.5 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 11.17 min (major) and 12.59 min (minor) 83% ee with $Rh_2(S-2-Cl-5-BrTPCP)_4$.

Methyl 2-(4-bromophenyl)-2-(piperidin-2-yl)acetate (4a-threo)

Characterization data for the *threo*-diastereomer was conducted on sample obtained in $Rh_2(R-DOSP)_4$ -catalyzed reaction (ee not determined).

Yellow oil

 $\mathbf{Rf} = 0.32$ (5% methanol in dichloromethane);

¹**H** NMR (500 MHz, CDCl₃) δ 7.44 (d, J = 8.4 Hz, 2H), 7.17 (d, J = 8.4 Hz, 2H), 3.65 (s, 3H), 3.41 (d, J = 10.0 Hz, 1H), 3.08 (td, J = 10.4, 2.6 Hz, 2H), 2.68 (td, J = 11.9, 2.7 Hz, 1H), 2.01 (s, broad, 1H), 1.75 – 1.65 (m, 1H), 1.64 – 1.52 (m, 1H), 1.37 (qt, J = 12.4, 3.9 Hz, 1H), 1.29 – 1.19 (m, 2H), 1.01 – 1.87 (m, 1H);

¹³C NMR (126 MHz, CDCl₃) δ 173.4, 135.4, 131.8, 130.2, 121.6, 58.8, 58.1, 52.1, 46.9, 30.0, 26.1, 24.3;

IR (neat) 2931, 2853, 1731, 1489, 1434, 1196, 1163, 1012, 824, 765 cm⁻¹;

HRMS (+p APCI) calcd for C₁₄H₁₉BrNO₂ (M+H)+ 312.0594 found 312.05945;

2,2,2-Trichloroethyl (R)-2-(4-bromophenyl)-2-((S)-piperidin-2-yl)acetate (5a-erythro)

Following *GP-II* (*tert*-butyl piperidine-1-carboxylate as substrate, reacting 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate), the desired C2-product (mixture of both diastereomers) was obtained using 0-4% methanol in dichloromethane as eluting gradient in flash column chromatography.

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in Rh₂(*R*-TCPTAD)₄-catalyzed reaction (93% ee).

Yellow oil

 $\mathbf{Rf} = 0.36$ (5% methanol in dichloromethane);

 $[\alpha]^{20}_{D}$: -2.8° (c = 1.00, CHCl₃, 93% ee);

¹**H NMR** (500 MHz, CDCl₃) δ 7.49 (d, *J* = 8.4 Hz, 2H), 7.32 (d, *J* = 8.4 Hz, 2H), 4.76 (d, *J* = 12.0 Hz, 1H), 4.66 (d, *J* = 12.0 Hz, 1H), 3.58 (d, *J* = 10.0 Hz, 1H), 3.15 (td, *J* = 10.1, 2.2 Hz, 1H), 2.96 (d, *J* = 11.5 Hz, 1H), 2.53 (td, *J* = 11.4, 2.7 Hz, 1H), 1.90 – 1.74 (m, 2H), 1.63 – 1.54 (m, 1H), 1.47 – 1.34 (m, 2H), 1.33 – 1.25 (m, 1H);

¹³C NMR (126 MHz, CDCl₃) δ 170.5, 134.3, 132.2, 130.7, 122.5, 94.8, 74.2, 58.7, 57.9, 47.1, 31.1, 25.9, 24.5; **IR (neat)** 2935, 2855, 1749, 1488, 1452, 1139, 1116, 1073, 1012, 761, 722 cm⁻¹;

HRMS (+**p APCI**) calcd for C₁₅H₁₈BrCl₃NO₂ (M+H)+ 427.9581 found 427.95886;

HPLC (ODH column, 0.5% *i*-propanol in hexane, 0.35 mL min⁻¹, 1 mg mL⁻¹, 60 min, UV 230 nm) retention times of 26.84 min (major) and 28.93 min (minor) 93% ee with $Rh_2(R$ -TCPTAD)₄.

2,2,2-Trichloroethyl 2-(4-bromophenyl)-2-(piperidin-2-yl)acetate (5a-threo)

Characterization data for the *threo*-diastereomer was conducted on sample obtained in $Rh_2(R-DOSP)_4$ -catalyzed reaction (ee not determined).

Yellow oil

 $\mathbf{Rf} = 0.29$ (5% methanol in dichloromethane);

¹**H** NMR (500 MHz, CDCl₃) δ 7.46 (d, *J* = 8.6 Hz, 2H), 7.22 (d, *J* = 8.1 Hz, 2H), 4.72 (s, 2H), 3.56 (d, *J* = 10.1 Hz, 1H), 3.18 (td, *J* = 10.5, 2.6 Hz, 1H), 3.08 (d, *J* = 12.3 Hz, 1H), 2.69 (td, *J* = 11.9, 2.8 Hz, 1H), 1.80 – 1.66 (m, 1H), 1.59 (d, *J* = 12.9 Hz, 1H), 1.44 – 1.18 (m, 3H), 0.96 (qd, *J* = 12.2, 3.6 Hz, 1H);

¹³C NMR (126 MHz, CDCl₃) δ 171.4, 134.7, 132.0, 130.6, 122.0, 94.8, 74.3, 58.9, 58.2, 46.9, 30.2, 26.4, 24.4; **IR (neat)** 2936, 2922, 2857, 1652, 1568, 1380, 1013, 763, 724, 529 cm⁻¹;

HRMS (+p APCI) calcd for C₁₅H₁₈BrCl₃NO₂ (M+H)+ 427.9581 found 427.95871;

2,2,2-Trichloroethyl (*R*)-2-phenyl-2-((*S*)-piperidin-2-yl)acetate (5b-*erythro*)

Following *GP-II* (*tert*-butyl piperidine-1-carboxylate as substrate, reacting 2,2,2-trichloroethyl 2-diazo-2-phenylacetate), the desired C2-product (mixture of both diastereomers) was obtained using 0-4% methanol in dichloromethane as eluting gradient in flash column chromatography.

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in $Rh_2(R$ -TCPTAD)_4catalyzed reaction (73% ee).

Yellow oil

 $\mathbf{Rf} = 0.30$ (5% methanol in dichloromethane);

 $[\alpha]^{20}_{D}$: +6.4° (c = 1.00, CHCl₃, 73% ee);

¹**H NMR** (500 MHz, CDCl₃) δ 7.49 – 7.41 (m, 2H), 7.39 – 7.28 (m, 3H), 4.76 (d, *J* = 12.0 Hz, 1H), 4.65 (d, *J* = 12.0 Hz, 1H), 3.61 (d, *J* = 10.2 Hz, 1H), 3.19 (td, *J* = 10.2, 2.4 Hz, 1H), 2.94 (d, *J* = 11.5 Hz, 1H), 2.53 (td, *J* = 11.5, 2.8 Hz, 1H), 1.88 (d, *J* = 14.2 Hz, 1H), 1.82 (d, *J* = 13.7 Hz, 1H), 1.62 – 1.56 (m, 1H), 1.50 – 1.36 (m, 2H), 1.36 – 1.26 (m, 1H);

¹³C NMR (126 MHz, CDCl₃) δ 170.9, 135.3, 129.1, 129.0, 128.3, 94.9, 74.2, 58.7, 58.5, 47.1, 31.2, 25.9, 24.5; **IR (neat)** 2934, 2854, 1748, 1454, 1332, 1289, 1138, 1115, 774, 718, 699 cm⁻¹;

HRMS (+**p APCI**) calcd for C₁₅H₁₉Cl₃NO₂ (M+H)+ 350.0476. found 350.04780;

HPLC (ODH column, 1% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 5.41 min (minor) and 5.94 min (major) 73% ee with Rh₂(*R*-TCPTAD)₄.

2,2,2-Trichloroethyl (R)-2-([1,1'-biphenyl]-4-yl)-2-((S)-piperidin-2-yl)acetate (5c-*erythro*)

Following *GP-II* (*tert*-butyl piperidine-1-carboxylate as substrate, reacting 2,2,2-trichloroethyl 2-([1,1'-biphenyl]-4-yl)-2-diazoacetate), the desired C2-product (mixture of both diastereomers) was obtained using 0-4% methanol in dichloromethane as eluting gradient in flash column chromatography.

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in $Rh_2(R$ -TCPTAD)_4catalyzed reaction (61% ee).

Yellow oil

 $\mathbf{Rf} = 0.36$ (5% methanol in dichloromethane);

 $[\alpha]^{20}_{D}$: -4.3° (c = 0.91, CHCl₃, 61% ee);

¹**H NMR** (500 MHz, CDCl₃) δ 7.62 – 7.56 (m, 4H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.44 (t, *J* = 7.6 Hz, 2H), 7.39 – 7.32 (m, 1H), 4.80 (d, *J* = 12.0 Hz, 1H), 4.66 (d, *J* = 12.0 Hz, 1H), 3.65 (d, *J* = 10.1 Hz, 1H), 3.23 (td, *J* = 10.1, 2.4 Hz, 1H), 2.97 (d, *J* = 11.6 Hz, 1H), 2.56 (td, *J* = 11.5, 2.8 Hz, 1H), 1.97 – 1.86 (m, 1H), 1.86 – 1.81 (m, 1H), 1.65 – 1.56 (m, 1H), 1.53 – 1.39 (m, 2H), 1.39 – 1.28 (m, 1H);

¹³**C NMR** (126 MHz, CDCl₃) δ 170.9, 141.2, 140.6, 134.3, 129.4, 129.0, 127.8, 127.6, 127.2, 94.9, 74.3, 58.8, 58.2, 47.2, 31.3, 26.0, 24.6;

IR (neat) 3030, 2935, 2854, 1749, 1487, 1451, 1331, 1139, 1117, 776, 741, 725, 698 cm⁻¹;

HRMS (+p APCI) calcd for C₂₁H₂₂Cl₃NO₂ (M+H)+ 426.0789 found 426.07943;

HPLC (obtained on its 2,2,2-trifluoroacetamide derivative) (ADH column, 3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 40 min, UV 230 nm) retention times of 23.99 min (major) and 27.95 min (minor) 61% ee with $Rh_2(R$ -TCPTAD)₄.

2,2,2-Trichloroethyl (*R*)-2-((*S*)-piperidin-2-yl)-2-(4-(trifluoromethyl)phenyl)acetate (5d-*erythro*)

Following *GP-II* (*tert*-butyl piperidine-1-carboxylate as substrate, reacting 2,2,2-trichloroethyl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate), the desired C2-product (mixture of both diastereomers) was obtained using 0-4% methanol in dichloromethane as eluting gradient in flash column chromatography.

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in $Rh_2(R$ -TCPTAD)_4catalyzed reaction (37% ee).

White solid:

 $\mathbf{Rf} = 0.40$ (5% methanol in dichloromethane);

 $[\alpha]^{20}_{D}$: +1.7° (c = 0.91, CHCl₃, 37% ee);

¹**H NMR** (500 MHz, CDCl₃) δ 7.63 (d, *J* = 8.7 Hz, 2H), 7.58 (d, *J* = 8.2 Hz, 2H), 4.77 (d, *J* = 12.0 Hz, 1H), 4.66 (d, *J* = 11.9 Hz, 1H), 3.69 (d, *J* = 9.9 Hz, 1H), 3.22 (td, *J* = 10.0, 2.4 Hz, 1H), 2.96 (d, *J* = 12.8 Hz, 1H), 2.54 (td, *J* = 11.5, 2.9 Hz, 1H), 1.92 – 1.77 (m, 2H), 1.65 – 1.54 (m, 1H), 1.48 – 1.36 (m, 2H), 1.35 – 1.26 (m, 1H);

¹³**C NMR** (126 MHz, CDCl₃) δ 170.3, 139.4, 130.6 (q, *J* = 32.6 Hz), 129.5, 126.0 (q, *J* = 3.8 Hz), 124.1 (q, *J* = 272.2 Hz), 94.7, 74.3, 58.8, 58.3, 47.1, 31.1, 25.9, 24.5;

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.67;

IR (neat) 2938, 2957, 1750, 1324, 1164, 1117, 1068, 1019, 846, 758, 718, 601, 571 cm⁻¹;

HRMS (+**p APCI**) calcd for C₁₆H₁₈Cl₃F₃NO₂ (M+H)+ 418.0350 found 418.03508;

HPLC (ODH column, 0.5% *i*-propanol in hexane, 1.5 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 3.84 min (major) and 4.58 min (minor) 37% ee with $Rh_2(R$ -TCPTAD)₄.

2,2,2-Trichloroethyl (R)-2-(3,4-dibromophenyl)-2-((S)-piperidin-2-yl)acetate (5e-*erythro*)

Following *GP-II* (*tert*-butyl piperidine-1-carboxylate as substrate, reacting 2,2,2-trichloroethyl 2-diazo-2-(3,4-dibromophenyl)acetate), the desired C2-product (mixture of both diastereomers) was obtained using 0-4% methanol in dichloromethane as eluting gradient in flash column chromatography.

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in $Rh_2(R$ -TCPTAD)₄-catalyzed reaction (37% ee).

Yellow oil

 $\mathbf{Rf} = 0.43$ (5% methanol in dichloromethane);

 $[\alpha]^{20}_{D}$: -4.3° (c = 1.00, CHCl₃, 29% ee);

¹**H** NMR (500 MHz, CDCl₃) δ 7.73 (d, *J* = 2.1 Hz, 1H), 7.60 (d, *J* = 8.2 Hz, 1H), 7.26 (dd, *J* = 8.4, 2.3 Hz, 1H), 4.79 (d, *J* = 12.0 Hz, 1H), 4.65 (d, *J* = 11.9 Hz, 1H), 3.55 (d, *J* = 9.8 Hz, 1H), 3.13 (td, *J* = 10.1, 2.3 Hz, 1H), 2.97 (d, *J* = 11.8 Hz, 1H), 2.55 (td, *J* = 11.6, 2.9 Hz, 1H), 1.87 – 1.78 (m, 2H), 1.65 – 1.58 (m, 1H), 1.46 – 1.32 (m, 2H), 1.32 – 1.23 (m, 1H);

¹³**C NMR** (126 MHz, CDCl₃) δ 170.0, 136.3, 134.1, 134.1, 129.2, 125.5, 124.8, 94.7, 74.3, 58.7, 57.6, 47.0, 31.1, 25.8, 24.4;

IR (neat) 2936, 2855, 1747, 1461, 1139, 1113, 1014, 907, 727, 571 cm⁻¹;

HRMS (+p APCI) calcd for C₁₅H₁₇Br₂Cl₃NO₂ (M+H)+ 505.8686 found 505.86927;

HPLC (ODH column, 0.5% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 7.69 min (major) and 8.32 min (minor) 29% ee with Rh₂(*R*-TCPTAD)₄.

2,2,2-Trichloroethyl (R)-2-(4-bromophenyl)-2-((S)-1-tosylpiperidin-2-yl)acetate

Following *GP-I* (1-tosylpiperidine as substrate, reacting 2,2,2-trichloroethyl 2-(4-bromophenyl)-2diazoacetate), the desired C2-product was obtained using 0-12% ethyl acetate in hexane as eluting gradient in flash column chromatography (a 2^{nd} column with 35-100% dichloromethane in hexane was conducted if the product is not pure enough).

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in $Rh_2(R$ -TPPTTL)₄-catalyzed reaction (76% ee).

White solid: m.p. 131-133 °C

 $\mathbf{Rf} = 0.45$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +24.9° (c = 1.00, CHCl₃, 76% ee);

¹**H** NMR (600 MHz, CDCl₃) δ 7.35 (d, *J* = 8.5 Hz, 2H), 7.23 (d, *J* = 8.5 Hz, 2H), 7.17 (d, *J* = 8.3 Hz, 2H), 7.11 (d, *J* = 8.0 Hz, 2H), 4.88 (dd, *J* = 11.6, 4.5 Hz, 1H), 4.84 (d, *J* = 12.0 Hz, 1H), 4.58 (d, *J* = 12.0 Hz, 1H), 4.22 (d, *J* = 11.7 Hz, 1H), 3.55 (d, *J* = 15.1 Hz, 1H), 2.92 – 2.82 (m, 1H), 2.40 (s, 3H), 1.88 – 1.80 (m, 1H), 1.80 – 1.66 (m, 3H), 1.54 – 1.46 (m, 2H).;

¹³**C NMR** (151 MHz, CDCl₃) δ 170.2, 143.2, 137.6, 134.0, 131.9, 130.5, 129.5, 127.2, 122.5, 94.6, 74.4, 54.5, 50.8, 41.3, 27.3, 24.2, 21.7, 18.9;

IR (neat) 2945, 2869, 1750, 1489, 1338, 1325, 1294, 1155, 1092, 932, 908, 816, 767, 718, 657, 552 cm⁻¹;

HRMS (+p APCI) calcd for C₂₂H₂₄BrCl₃SNO₄ (M+H)+ 581.9670 found 581.96713;

HPLC (ADH column, 5% *i*-propanol in hexane, 0.5 mL min⁻¹, 1 mg mL⁻¹, 80 min, UV 230 nm) retention times of 40.94 min (major) and 55.33 min (minor) 76% ee with $Rh_2(R$ -TPPTTL)₄.

2,2,2-Trichloroethyl (*R*)-2-(4-bromophenyl)-2-((*S*)-1-((4-bromophenyl)sulfonyl)piperidin-2-yl)acetate (6a)

Following *GP-I* (1-((4-bromophenyl)sulfonyl)piperidine as substrate, reacting 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate), the desired C2-product was obtained using 0-12% ethyl acetate in hexane as eluting gradient in flash column chromatography (a 2^{nd} column with 35-100% dichloromethane in hexane was conducted if the product is not pure enough).

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in $Rh_2(R$ -TCPTAD)₄- catalyzed reaction (97% ee).

White solid: m.p. 159-161 °C

 $\mathbf{Rf} = 0.44$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +29.4° (c = 1.00, CHCl₃, 97% ee);

¹**H** NMR (600 MHz, CDCl₃) δ 7.45 (d, J = 8.6 Hz, 2H), 7.38 (d, J = 8.5 Hz, 2H), 7.23 (d, J = 8.5 Hz, 2H), 7.11 (d, J = 8.6 Hz, 2H), 4.90 – 4.80 (m, 2H), 4.59 (d, J = 12.0 Hz, 1H), 4.21 (d, J = 11.8 Hz, 1H), 3.58 – 3.47 (m, 1H), 2.90 (ddd, J = 14.8, 12.5, 3.6 Hz, 1H), 1.89 – 1.80 (m, 1H), 1.81 – 1.67 (m, 3H), 1.60 – 1.50 (m, 2H);

¹³**C NMR** (151 MHz, CDCl₃) δ 169.9, 139.3, 133.8, 132.1, 131.9, 130.3, 128.6, 127.3, 122.5, 94.4, 74.3, 54.7, 50.5, 41.3, 27.3, 24.1, 18.7;

IR (neat) 2946, 2869, 1751, 1489, 1327, 1158, 1011, 933, 822, 768, 755, 609 cm⁻¹;

HRMS (+**p APCI**) calcd for C₂₁H₂₁Br₂Cl₃SNO₄ (M+H)+ 645.8618 found 645.86216;

HPLC (ADH column, 5% *i*-propanol in hexane, 0.5 mL min⁻¹, 1 mg mL⁻¹, 80 min, UV 230 nm) retention times of 44.54 min (major) and 66.29 min (minor) 97% ee with $Rh_2(R$ -TCPTAD)₄.

2,2,2-Trichloroethyl 2-(4-bromophenyl)-2-(1-((4-bromophenyl)sulfonyl)piperidin-2-yl)acetate

Characterization data for the *threo*-diastereomer was conducted on sample obtained in $Rh_2(R$ -TCPTAD)_4catalyzed reaction (ee not determined).

White solid, $\mathbf{Rf} = 0.45$ (20% ethyl acetate in hexane);

¹**H** NMR (600 MHz, CDCl₃) δ 7.73 (d, *J* = 8.8 Hz, 2H), 7.65 (d, *J* = 8.6 Hz, 2H), 7.50 (d, *J* = 8.6 Hz, 2H), 7.37 (d, *J* = 8.5 Hz, 2H), 4.79 (dd, *J* = 11.6, 4.7 Hz, 1H), 4.58 (d, *J* = 11.9 Hz, 1H), 4.45 (d, *J* = 11.9 Hz, 1H), 4.25 (d, *J* = 11.7 Hz, 1H), 3.80 (dd, *J* = 15.0, 4.7 Hz, 1H), 3.36 – 3.23 (m, 1H), 1.60 – 1.41 (m, 3H), 1.38 – 1.27 (m, 2H), 1.24 – 1.18 (m, 1H);

¹³**C NMR** (151 MHz, CDCl₃) δ169.7, 140.4, 133.4, 132.3, 132.2, 130.5, 128.8, 127.5, 122.6, 94.4, 74.5, 56.0, 50.8, 41.4, 24.5, 23.7, 18.0.

2,2,2-Trichloroethyl (R)-2-((S)-1-((4-bromophenyl)sulfonyl)piperidin-2-yl)-2-phenylacetate (6b)

Following *GP-I* (1-((4-bromophenyl)sulfonyl)piperidine as substrate, reacting 2,2,2-trichloroethyl 2-diazo-2-phenylacetate) with reaction under reflux dichloromethane (39 °C), the desired C2-product was obtained using 0-12% ethyl acetate in hexane as eluting gradient in flash column chromatography (a 2^{nd} column with 35-100% dichloromethane in hexane was conducted if the product is not pure enough).

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in $Rh_2(R$ -TPPTTL)₄-catalyzed reaction (52% ee).

White solid: m.p. 146-148 °C

 $\mathbf{Rf} = 0.48$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +9.9° (c = 1.00, CHCl₃, 52% ee);

¹**H NMR** (600 MHz, CDCl₃) δ 7.38 (d, *J* = 7.4 Hz, 2H), 7.33 (dd, *J* = 11.9, 7.8 Hz, 3H), 7.29 (d, *J* = 7.7 Hz, 2H), 7.00 (d, *J* = 8.4 Hz, 2H), 4.97 (dd, *J* = 11.9, 4.7 Hz, 1H), 4.86 (d, *J* = 11.9 Hz, 1H), 4.58 (d, *J* = 12.0 Hz, 1H), 4.26 (d, *J* = 11.7 Hz, 1H), 3.40 (d, *J* = 14.5, 1H), 2.96 – 2.87 (m, 1H), 1.92 – 1.70 (m, 4H), 1.61 – 1.53 (m, 2H);

¹³**C NMR** (151 MHz, CDCl₃) δ 170.4, 139.4, 135.0, 132.1, 129.0, 128.9, 128.3, 127.1, 94.7, 74.3, 54.6, 51.2, 41.3, 27.6, 24.2, 18.8;

IR (neat) 2947, 2868, 1749, 1575, 1470, 1455, 1319, 1287, 1156, 1089, 1067, 1010, 934, 907, 761 cm⁻¹;

HRMS (+p APCI) calcd for C₂₁H₂₂BrCl₃SNO₄ (M+H)+ 567.9513 found 567.95184;

HPLC (ODH column, 2% *i*-propanol in hexane, 0.6 mL min⁻¹, 1 mg mL⁻¹, 60 min, UV 230 nm) retention times of 39.84 min (minor) and 44.79 min (major) 52% ee with Rh₂(*R*-TPPTTL)₄.

2,2,2-Trichloroethyl (*R*)-2-([1,1'-biphenyl]-4-yl)-2-((*S*)-1-((4-bromophenyl)sulfonyl)piperidin-2yl)acetate (6c)

Following *GP-I* (1-((4-bromophenyl)sulfonyl)piperidine as substrate, reacting 2,2,2-trichloroethyl 2-([1,1'-biphenyl]-4-yl)-2-diazoacetate) with reaction under reflux dichloromethane (39 °C), the desired C2-product was obtained using 0-12% ethyl acetate in hexane as eluting gradient in flash column chromatography (a 2^{nd} column with 35-100% dichloromethane in hexane was conducted if the product is not pure enough).

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in $Rh_2(R$ -TPPTTL)₄- catalyzed reaction (62% ee).

White solid: m.p. 52-54 °C

 $\mathbf{Rf} = 0.46$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +31.3° (c = 1.00, CHCl₃, 62% ee);

¹**H** NMR (600 MHz, CDCl₃) δ 7.60 (dd, J = 8.3, 1.2 Hz, 2H), 7.51 (d, J = 8.4 Hz, 2H), 7.47 (t, J = 7.7 Hz, 2H), 7.43 (d, J = 8.3 Hz, 2H), 7.38 (tt, J = 6.9, 1.2 Hz, 1H), 7.27 (d, J = 8.7 Hz, 2H), 7.04 (d, J = 8.7 Hz, 2H), 4.99 (dd, J = 11.8, 4.8 Hz, 1H), 4.89 (d, J = 12.0 Hz, 1H), 4.59 (d, J = 12.0 Hz, 1H), 4.31 (d, J = 11.8 Hz, 1H), 3.50 – 3.43 (m, 1H), 2.95 (ddd, J = 14.7, 12.2, 3.8 Hz, 1H), 1.97 – 1.88 (m, 1H), 1.87 – 1.74 (m, 3H), 1.68 – 1.57 (m, 2H);

¹³C NMR (151 MHz, CDCl₃) δ 170.4, 141.3, 140.2, 139.4, 134.0, 132.0, 129.3, 129.1, 128.9, 127.8, 127.5, 127.1, 127.1, 94.7, 74.4, 54.6, 50.9, 41.4, 27.7, 24.4, 18.9;

IR (neat) 3031, 2947, 2868, 1749, 1575, 1487, 1326, 1156, 1089, 1068, 1009, 933, 908, 760, 729 cm⁻¹;

HRMS (+p APCI) calcd for C₂₇H₂₆BrCl₃SNO₄ (M+H)+ 643.9826 found 643.98294;

HPLC (R,R-Whelk column, 10% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 60 min, UV 230 nm) retention times of 41.77 min (minor) and 45.52 min (major) 62% ee with $Rh_2(R$ -TPPTTL)₄.

(R)-2-((S)-1-((4-bromophenyl)sulfonyl)piperidin-2-yl)-2-(4-

2,2,2-Trichloroethyl (trifluoromethyl)phenyl)acetate (6d)

Following *GP-I* (1-((4-bromophenyl)sulfonyl)piperidine as substrate, reacting 2,2,2-trichloroethyl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate), the desired C2-product was obtained using 0-12% ethyl acetate in hexane as eluting gradient in flash column chromatography (a 2^{nd} column with 35-100% dichloromethane in hexane was conducted if the product is not pure enough).

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in Rh₂(*R*-TPPTTL)₄-catalyzed reaction (74% ee).

White solid: m.p. 119-121 °C

 $\mathbf{Rf} = 0.43$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +11.8° (c = 1.00, CHCl₃, 74% ee);

¹**H** NMR (600 MHz, CDCl₃) δ 7.55 (d, *J* = 8.3 Hz, 2H), 7.51 (d, *J* = 8.3 Hz, 2H), 7.41 (d, *J* = 8.7 Hz, 2H), 7.11 (d, *J* = 8.6 Hz, 2H), 4.95 (dd, *J* = 11.8, 4.7 Hz, 1H), 4.85 (d, *J* = 12.0 Hz, 1H), 4.60 (d, *J* = 12.0 Hz, 1H), 4.33 (d, *J* = 11.7 Hz, 1H), 3.54 – 3.46 (m, 1H), 2.90 (ddd, *J* = 14.9, 12.8, 3.4 Hz, 1H), 1.89 – 1.81 (m 1H), 1.80 – 1.71 (m, 3H), 1.59 – 1.49 (m, 2H);

¹³**C NMR** (151 MHz, CDCl₃) δ 169.6, 139.2, 138.7, 132.1, 130.6 (q, *J* = 32.6 Hz), 129.2, 128.6, 127.4, 125.7 (q, *J* = 3.8 Hz), 123.9 (q, *J* = 272.2 Hz), 94.4, 74.3, 54.5, 51.0, 41.3, 27.1, 23.9, 18.6;

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.45;

IR (neat) 2948, 2870, 1750, 1575, 1322, 1291, 1156, 1122, 1068, 907, 829, 766, 752, 730, 609, 535 cm⁻¹;

HRMS (+p APCI) calcd for C₂₂H₂₁BrCl₃F₃SNO₄ (M+H)+ 635.9387 found 635.93908;

HPLC (ADH column, 5% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 40 min, UV 230 nm) retention times of 26.67 min (major) and 29.89 min (minor) 74% ee with Rh₂(*R*-TPPTTL)₄.

(R)-2-((S)-1-((4-bromophenyl)sulfonyl)piperidin-2-yl)-2-(3,4-

2,2,2-Trichloroethyl dibromophenyl)acetate (6e)

Following *GP-I* (1-((4-bromophenyl)sulfonyl)piperidine as substrate, reacting 2,2,2-trichloroethyl 2-diazo-2-(3,4-dibromophenyl)acetate), the desired C2-product was obtained using 0-12% ethyl acetate in hexane as eluting gradient in flash column chromatography (a 2^{nd} column with 35-100% dichloromethane in hexane was conducted if the product is not pure enough).

Characterization data for the *erythro*-diastereomer was conducted on sample obtained in $Rh_2(R$ -TPPTTL)₄- catalyzed reaction (67% ee).

White solid: m.p. 134-136 °C

 $\mathbf{Rf} = 0.40 \ (20\% \text{ ethyl acetate in hexane});$

 $[\alpha]^{20}_{D}$: +11.4° (c = 1.00, CHCl₃, 67% ee);

¹**H** NMR (600 MHz, CDCl₃) δ 7.59 (d, J = 2.2 Hz, 1H), 7.50 – 7.42 (m, 3H), 7.22 – 7.17 (m, 3H), 4.88 (d, J = 11.9 Hz, 1H), 4.81 (dd, J = 11.7, 4.7 Hz, 1H), 4.58 (d, J = 12.0 Hz, 1H), 4.18 (d, J = 11.7 Hz, 1H), 3.68 – 3.61 (m, 1H), 2.92 (ddd, J = 14.7, 13.0, 3.0 Hz, 1H), 1.87 – 1.79 (m, 1H), 1.77 – 1.70 (m, 3H), 1.63 – 1.56 (m, 1H), 1.54 – 1.46 (m, 1H);

¹³C NMR (151 MHz, CDCl₃) δ 169.4, 139.5, 135.5, 133.8, 133.8, 132.1, 128.6, 128.2, 127.4, 125.1, 124.9, 94.3, 74.3, 55.0, 50.2, 41.4, 27.3, 24.2, 18.6;

IR (neat) 2945, 2869, 1749, 1575, 1464, 1326, 1155, 1089, 1068, 1010, 908, 821, 764, 729, 609 cm⁻¹;

HRMS (+**p APCI**) calcd for C₂₁H₂₀Br₃Cl₃SNO₄ (M+H)+ 723.7723 found 723.77275;

HPLC (ADH column, 5% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 60 min, UV 230 nm) retention times of 28.28 min (major) and 37.17 min (minor) 67% ee with Rh₂(*R*-TPPTTL)₄.

2,2,2-Trichloroethyl (S)-2-(4-bromophenyl)-2-(1-tosylpiperidin-4-yl)acetate (13b)

Following *GP-1* (1-tosylpiperidine as substrate, reacting 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate, $Rh_2(S-2-Cl-5-BrTPCP)_4$ as catalyst), the desired C4-product was obtained using 0-10% ethyl acetate in hexane as eluting gradient in flash column chromatography.

Characterization data was conducted on sample obtained in $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction (96% ee).

White solid: m.p. 61-63 °C

 $\mathbf{Rf} = 0.38$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: -40.5° (c = 1.00, CHCl₃, 96% ee);

¹**H** NMR (600 MHz, CDCl₃) δ 7.61 (d, *J* = 8.2 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.31 (d, *J* = 7.8 Hz, 2H), 7.16 (d, *J* = 8.5 Hz, 2H), 4.74 (d, *J* = 12.0 Hz, 1H), 4.61 (d, *J* = 12.0 Hz, 1H), 3.85 – 3.78 (m, 1H), 3.75 – 3.67 (m, 1H), 3.34 (d, *J* = 10.6 Hz, 1H), 2.43 (s, 3H), 2.27 (td, *J* = 12.0, 2.7 Hz, 1H), 2.13 (td, *J* = 12.0, 2.7 Hz, 1H), 2.00 – 1.87 (m, 2H), 1.48 (qd, *J* = 12.2, 4.2 Hz, 1H), 1.34 (dp, *J* = 13.3, 2.8 Hz, 1H), 1.18 (qd, *J* = 12.1, 4.3 Hz, 1H);

¹³**C NMR** (151 MHz, CDCl₃) δ 171.0, 143.7, 134.9, 133.0, 132.1, 130.3, 129.8, 127.9, 122.2, 94.7, 74.3, 56.9, 46.2, 38.5, 30.4, 29.0, 21.7;

IR (neat) 2948, 2924, 2848, 1749, 1489, 1355, 1338, 1165, 932, 817, 726, 549 cm⁻¹;

HRMS (+p APCI) calcd for C₂₂H₂₄BrCl₃SNO₄ (M+H)+ 581.9670 found 581.96752;

HPLC (OD column, 10% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 60 min, UV 230 nm) retention times of 21.61 min (major) and 37.29 min (minor) 96% ee with Rh₂(S-2-Cl-5-BrTPCP)₄.

2,2,2-Trichloroethyl 2-(4-bromophenyl)-3-(4-(piperidin-1-ylsulfonyl)phenyl)propanoate

Following *GP-I* (1-tosylpiperidine as substrate, reacting 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate, $Rh_2(S-2-Cl-5-BrTPCP)_4$ as catalyst), the primary benzylic insertion byproduct was obtained using 0-10% ethyl acetate in hexane as eluting gradient in flash column chromatography.

Characterization data was conducted on sample obtained in $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction (ee not determined).

White solid: **m.p.** 42-44 °C

 $\mathbf{Rf} = 0.33$ (20% ethyl acetate in hexane);

¹**H** NMR (600 MHz, CDCl₃) δ 7.63 (d, *J* = 8.4 Hz, 2H), 7.45 (d, *J* = 8.4 Hz, 2H), 7.28 (d, *J* = 8.3 Hz, 2H), 7.20 (d, *J* = 8.5 Hz, 2H), 4.72 (d, *J* = 12.0 Hz, 1H), 4.64 (d, *J* = 12.0 Hz, 1H), 3.98 (dd, *J* = 8.6, 7.1 Hz, 1H), 3.52 (dd, *J* = 13.9, 8.6 Hz, 1H), 3.14 (dd, *J* = 13.9, 7.1 Hz, 1H), 2.94 (t, *J* = 5.5 Hz, 4H), 1.63 (p, *J* = 5.9 Hz, 4H), 1.46 – 1.39 (m, 2H);

¹³**C NMR** (151 MHz, CDCl₃) δ 171.0, 143.2, 136.0, 135.0, 132.1, 129.9, 129.7, 128.0, 122.2, 94.7, 74.3, 52.5, 47.1, 39.1, 25.3, 23.7;

IR (neat) 2941, 2854, 1751, 1489, 1340, 1166, 1149, 930, 720, 588, 564 cm⁻¹;

HRMS (+p APCI) calcd for C₂₂H₂₄BrCl₃SNO₄ (M+H)+ 581.9670 found 581.96710;

2,2,2-Trichloroethyl (S)-2-(4-bromophenyl)-2-(1-((4-bromophenyl)sulfonyl)piperidin-4-yl)acetate (13a)

Following *GP-I* (1-((4-bromophenyl)sulfonyl)piperidine as substrate, reacting 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate, $Rh_2(S-2-Cl-5-BrTPCP)_4$ as catalyst), the desired C4-product was obtained using 0-10% ethyl acetate in hexane as eluting gradient in flash column chromatography.

Characterization data was conducted on sample obtained in Rh₂(S-2-Cl-5-BrTPCP)₄-catalyzed reaction (90% ee).

White solid: m.p. 154-156 °C

 $\mathbf{Rf} = 0.46$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: -29.1° (c = 1.00, CHCl₃, 90% ee);

¹**H** NMR (600 MHz, CDCl₃) δ 7.67 (d, *J* = 8.6 Hz, 2H), 7.59 (d, *J* = 8.6 Hz, 2H), 7.44 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 4.75 (d, *J* = 12.0 Hz, 1H), 4.62 (d, *J* = 12.0 Hz, 1H), 3.83 (ddt, *J* = 11.7, 4.6, 2.6 Hz, 1H), 3.71 (ddt, *J* = 11.7, 4.5, 2.5 Hz, 1H), 3.35 (d, *J* = 10.6 Hz, 1H), 2.30 (td, *J* = 12.0, 2.7 Hz, 1H), 2.17 (td, *J* = 12.0, 2.7 Hz, 1H), 2.03 – 1.87 (m, 2H), 1.48 (qd, *J* = 12.3, 4.3 Hz, 1H), 1.36 (dt, *J* = 13.4, 2.7 Hz, 1H), 1.19 (qd, *J* = 12.2, 4.3 Hz, 1H);

¹³**C NMR** (151 MHz, CDCl₃) δ 170.8, 135.1, 134.6, 132.3, 132.0, 130.1, 129.1, 127.9, 122.1, 94.5, 74.1, 56.7, 46.1, 46.0, 38.3, 30.2, 28.8;

IR (neat) 2949, 2849, 1749, 1575, 1489, 1358, 1341, 1166, 1011, 934, 825, 750, 595 cm⁻¹;

HRMS (+p APCI) calcd for C₂₁H₂₁Br₂Cl₃SNO₄ (M+H)+ 645.8618 found 645.86207;

HPLC (OD column, 15% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 60 min, UV 230 nm) retention times of 21.66 min (major) and 34.30 min (minor) 90% ee with Rh₂(S-2-Cl-5-BrTPCP)₄.

2,2,2-Trichloroethyl (S)-2-(4-bromophenyl)-2-(1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidin-4yl)acetate (13c)

Following *GP-I* (1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidine as substrate, reacting 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate, $Rh_2(S-2-Cl-5-BrTPCP)_4$ as catalyst), the desired C4-product was obtained using 0-10% ethyl acetate in hexane as eluting gradient in flash column chromatography.

Characterization data was conducted on sample obtained in $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction (96% ee).

White solid: **m.p.** 158-160 °C

 $\mathbf{Rf} = 0.49$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: -29.1° (c = 1.00, CHCl₃, 96% ee);

¹**H** NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 8.2 Hz, 2H), 7.80 (d, *J* = 8.2 Hz, 2H), 7.45 (d, *J* = 8.5 Hz, 2H), 7.16 (d, *J* = 8.4 Hz, 2H), 4.75 (d, *J* = 12.0 Hz, 1H), 4.62 (d, *J* = 12.0 Hz, 1H), 3.88 (ddt, *J* = 11.7, 4.4, 2.4 Hz, 1H), 3.76 (ddq, *J* = 11.7, 4.5, 2.5 Hz, 1H), 3.35 (d, *J* = 10.6 Hz, 1H), 2.34 (td, *J* = 12.0, 2.7 Hz, 1H), 2.20 (td, *J* = 12.0, 2.7 Hz, 1H), 2.07 – 1.88 (m, 2H), 1.50 (qd, *J* = 12.3, 4.3 Hz, 1H), 1.38 (dt, *J* = 13.4, 3.0 Hz, 1H), 1.20 (qd, *J* = 12.2, 4.3 Hz, 1H);

¹³**C NMR** (151 MHz, CDCl₃) δ 170.8, 139.8, 134.6, 134.5 (q, *J* = 33.0 Hz), 132.1, 130.1, 128.1, 126.2 (q, *J* = 3.6 Hz), 123.2 (d, *J* = 272.9 Hz), 122.2, 94.5, 74.1, 56.7, 46.1, 46.0, 38.2, 30.2, 28.8;

¹⁹**F NMR** (282 MHz, CDCl₃) δ -63.12;

IR (neat) 2951, 1750, 1489, 1404, 1323, 1170, 1134, 1062, 726, 596 cm⁻¹;

HRMS (+p APCI) calcd for C₂₂H₂₁BrCl₃F₃SNO₄ (M+H)+ 635.9387 found 635.93897;

HPLC (R,R-Whelk column, 20% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 60 min, UV 230 nm) retention times of 31.20 min (major) and 50.10 min (minor) 96% ee with $Rh_2(S-2-Cl-5-BrTPCP)_4$.

$\label{eq:2.2.2.1} 2,2.2-Trichloroethyl \quad (R)-2-(4-bromophenyl)-2-((S)-1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidin-2-yl) acetate$

Following *GP-I* (1-((4-(trifluoromethyl)phenyl)sulfonyl)piperidine as substrate, reacting 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate, $Rh_2(S-2-Cl-5-BrTPCP)_4$ as catalyst), the desired C2-product was obtained using 0-10% ethyl acetate in hexane as eluting gradient in flash column chromatography.

Characterization data was conducted on sample obtained in $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction (81% ee).

White solid: m.p. 136-138 °C

 $\mathbf{Rf} = 0.45$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +22.5° (c = 0.66, CHCl₃, 81% ee);

¹**H NMR** (600 MHz, CDCl₃) δ 7.58 (d, *J* = 8.2 Hz, 2H), 7.37 (dd, *J* = 10.4, 8.4 Hz, 4H), 7.23 (d, *J* = 8.5 Hz, 2H), 4.89 (dd, *J* = 11.6, 4.8 Hz, 1H), 4.85 (d, *J* = 12.0 Hz, 1H), 4.59 (d, *J* = 12.0 Hz, 1H), 4.22 (d, *J* = 11.7 Hz, 1H), 3.56 (dd, *J* = 14.9, 4.4 Hz, 1H), 2.93 (ddd, *J* = 14.7, 12.9, 3.1 Hz, 1H), 1.92 – 1.70 (m, 4H), 1.60 (d, *J* = 13.7 Hz, 1H), 1.58 – 1.48 (m, 2H);

¹³**C NMR** (151 MHz, CDCl₃) δ 169.8, 143.9, 134.0 (d, J = 33.1 Hz), 133.7, 131.9, 130.3, 127.5, 125.9 (q, *J* = 3.8 Hz), 123.2 (q, *J* = 273.0 Hz), 122.5, 94.4, 74.3, 54.9, 50.5, 41.4, 27.4, 24.2, 18.6;

¹⁹**F NMR** (282 MHz, CDCl₃) δ -62.99;

IR (neat) 2947, 1752, 1489, 1323, 1161, 1136, 1063, 934, 720 cm⁻¹;

HRMS (+**p APCI**) calcd for C₂₂H₂₁BrCl₃F₃SNO₄ (M+H)+ 635.9387 found 635.93888;

HPLC (ADH column, 5% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 60 min, UV 230 nm) retention times of 16.01 min (major) and 31.83 min (minor) 81% ee with Rh₂(S-2-Cl-5-BrTPCP)₄.

2,2,2-Trichloroethyl (S)-2-(4-bromophenyl)-2-(1-(methylsulfonyl)piperidin-4-yl)acetate (13d)

Following *GP-I* (1-(methylsulfonyl)piperidine as substrate, reacting 2,2,2-trichloroethyl 2-(4-bromophenyl)-2diazoacetate, $Rh_2(S-2-Cl-5-BrTPCP)_4$ as catalyst), the desired C4-product was obtained using 0-10% ethyl acetate in hexane as eluting gradient in flash column chromatography.

Characterization data was conducted on sample obtained in $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction (97% ee).

White solid: m.p. 170-172 °C

 $\mathbf{Rf} = 0.08$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +18.6° (c = 1.00, CHCl₃, 97% ee);

¹**H NMR** (600 MHz, CDCl₃) δ 7.48 (d, *J* = 8.4 Hz, 2H), 7.22 (d, *J* = 8.5 Hz, 2H), 4.78 (d, *J* = 12.0 Hz, 1H), 4.65 (d, *J* = 11.9 Hz, 1H), 3.88 – 3.80 (m, 1H), 3.77 – 3.70 (m, 1H), 3.40 (d, *J* = 10.7 Hz, 1H), 2.76 (s, 3H), 2.70 (td, *J* = 12.1, 2.7 Hz, 1H), 2.57 (td, *J* = 12.1, 2.7 Hz, 1H), 2.20 – 2.12 (m, 2H), 1.98 (dt, *J* = 13.1, 3.0 Hz, 1H), 1.49 (qd, *J* = 12.1, 4.3 Hz, 1H), 1.42 (dt, *J* = 13.3, 2.2 Hz, 1H), 1.20 (qd, *J* = 12.1, 4.3 Hz, 1H);

¹³**C NMR** (151 MHz, CDCl₃) δ 170.9, 134.7, 132.1, 130.2, 122.2, 94.6, 74.2, 56.8, 45.9, 45.8, 38.5, 34.8, 30.5, 29.0;

IR (neat) 3023, 2948, 2851, 1748, 1489, 1332, 1255, 1216, 1155, 957, 934, 827, 759, 723, 517, 505 cm⁻¹;

HRMS (+p APCI) calcd for C₁₆H₂₀BrCl₃SNO₄ (M+H)+ 505.9357 found 505.93616;

HPLC (R,R-Whelk column, 20% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 80 min, UV 230 nm) retention times of 41.56 min (major) and 53.30 min (minor) 97% ee with $Rh_2(S-2-Cl-5-BrTPCP)_4$.

2,2,2-Trichloroethyl (R)-2-(4-bromophenyl)-2-((S)-1-(methylsulfonyl)piperidin-2-yl)acetate

Following *GP-I* (1-(methylsulfonyl)piperidine as substrate, reacting 2,2,2-trichloroethyl 2-(4-bromophenyl)-2diazoacetate, $Rh_2(S$ -2-Cl-5-BrTPCP)₄ as catalyst), the desired C2-product was obtained using 0-10% ethyl acetate in hexane as eluting gradient in flash column chromatography.

Characterization data was conducted on sample obtained in $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction (80% ee).

White solid: **m.p.** 84-86 °C

 $\mathbf{Rf} = 0.18$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +11.8° (c = 1.00, CHCl₃, 80% ee);

¹**H** NMR (600 MHz, CDCl₃) δ 7.51 (d, *J* = 8.5 Hz, 2H), 7.38 (d, *J* = 8.5 Hz, 2H), 4.91 – 4.82 (m, 2H), 4.61 (d, *J* = 12.0 Hz, 1H), 4.24 (d, *J* = 11.8 Hz, 1H), 3.56 (dd, *J* = 14.7, 4.4 Hz, 1H), 2.95 – 2.86 (m, 1H), 2.06 (s, 3H), 1.92 – 1.84 (m, 1H), 1.84 – 1.76 (m, 3H), 1.72 – 1.59 (m, 2H);

¹³**C NMR** (151 MHz, CDCl₃) δ170.0, 134.6, 132.2, 130.8, 122.7, 94.6, 74.4, 55.1, 50.7, 41.0, 39.9, 28.2, 25.2, 18.9;

IR (neat) 2938, 2856, 1749, 1489, 1320, 1146, 1053, 959, 940, 777, 715, 519 cm⁻¹;

HRMS (+p APCI) calcd for C₁₆H₂₀BrCl₃SNO₄ (M+H)+ 505.9357 found 505.93578;

HPLC (ADH column, 5% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 45 min, UV 230 nm) retention times of 28.79 min (major) and 33.36 min (minor) 80% ee with Rh₂(S-2-Cl-5-BrTPCP)₄.

2,2,2-Trichloroethyl (S)-2-(4-bromophenyl)-2-(1-(2-(4-bromophenyl)-2-oxoacetyl)piperidin-4-yl)acetate (13e)

Following *GP-I* (1-(4-bromophenyl)-2-(piperidin-1-yl)ethane-1,2-dione as substrate, reacting 2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate, $Rh_2(S-2-Cl-5-BrTPCP)_4$ as catalyst) with reaction under reflux dichloromethane (39 °C) and 1.5: 1 (diazoacetate: protected-piperidine), the desired C4-product was obtained using 0-10% ethyl acetate in hexane as eluting gradient in flash column chromatography.

Characterization data was conducted on sample obtained in $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction (97% ee) as mixture with 1:1 ratio of rotamers.

White solid: m.p. 58-60 °C

 $\mathbf{Rf} = 0.31$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +46.1° (c = 1.00, CHCl₃, 97% ee);

¹**H** NMR (600 MHz, CDCl₃) (*mixture of both rotamers with* 1:1 *ratio*) δ 7.79 (dd, J = 13.0, 8.5 Hz, 2H), 7.65 (dd, J = 9.9, 8.5 Hz, 2H), 7.47 (dd, J = 23.4, 8.5 Hz, 2H), 7.22 (dd, J = 13.7, 8.4 Hz, 2H), 4.81 (d, J = 12.0 Hz, 0.5H), 4.75 (d, J = 12.0 Hz, 0.5H), 4.76 (m, 0.5H), 4.73 – 4.67 (m, 0.5H), 4.64 (t, J = 11.9 Hz, 1H), 4.61 – 4.54 (m, 0.5H), 3.60 (dt, J = 13.7, 2.2 Hz, 0.5H), 3.48 (dt, J = 13.7, 2.1 Hz, 0.5H), 3.41 (dd, J = 10.6, 3.1 Hz, 1H), 3.17 – 3.07 (m, 0.5H), 3.03 – 2.93 (m, 0.5H), 2.84 (td, J = 13.1, 2.9 Hz, 0.5H), 2.70 (td, J = 13.0, 2.9 Hz, 0.5H), 2.35 (qt, J = 11.5, 3.7 Hz, 1H), 2.04 (dt, J = 13.4, 2.8 Hz, 0.5H), 1.89 (dt, J = 13.1, 2.9 Hz, 0.5H), 1.52 – 1.28 (m, 2H), 1.14 (qd, J = 12.5, 4.4 Hz, 0.5H), 1.06 (qd, J = 12.5, 4.3 Hz, 0.5H);

¹³**C NMR** (151 MHz, CDCl₃) (*mixture of both rotamers with 1:1 ratio*) δ 190.3, (190.3), 170.8, (170.8), 164.7, (164.7), 134.5, (134.5), 132.4, (132.4), 132.1, (132.1), 131.9, (131.9), 131.0, (130.9), 130.3, (130.3), 130.1, (130.1), 122.2, (122.2), 94.6, (94.5), 74.2, (74.1), 56.8, (56.8), 45.9, (45.8), 41.3, (41.2), 39.1, (39.0), 31.1, (30.5), 29.8, (29.0);

IR (neat) 2949, 2867, 1749, 1681, 1643, 1585, 1488, 1449, 1399, 1267, 1228, 1140, 1071, 762 cm⁻¹;

HRMS (+**p APCI**) calcd for C₂₂H₂₁Br₂Cl₃NO₄ (M)+ 637.8897 found 637.88974;

HPLC (ADH column, 5% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 80 min, UV 230 nm) retention times of 49.67 min (major) and 60.07 min (minor) 97% ee with Rh₂(S-2-Cl-5-BrTPCP)₄.

2,2,2-Trichloroethyl (S)-2-(1-(2-(4-bromophenyl)-2-oxoacetyl)piperidin-4-yl)-2-(4-(trifluoromethyl)phenyl)acetate (13f)

Following *GP-I* (1-(4-bromophenyl)-2-(piperidin-1-yl)ethane-1,2-dione as substrate, reacting 2,2,2-trichloroethyl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate, $Rh_2(S-2-Cl-5-BrTPCP)_4$ as catalyst) with reaction under reflux dichloromethane (39 °C) and 1.5: 1 (diazoacetate: protected-piperidine), the desired C4-product was obtained using 0-10% ethyl acetate in hexane as eluting gradient in flash column chromatography.

Characterization data was conducted on sample obtained in $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction (96% ee) as mixture with 1:1 ratio of rotamers.

White solid: m.p. 50-52 °C

 $\mathbf{Rf} = 0.37$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +42.3° (c = 1.00, CHCl₃, 96% ee);

¹**H** NMR (600 MHz, CDCl₃) (*mixture of both rotamers with 1:1 ratio*) δ 7.79 (dd, J = 15.6, 8.6 Hz, 2H), 7.68 – 7.62 (m, 3H), 7.62 – 7.58 (m, 1H), 7.48 (dd, J = 12.7, 8.1 Hz, 2H), 4.83 (d, J = 12.0 Hz, 0.5H), 4.77 (d, J = 12.0 Hz, 0.5H), 4.72 (ddt, J = 13.4, 4.6, 2.4 Hz, 0.5H), 4.68 – 4.58 (m, 1.5H), 3.62 (ddt, J = 13.8, 4.4, 2.3 Hz, 0.5H), 3.53 (dd, J = 10.6, 3.4 Hz, 1H), 3.49 (ddt, J = 13.9, 4.6, 2.4 Hz, 0.5H), 3.13 (ddd, J = 13.7, 12.4, 2.9 Hz, 0.5H), 2.99 (ddd, J = 13.8, 12.3, 2.8 Hz, 0.5H), 2.89 – 2.81 (m, 0.5H), 2.71 (ddd, J = 13.4, 12.5, 3.0 Hz, 0.5H), 2.46 – 2.36 (m, 1H), 2.07 (dt, J = 13.5, 2.8 Hz, 0.5H), 1.92 (dt, J = 13.1, 3.0 Hz, 0.5H), 1.51 – 1.35 (m, 1.5H), 1.29 (dt, J = 13.3, 3.0 Hz, 0.5H), 1.17 (dtd, J = 13.6, 12.3, 4.5 Hz, 0.5H), 1.09 (dtd, J = 13.3, 12.2, 4.4 Hz, 0.5H);

¹³**C NMR** (151 MHz, CDCl₃) (*mixture of both rotamers with 1:1 ratio*) δ 190.5, (190.5), 170.7, (170.7), 164.9, (164.9), 139.7, (139.7), 132.6, (132.6), 132.1, (132.0), 131.1, (131.1), 130.7 (d, *J* = 32.7 Hz), (130.6 (d, *J* = 32.7 Hz)), 130.5, (130.5), 129.1, 126.1 (q, *J* = 3.7 Hz), (126.0 (q, *J* = 3.9 Hz)), 124.0 (d, *J* = 272.2 Hz), (124.0 (d, *J* = 272.2 Hz)), 94.6, (94.6), 74.4, (74.3), 57.4, (57.4), 46.0, (46.0), 41.4, (41.3), 39.4, (39.3), 31.3, (30.6), 30.0, (29.2);

IR (neat) 2950, 2869, 1751, 1682, 1643, 1586, 1325, 1127, 1068, 760 cm⁻¹;

HRMS (+p APCI) calcd for C₂₄H₂₁BrCl₃F₃NO₄ (M+H)+ 627.9666 found 627.96735;

HPLC (ODH column, 10% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 45 min, UV 230 nm) retention times of 18.09 min (minor) and 28.06 min (major) 96% ee with $Rh_2(S-2-Cl-5-BrTPCP)_4$.

2,2,2-Trichloroethyl (S)-2-(4-acetoxyphenyl)-2-(1-(2-(4-bromophenyl)-2-oxoacetyl)piperidin-4yl)acetate (13g)

Following *GP-I* (1-(4-bromophenyl)-2-(piperidin-1-yl)ethane-1,2-dione as substrate, reacting 2,2,2-trichloroethyl 2-(4-acetoxyphenyl)-2-diazoacetate, $Rh_2(S-2-Cl-5-BrTPCP)_4$ as catalyst) with reaction under reflux dichloromethane (39 °C) and 1.5: 1 (diazoacetate: protected-piperidine), the desired C4-product was obtained using 0-10% ethyl acetate in hexane as eluting gradient in flash column chromatography.

Characterization data was conducted on sample obtained in $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction (75% ee) as mixture with 1:1 ratio of rotamers.

White solid: m.p. 55-58 °C

 $\mathbf{Rf} = 0.18$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +29.8° (c = 0.45, CHCl₃, 75% ee);

¹**H** NMR (600 MHz, CDCl₃) (*mixture of both rotamers with 1:1 ratio*) δ 7.79 (dd, J = 13.8, 8.6 Hz, 2H), 7.66 (dd, J = 10.2, 8.6 Hz, 2H), 7.35 (dd, J = 14.0, 8.6 Hz, 2H), 7.07 (dd, J = 25.2, 8.6 Hz, 2H), 4.85 (d, J = 12.0 Hz, 0.5H), 4.79 (d, J = 12.0 Hz, 0.5H), 4.71 (ddt, J = 13.4, 4.5, 2.2 Hz, 0.5H), 4.64 – 4.57 (m, 1.5H), 3.60 (ddt, J = 13.7, 4.4, 2.3 Hz, 0.5H), 3.51 – 3.41 (m, 1.5H), 3.13 (ddd, J = 13.8, 12.4, 2.9 Hz, 0.5H), 2.98 (ddd, J = 13.8, 12.3, 2.8 Hz, 0.5H), 2.84 (td, J = 13.1, 3.0 Hz, 0.5H), 2.71 (td, J = 13.1, 3.0 Hz, 0.5H), 2.40 – 2.32 (m, 1H), 2.31 (s, 1.5H), 2.29 (s, 1.5H), 2.05 (dt, J = 13.4, 3.1 Hz, 0.5H), 1.90 (dt, J = 13.0, 2.9 Hz, 0.5H), 1.51 (dt, J = 13.0, 2.7 Hz, 0.5H), 1.48 – 1.31 (m, 1.5H), 1.15 (dtd, J = 13.7, 12.3, 4.4 Hz, 0.5H), 1.06 (qd, J = 12.5, 4.3 Hz, 0.5H);

¹³**C NMR** (151 MHz, CDCl₃) (*mixture of both rotamers with 1:1 ratio*) δ 190.4, (190.4), 171.1, (171.0), 169.3, (169.3), 164.8, (164.7), 150.5, (150.4), 133.0, (133.0), 132.5, (132.4), 131.9, (131.9), 131.0, (131.0), 130.3, (130.3), 129.5, (129.5), 122.1, (122.0), 94.6, (94.6), 74.2, (74.1), 56.8, 46.0, (45.9), 41.3, (41.2), 39.3, (39.2), 31.1, (30.5), 29.9, (29.1), 21.2, (21.1);

IR (neat) 2950, 1750, 1682, 1641, 1586, 1506, 1370, 1201, 1170, 1139, 911, 728 cm⁻¹;

HRMS (+**p APCI**) calcd for C₂₅H₂₄BrCl₃NO₆ (M+H)+ 617.9847 found 617.98471;

HPLC (ODH column, 15% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 80 min, UV 230 nm) retention times of 23.99 min (minor) and 45.95 min (major) 75% ee with $Rh_2(S-2-Cl-5-BrTPCP)_4$.

(S)-2-(1-(2-(4-bromophenyl)-2-oxoacetyl)piperidin-4-yl)-2-(3,4-

2,2,2-trichloroethyl dibromophenyl)acetate (13h)

Following *GP-I* (1-(4-bromophenyl)-2-(piperidin-1-yl)ethane-1,2-dione as substrate, reacting 2,2,2-trichloroethyl 2-diazo-2-(3,4-dibromophenyl)acetate, $Rh_2(S-2-Cl-5-BrTPCP)_4$ as catalyst) with reaction under reflux dichloromethane (39 °C) and 1.5: 1 (diazoacetate: protected-piperidine), the desired C4-product was obtained using 0-10% ethyl acetate in hexane as eluting gradient in flash column chromatography.

Characterization data was conducted on sample obtained in $Rh_2(S-2-Cl-5-BrTPCP)_4$ -catalyzed reaction (98% ee) as mixture with 1:1 ratio of rotamers.

White solid: **m.p.** 62-64 °C

 $\mathbf{Rf} = 0.31$ (20% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +42.6° (c = 1.00, CHCl₃, 98% ee);

¹**H** NMR (500 MHz, CDCl₃) (*mixture of both rotamers with 1:1 ratio*) δ 7.79 (dd, *J* = 10.9, 8.6 Hz, 2H), 7.68 – 7.55 (m, 4H), 7.15 (ddd, *J* = 9.3, 8.2, 2.1 Hz, 1H), 4.84 (d, *J* = 11.9 Hz, 0.5H), 4.78 (d, *J* = 12.0 Hz, 0.5H), 4.74 – 4.68 (m, 0.5H), 4.68 – 4.58 (m, 1.5H), 3.65 – 3.57 (m, 0.5H), 3.55 – 3.46 (m, 0.5H), 3.39 (dd, *J* = 10.6, 1.9 Hz, 1H), 3.12 (ddd, *J* = 13.8, 12.3, 2.9 Hz, 0.5H), 3.00 (ddd, *J* = 13.8, 12.3, 2.8 Hz, 0.5H), 2.87 – 2.78 (m, 0.5H), 2.77 – 2.67 (m, 0.5H), 2.39 – 2.27 (m, 1H), 2.07 – 1.98 (m, 0.5H), 1.91 – 1.84 (m, 0.5H), 1.53 – 1.47 (m, 0.5H), 1.47 – 1.30 (m, 1.5H), 1.13 (dqd, *J* = 42.3, 12.5, 4.4 Hz, 1H);

¹³**C NMR** (126 MHz, CDCl₃) (*mixture of both rotamers with 1:1 ratio*) δ 190.3, (190.3), 170.3, (170.3), 164.7, (164.7), 136.4, (136.4), 134.1, (134.0), 133.5, (133.5), 132.5, 131.9, (131.9), 131.0, (131.0), 130.4, 128.7, (128.7), 125.5, (125.4), 124.7, (124.6), 94.5, (94.4), 74.3, (74.2), 56.5, 45.9, (45.8), 41.2, (41.1), 39.2, (39.1), 31.1, (30.4), 29.9, (29.0);

IR (neat) 3010, 2949, 2867, 1750, 1682, 1643, 1585, 1486, 1141, 761 cm⁻¹;

HRMS (+p APCI) calcd for C₂₃H₂₀B_{r3}Cl₃NO₄ (M+H)+ 715.8003 found 715.80147;

HPLC (R,R-Whelk column, 20% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 100 min, UV 230 nm) retention times of 66.36 min (major) and 84.85 min (minor) 98% ee with $Rh_2(S-2-Cl-5-BrTPCP)_4$.

tert-Butyl 4-(2-methoxy-2-oxo-1-phenylethyl)pyridine-1(4H)-carboxylate (11)

Following *GP-IV*, the desired insertion product was obtained in $Rh_2(S$ -DOSP)₄-catalyzed reaction once for ¹H NMR characterization. However, the product decomposed too fast for a ideal ¹³C NMR and other characterizations.

¹**H** NMR (500 MHz, CDCl₃) δ 7.31 – 7.11 (m, 5H), 6.63 (dd, J = 103.6, 34.2 Hz, 2H), 4.85 (d, J = 42.6 Hz, 1H), 4.32 (d, J = 49.2 Hz, 1H), 3.59 (s, 4H), 3.45 (d, J = 10.3 Hz, 1H), 1.42 (s, 9H).

tert-Butyl 4-(2-methoxy-2-oxo-1-phenylethyl)piperidine-1-carboxylate (12)

Following *GP-IV* at 0 °C, the desired insertion product was obtained in $Rh_2(S$ -DOSP)₄-catalyzed and followed by hydrogenation to get the sample for characterization data: *tert*-butyl 4-(2-methoxy-2-oxo-1phenylethyl)pyridine-1(4H)-carboxylate (84 mg, 0.255 mmol, 1 equiv.) was dissolved in dry methanol (5 mL) and Pd/C (27 mg, 10 mol%, 10 wt%) was added. The flask was evacuated and flushed with hydrogen several times. Two hydrogen filled balloons were connected to the flask and the mixture was stirred under hydrogen atmosphere overnight. The palladium was filtered off by a short celite plug which was washed thoroughly with diethyl ether. The solvent was removed under reduced pressure to give a colorless solid in quantitative yields.

White solid: m.p.: 69-72 °C

 $\mathbf{Rf} = 0.47 (10\% \text{ ethyl acetate in hexane});$

 $[\alpha]^{20}_{D}$: +31.8° (c = 1.00, CHCl₃, 61% ee).

¹**H** NMR (600 MHz, CDCl₃) δ 7.35 – 7.22 (m, 5H), 4.04 (s, 2H), 3.64 (s, 3H), 3.23 (d, *J* = 10.6 Hz, 1H), 2.65 (d, *J* = 99.6 Hz, 2H), 2.14 (qt, *J* = 11.4, 3.5 Hz, 1H), 1.76 (d, *J* = 13.5 Hz, 1H), 1.42 (s, 9H), 1.21 (tt, *J* = 12.9, 6.2 Hz, 2H), 0.94 (q, *J* = 13.2 Hz, 1H);

¹³C NMR (**75** MHz, CDCl₃) δ 173.8, 154.7, 137.0, 128.7, 128.4, 127.5, 79.3, 57.8, 51.9, 39.4, 31.0, 29.5, 28.4; IR (neat) 2972, 2931, 2853, 1733, 1692, 1447, 1413, 1391, 1365, 1285, 1247, 1156, 1128, 1086, 1019, 991, 965, 949, 902, 870, 771, 741, 703, 531 cm⁻¹;

FTMS (+p NSI) calcf for C₁₉H₂₈NO₄ (M+H)+ 334.2013 found 334.20168;

HPLC (R,R-Whelk column, 5% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 45 min, UV 230 nm) retention times of 24.65 min (minor) and 27.08 min (major) 61% ee with $Rh_2(S-DOSP)_4$.

5. Cyclopropanation and Ring-Opening Reactions for C3-Analogs

5.1 General Procedures

General Procedure for Cyclopropanation Reactions:

In a 25 mL round bottom flask under argon atmosphere, Boc-1,2,3,4-tetrahydropyridine (137 mg, 0.75 mmol, 1.5 equiv.) and 0.5 mol% Rh_2L_4 were dissolved in 2 mL dry solvent under indicated temperature. Corresponding donor/acceptor diazo compounds (0.5 mmol, 1.0 equiv.) was dissolved in 12 mL dry solvent under argon atmosphere and added over 2 h via a syringe pump under indicated temperature. After addition, the reaction mixture was stirred for another 30 min, and crude ¹H NMR was obtained after the resulted mixture was concentrated under vacuum. Finally, the desired product was obtained after purification using flash column chromatography with 1-15% ethyl acetate in hexane as eluting gradient.

General Procedure for Ring-opening Reactions:

In a flame-dried 10-mL round bottom flask, corresponding cyclopropanation product from last step (1 equiv.) was dissolved in dry dichloromethane (5 mL). BF_3 -OEt₂ (2 equiv.) and triethylsilane (10 equiv.) were added. The mixture was stirred for 3 days at 23 °C. The crude product was purified by flash column chromatography (20% ethyl acetate in hexane to remove byproducts, then the product was eluted with 2% triethylamine in ethyl acetate). Further purification was done by a 2nd flash column chromatography (10% methanol in dichloromethane).

5.2. Diastereomer and Enantiomer Ratios Determination

Diastereomer ratio was determined from crude ¹H NMR spectra.

Enantiomer ratio were determined by chiral HPLC on purified samples without derivation (cyclopropanation products), or after derivatizing the secondary amine to 2,2,2-trifluoroacetamide (ring-opening products).

General Procedure for Derivatizing the Secondary Amine to 2,2,2-Trifluoroacetamide:

Triethylamine (1 equiv.) and corresponding amine from ring-opening reactions (1 equiv.) were dissolved in 2 mL dichloromethane and cooled to 0 °C. Trifluoroacetic acid anhydride (1.2 equiv.) was added dropwise. The mixture was stirred at 0 °C for 1 h and was allowed to warm up to 23 °C. At 23 °C, the mixture was stirred overnight. The solvent was evaporated under reduced pressure and the crude product was purified by flash column chromatography (5-10% ethyl acetate in hexane as eluting gradient).

5.3. Characterization Data for Cyclopropanation and Ring-Opening Products

2-(tert-Butyl) 7-methyl (1R,6R,7S)-7-(4-bromophenyl)-2-azabicyclo[4.1.0]heptane-2,7-dicarboxylate (8a)

Following *General Procedure for Cyclopropanation Reactions* (methyl 2-(4-bromophenyl)-2-diazoacetate (128 mg), Rh₂(*S*-DOSP)₄ as catalyst, pentane as solvent, at 0 °C), the desired cyclopropanation product was obtained for characterization (92% ee).

White solid: m.p. 113-118 °C

 $\mathbf{Rf} = 0.11$ (5% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +135.2° (c = 1.00, CHCl₃, 92% ee);

¹**H** NMR (600 MHz, CDCl₃) *Rotamer1* : (*Rotamer2*) (1.04:1) δ 7.39 (d, J = 8.4 Hz, 2H), (7.36 (d, J = 8.5 Hz, 2H)), 7.10 (d, J = 8.4 Hz, 2H), (7.08 (d, J = 8.4 Hz, 2H)), 3.65 (d, J = 9.2 Hz, 1H), (3.60 (d, J = 9.3 Hz, 1H)), (3.50 (s, 3H)), 3.48 (s, 3H), 3.18 (dt, J = 12.5, 4.4 Hz, 1H), (3.08 (dt, J = 12.4, 4.4 Hz, 1H)), 2.72 – 2.52 (m, 2H) (both rotamers), 2.34 – 2.29 (m, 1H), (2.29 – 2.25 (m, 1H)), 1.92 – 1.80 (m, 2H) (both rotamers), 1.75 – 1.62 (m, 1H) (both rotamers), (1.49 (s, 9H)), 1.43 (s, 9H), 1.20 – 1.10 (m, 2H) (both rotamers), 0.47 – 0.20 (m, 2H) (both rotamers);

¹³**C NMR** (126 MHz, CDCl₃) δ 173.1, (173.0), 156.3, (155.7), 133.6, (133.2), 132.7, (132.4), 131.7, (131.5), 121.6, (121.6), 80.5, (80.3), 52.5, (52.4), 43.3, (42.3), 41.5, (40.1), 34.4, (34.1), 28.4, (28.3), 25.0, (24.6), 21.2, (21.0), 18.5, (18.5);

IR (neat) 2974, 2951, 2867, 2252, 1779, 1691, 1593, 1489, 1476, 1435, 1409, 1391, 1365, 1301, 1246, 1216, 1202, 1157, 1143, 1102, 1084, 1074, 1012, 970, 937, 907, 888, 842, 827, 809, 771, 729, 724 cm⁻¹;

HRMS (+p NSI) calcd for C₁₉H₂₅BrNO₄ (M+H)+ 410.0962 found 410.09648;

HPLC (ADH column, 1% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 60 min, UV 230 nm) retention times of 11.83 min (major) and 13.33 min (minor) 92% ee with Rh₂(S-DOSP)₄.

2-(*tert*-Butyl) 7-methyl (1*R*,6*R*,7*S*)-7-phenyl-2-azabicyclo[4.1.0]heptane-2,7-dicarboxylate (8b)

Following *General Procedure for Cyclopropanation Reactions* (methyl 2-diazo-2-phenylacetate (88 mg), Rh₂(*S*-DOSP)₄ as catalyst, pentane as solvent, at 0 °C), the desired cyclopropanation product was obtained for characterization (95% ee).

White solid: m.p. 68-72 °C

 $\mathbf{Rf} = 0.19$ (5% ethyl acetate in hexane);

 $[\alpha]^{20}$ _D: +149.6° (c = 1.00, CHCl₃, 95% ee);

¹**H** NMR (500 MHz, CDCl₃) *Rotamer1* : (*Rotamer2*) (1.22:1) δ 7.27 (m, 10H) (both rotamers), (3.73 (d, J = 9.3 Hz, 1H)), 3.67 (d, J = 9.4 Hz, 1H), 3.55 (s, 3H), (3.53 (s, 3H)), 3.19 (dt, J = 12.4, 4.3 Hz, 1H), (3.08 (dt, J = 12.4, 4.4 Hz, 1H)), 2.77 – 2.58 (m, 2H) (both rotamers), (2.40 – 2.34 (m, 1H)), 2.34 – 2.28 (m, 1H), 1.89 (m, 2H) (both rotamers), 1.78 (t, J = 13.4 Hz, 2H) (both rotamers), 1.56 (s, 9H), (1.49 (s, 9H)), 1.16 (m, 2H) (both rotamers), 0.35 (m, 2H) (both rotamers).;

¹³C NMR (126 MHz, CDCl₃) δ 173.7, (173.5), 156.3, (155.8), 133.5, (133.3), 131.8, (131.5), 128.4, (128.2), 127.3, (127.2), 80.3, (80.0), 52.4, (52.4), 43.2, (42.2), 41.5, (40.13), 34.80, (34.56), 28.38, (28.36), 24.90, (24.51), 21.15, (20.92), 18.62, (18.57);

IR (neat) 2973, 2951, 2867, 1693, 1604, 1498, 1476, 1446, 1435, 1408, 1390, 1366, 1302, 1245, 1216, 1203, 1158, 1142, 1102, 1085, 1076, 1031, 1014, 982, 968, 939, 901, 888, 854, 842, 809, 773, 759, 746, 706, 677 cm⁻¹;

HRMS (+p NSI) calcd for C₁₉H₂₆NO₂ (M+H)+ 332.1856 found 332.18697;

HPLC (ADH column, 0.3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 45 min, UV 230 nm) retention times of 22.90 min (major) and 28.27 min (minor) 95% ee with Rh₂(S-DOSP)₄.

2-(tert-Butyl) 7-(2,2,2-trichloroethyl) (1R,6R,7S)-7-phenyl-2-azabicyclo[4.1.0]heptane-2,7-dicarboxylate

Following *General Procedure for Cyclopropanation Reactions* (2,2,2-trichloroethyl 2-(4-bromophenyl)-2-diazoacetate (186.8 mg), Rh₂(*R*-DOSP)₄ as catalyst, pentane as solvent, at 23 °C), the desired cyclopropanation product was obtained for characterization (80% ee).

White solid: m.p. 43-45 °C

 $\mathbf{Rf} = 0.30$ (5% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: -90.4° (c = 1.00, CHCl₃, xx% ee);

¹**H** NMR (600 MHz, CDCl₃) *Rotamer1* : (*Rotamer2*) (1.13:1) δ 7.48 (d, J = 8.4 Hz, 1H), (7.45 (d, J = 8.5 Hz, 1H)), (7.20 (d, J = 8.5 Hz, 1H)), 7.18 (d, J = 8.4 Hz, 1H), (4.71 (d, J = 11.9 Hz, 1H)), 4.66 (d, J = 11.9 Hz, 1H), 4.60 (d, J = 11.9 Hz, 1H), (4.53 (d, J = 11.9 Hz, 1H)), (3.88 (d, J = 9.6 Hz, 1H)), 3.86 (d, J = 9.6 Hz, 1H), 3.26 (dt, J = 12.7, 4.6 Hz, 1H), (3.17 (dt, J = 12.2, 4.4 Hz, 1H)), 2.81 – 2.65 (m, 2H) (both rotamers), (2.48 (t, J = 8.2 Hz, 1H)), 2.43 (t, J = 8.2 Hz, 1H), 2.03 – 1.91 (m, 2H) (both rotamers), 1.83 (t, J = 4.6 Hz, 1H), (1.81 (t, J = 4.4 Hz, 1H)), 1.55 (s, 9H), (1.51 (s, 9H)), 1.30 – 1.20 (m, 2H) (both rotamers), 0.49 (m, 2H) (both rotamers); ¹³C NMR (126 MHz, CDCl₃) δ 171.0, (170.9), 156.2, (155.6), 133.6, (133.2), 131.7, (131.7), 131.5, (131.5), 121.9, (121.8), 94.9, (94.8), 80.8, (80.4), 74.4, (74.3), 43.5, (42.8), 41.5, (40.3), 34.4, (34.1), 28.5, (28.4), 25.8, (25.6), 21.2, (21.0), 18.6, (18.5);

IR (neat) 2973, 2867, 1731, 1692, 1477, 1444, 1379, 1301, 1229, 1212, 1194, 1154, 1143, 1102, 910, 888, 832, 808, 769, 719, 608, 573, 530 cm⁻¹;

HRMS (+p NSI) calcd for C₂₀H₂₄BrCl₃NO₄ (M+H)+ 525.9949 found 525.9953;

HPLC (ADH column, 1% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 45 min, UV 230 nm) retention times of 9.47 min (major) and 11.27 min (minor) 80% ee with Rh₂(*R*-DOSP)₄.

2-(*tert*-Butyl) 7-(2,2,2-trichloroethyl) azabicyclo[4.1.0]heptane-2,7-dicarboxylate (8c)

(1R,6R,7S)-7-(4-(trifluoromethyl)phenyl)-2-

Following *General Procedure for Cyclopropanation Reactions* (methyl 2-diazo-2-(4-(trifluoromethyl)phenyl)acetate (122 mg), $Rh_2(S$ -DOSP)₄ as catalyst, pentane as solvent, at 0 °C), the desired cyclopropanation product was obtained for characterization (90% ee).

Colorless oil

 $\mathbf{Rf} = 0.10$ (5% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +129.7° (c = 1.00, CHCl₃, 90% ee);

¹**H** NMR (600 MHz, CDCl₃) *Rotamer1* : *Rotamer2* (1:1) δ 7.52 (d, J = 8.1 Hz, 2H), 7.49 (d, J = 8.2 Hz, 2H), 7.35 (d, J = 8.4 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 3.70 (d, J = 9.2 Hz, 1H), 3.65 (d, J = 9.3 Hz, 1H), 3.51 (s, 3H), 3.49 (s, 3H), 3.18 (dt, J = 12.5, 4.3 Hz, 1H), 3.09 (dt, J = 12.5, 4.4 Hz, 1H), 2.67 – 2.62 (m, 1H), 2.60 (td, J = 13.0, 3.1 Hz, 1H), 2.38 – 2.30 (m, 2H) (both rotamers), 1.94 – 1.84 (m, 2H) (both rotamers), 1.75 – 1.67 (m, 12.5 Hz, 2H) (both rotamers), 1.51 (s, 9H), 1.44 (s, 9H), 1.19 – 1.10 (m, 2H) (both rotamers), 0.34 – 0.14 (m, 2H) (both rotamers);

¹³**C NMR** (126 MHz, CDCl₃) δ 172.9, (172.7), 156.3, (155.7), 137.8, (137.7), 132.2, (131.9), 129.5 (q, *J* = 32.2 Hz), (129.4 (q, *J* = 32.2 Hz)), 125.3 (q, J = 3.6 Hz), (125.2 (q, J = 3.6 Hz)), 124.2 (q, J = 204.1 Hz), (124.2 (q, J = 204.1 Hz)), 80.6, (80.4), 52.5, (52.5) 43.3, (42.3), 41.4, (40.1), 34.7, 34.4, 28.4, (28.3), 25.0, (24.7), 21.2, (21.0), 18.5, (18.4);

¹⁹F NMR (282 MHz, CDCl₃) (*Rotamers*) δ -62.41, (-62.57).

IR (neat) 2974, 2954, 2870, 1692, 1618, 1477, 1445, 1436, 1409, 1391, 1366, 1323, 1246, 1216, 1159, 1143, 1122, 1108, 1085, 1075, 1066, 1020, 971, 938, 906, 889, 844, 809, 771, 760, 735, 691 cm⁻¹;

HRMS (+p NSI) calcd for C₂₀H₂₄F₃NO₄Na (M+Na)+ 422.1550 found 422.15535;

HPLC (ADH column, 0.65% *i*-propanol in hexane, 0.65 mL min⁻¹, 1 mg mL⁻¹, 45 min, UV 230 nm) retention times of 15.73 min (major) and 17.49 min (minor) 90% ee with $Rh_2(S$ -DOSP)₄.

2-(*tert*-Butyl) 7-(2,2,2-trichloroethyl) (1*R*,6*R*,7*S*)-7-([1,1'-biphenyl]-4-yl)-2-azabicyclo[4.1.0]heptane-2,7-dicarboxylate (8d)

Following *General Procedure for Cyclopropanation Reactions* (methyl 2-([1,1'-biphenyl]-4-yl)-2-diazoacetate (126 mg), Rh₂(*S*-DOSP)₄ as catalyst, pentane as solvent, at 0 °C), the desired cyclopropanation product was obtained for characterization (86% ee).

Colorless oil

 $\mathbf{Rf} = 0.10$ (5% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +149.5° (c = 1.00, CHCl₃, 86% ee);

¹**H** NMR (600 MHz, CDCl₃) *Rotamer1* : (*Rotamer2*) (1.20:1) δ 7.52 (t, J = 7.8 Hz, 4H) (both rotamers), 7.48 (d, J = 8.2 Hz, 2H), (7.46 (d, J = 8.4 Hz, 2H)), (7.33 (t, J = 7.8, 2H)), 7.33 (t, J = 7.8, 2H), 7.25 (m, 6H) (both rotamers), (3.69 (d, J = 9.2 Hz, 1H)), 3.63 (d, J = 9.3 Hz, 1H), 3.51 (s, 3H), (3.49 (s, 3H)), 3.17 (dt, J = 12.4, 4.3 Hz, 1H), (3.04 (dt, J = 12.3, 4.4 Hz, 1H)), 2.70 – 2.56 (m, 2H) (both rotamers), (2.32 (t, J = 7.5 Hz, 1H)), 2.28 (t, J = 7.7 Hz, 1H), 1.92 – 1.79 (m, 2H) (both rotamers), 1.74 (t, J = 15.7 Hz, 2H) (both rotamers), 1.51 (s, 9H), (1.44 (s, 9H)), 1.16 – 1.05 (m, 2H) (both rotamers), 0.47 – 0.26 (m, 2H) (both rotamers);

¹³C NMR (126 MHz, CDCl₃) δ 173.7, (173.5), 156.4, (155.9), 140.7, (140.6), 140.0, (139.8), 132.6, (132.4), 132.2, (131.8), 128.7, 127.3, (127.3), 127.1, (127.0), (126.9), 80.4, (80.1), 52.5, (52.5), 43.3, (42.3), 41.5, (40.2), 34.6, (34.3), 28.5, (28.4), 25.0, (24.7), 21.3, (21.1), 18.7, (18.6);

IR (neat) 3029, 2973, 2951, 2866, 2251, 1691, 1600, 1581, 1522, 1488, 1476, 1448, 1435, 1406, 1390, 1365, 1303, 1245, 1216, 1203, 1158, 1142, 1103, 1085, 1075, 1060, 1009, 969, 938, 907, 889, 843, 809, 764, 746, 728, 697 cm⁻¹;

HRMS (+p NSI) calcd for C₂₅H₃₀NO₄ (M+H)+ 408.2169 found 408.21752;

HPLC (S4900 column, 1% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 11.41 min (major) and 13.64 min (minor) 86% ee with Rh₂(S-DOSP)₄.

2-(*tert*-Butyl) 7-(2,2,2-trichloroethyl) (1*R*,6*R*,7*S*)-7-(3,4-dibromophenyl)-2-azabicyclo[4.1.0]heptane-2,7-dicarboxylate (8e)

Following *General Procedure for Cyclopropanation Reactions* (methyl 2-diazo-2-(3,4-dibromophenyl)acetate (167 mg), Rh₂(*S*-DOSP)₄ as catalyst, pentane as solvent, at 0 °C), the desired cyclopropanation product was obtained for characterization (81% ee).

White solid: m.p. 133-134 °C

 $\mathbf{Rf} = 0.09$ (5% ethyl acetate in hexane);

 $[\alpha]^{20}_{D}$: +96.8° (c = 1.00, CHCl₃, 81% ee);

¹**H** NMR (500 MHz, CDCl₃) *Rotamer1* : (*Rotamer2*) (1.27:1) δ 7.62 – 7.45 (m, 4H) (both rotamers), 7.13 – 6.99 (m, 2H) (both rotamers), 3.70 (d, *J* = 9.2 Hz, 1H), (3.64 (d, *J* = 9.3 Hz, 1H)), (3.57 (s, 3H)), 3.55 (s, 3H), (3.29 (dt, *J* = 12.3, 4.0 Hz, 1H)), 3.20 (dt, *J* = 12.2, 4.1 Hz, 1H), 2.75 – 2.58 (m, 2H) (both rotamers), 2.38 – 2.30 (m, 2H) (both rotamers), 1.98 – 1.86 (m, 2H) (both rotamers), 1.75 (d, *J* = 14.7 Hz, 2H) (both rotamers), (1.55 (s, 9H)), 1.50 (s, 9H), 1.31 – 1.16 (m, 2H) (both rotamers), 0.52 – 0.29 (m, 2H) (both rotamers);

¹³C NMR (126 MHz, CDCl₃) δ 172.6, (172.5), 156.2, (155.5), 136.9, (136.5), 134.7, (134.5), 133.6, (133.4), 132.1, (131.7), 124.8, (124.6), 124.0, (123.9), 80.7, (80.5), 52.6, (52.6), 43.4, (42.4), 41.4, (40.1), 34.2, (33.9), 28.4, (28.4), 25.1, (24.7), 21.3, (21.1), 18.5, (18.4);

IR (neat) 2973, 2951, 2867, 2254, 1690, 1585, 1548, 1464, 1443, 1435, 1411, 1390, 1365, 1246, 1202, 1160, 1143, 1104, 1085, 1076, 1059, 1013, 975, 939, 908, 868, 842, 810, 788, 774, 760, 729, 703, 661 cm⁻¹;

HRMS (+p NSI) calcd for C₁₉H₂₄Br₂NO₄ (M+H)+ 488.0067 found 488.00748;

HPLC (ADH column, 1% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 60 min, UV 230 nm) retention times of 11.82 min (major) and 16.48 min (minor) 81% ee with Rh₂(S-DOSP)₄.

Methyl (R)-2-(4-bromophenyl)-2-((R)-piperidin-3-yl)acetate (9a)

Following *General Procedure for Ring-opening Reactions* (2-(*tert*-butyl) 7-methyl (1*R*,6*R*,7*S*)-7-(4-bromophenyl)-2-azabicyclo[4.1.0]heptane-2,7-dicarboxylate with 92% ee as starting material), the desired ring-opened product was obtained for characterization (93% ee).

White solid: m.p. 115-117 °C

Rf = 0.03 (100% ethyl acetate);

 $\mathbf{Rf} = 0.19$ (10% methanol in dichloromethane);

 $[\alpha]^{20}_{D}$: -40.4° (c = 1.00, MeOH, 93% ee);

¹**H** NMR (300 MHz, CD₃OD) δ 7.43 (d, *J* = 8.5 Hz, 2H), 7.19 (d, *J* = 8.3 Hz, 2H), 3.57 (d, *J* = 0.7 Hz, 3H), 3.40 (d, *J* = 10.1 Hz, 1H), 3.18 (d, *J* = 14.6 Hz, 1H), 2.83 – 2.59 (m, 2H), 2.44 (t, *J* = 11.7 Hz, 1H), 2.34 (qt, J = 11.7, 3.1 Hz, 1H), 2.00 – 1.76 (m, 2H), 1.63 (qt, J = 13.5, 3.9 Hz, 1H), 1.27 (qd, *J* = 11.9, 3.9, 1H);

¹³C NMR (75 MHz, CD₃OD) δ 174.8, 137.4, 134.1, 132.3, 124.0, 56.7, 53.7, 49.0, 46.4, 39.2, 29.7, 24.6;

IR (neat) 3367, 2927, 2852, 2419, 1732, 1610, 1553, 1488, 1434, 1407, 1337, 1244, 1293, 1219, 1197, 1161, 1101, 1073, 1011, 961, 914, 868, 824, 763, 720, 652, 618 cm⁻¹;

HRMS (+p APCI) calcd for C₁₄H₁₉BrNO₂ (M+H)+ 312.0594 found 312.06974;

HPLC (obtained on its 2,2,2-trifluoroacetamide derivative) (ASH column, 3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 13.22 min (minor) and 19.33 min (major) 93% ee.

Methyl (R)-2-(4-dibromophenyl)-2-((R)-1-(2,2,2-trifluoroacetyl)piperidin-3-yl)acetate

Following General Procedure for Derivatizing the Secondary Amine to 2, 2, 2-Trifluoroacetamide (methyl (R)-2-(4-bromophenyl)-2-((R)-piperidin-3-yl)acetate as starting material), the desired derivatized product was obtained for characterization and enantiomeric ratio determination.

Colorless oil

 $\mathbf{Rf} = 0.32$ (20% ethyl acetate in hexane);

¹**H** NMR (600 MHz, CDCl₃) δ *Rotamer1* : (*Rotamer2*) (1.10:1) δ 7.44 – 7.39 (m, 4H) (both rotamers), 7.15 – 7.12 (m, 4H) (both rotamers), (4.45 (dd, J = 13.2, 3.8 Hz, 1H)), 3.96 – 3.91 (m, 1H), 3.83 (s, 1H), (3.60 (s, 3H)), 3.59 (s, 3H), (3.52 – 3.48 (m, 1H)), 3.25 (d, J = 10.5 Hz, 1H), (3.19 (d, J = 10.5 Hz, 1H)), 3.04 (ddd, J = 14.3, 11.7, 3.0 Hz, 1H), 2.59 – 2.49 (m, 2H) (both rotamers), 2.40 – 2.33 (m, 1H), 2.21 (pt, J = 11.5, 3.6 Hz, 2H) (both rotamers), 1.94 (t, J = 15.7 Hz, 2H) (both rotamers), 1.80 – 1.73 (m, 2H) (both rotamers), 1.59 – 1.50 (m, 2H) (both rotamers), (1.37 – 1.29 (m, 1H)), 1.29 – 1.21 (m, 1H);

¹³**C NMR** (151 MHz, CDCl₃) δ 172.5, (172.3), 155.5 (q, *J* = 35.7 Hz), (155.3 (d, *J* = 35.6 Hz)), 134.7, (134.3), 132.2, (132.1), 130.0, (129.9), 122.3, (122.2), 116.5 (q, *J* = 288.0 Hz), (116.3 (q, *J* = 288.1 Hz)), 55.1, (54.9), 52.3, (52.3), 49.3 (q, *J* = 3.6 Hz), 47.0, (46.4 (q, *J* = 3.5 Hz)), (44.2), 39.8, (38.7), 29.8, (29.3), 25.3, (24.6).;

¹⁹**F NMR** (565 MHz, CDCl₃) δ -69.02, (-69.10).;

IR (neat) 2926, 2856, 1736, 1691, 1489, 1466, 1447, 1409, 1345, 1290, 1271, 1235, 1190, 1141, 1073, 1011, 835, 755 cm⁻¹;

HRMS (+p NSI) calcd for C₁₆H₁₈BrF₃NO₃ (M+H)+ 408.0417 found 408.04204;

HPLC (ASH column, 3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 13.22 min (minor) and 19.33 min (major) 93% ee.

Methyl (R)-2-phenyl-2-((R)-piperidin-3-yl)acetate (9b)

Following *General Procedure for Ring-opening Reactions* (2-(*tert*-butyl) 7-methyl (1*R*,6*R*,7*S*)-7-phenyl-2-azabicyclo[4.1.0]heptane-2,7-dicarboxylate with 95% ee as starting material), the desired ring-opened product was obtained for characterization (91% ee).

White solid: m.p. 173-175 °C

Rf = 0.02 (100% ethyl acetate);

 $\mathbf{Rf} = 0.37$ (10% methanol in dichloromethane);

 $[\alpha]^{20}_{D}$: -43.1° (c = 1.00, MeOH, 91% ee);

¹**H NMR** (600 MHz, CDCl₃) δ 7.29 – 7.16 (m, 5H), 3.58 (s, 3H), 3.23 (d, *J* = 10.8 Hz, 1H), 2.91 (d, *J* = 12.1 Hz, 1H), 2.56 (d, *J* = 12.0 Hz, 1H), 2.46 (td, *J* = 11.9, 2.9 Hz, 1H), 2.27 (bs, 1H), 2.15 (qt *J* = 10.5, 3.3 Hz, 3H), 2.06 (q, J = 10.4 Hz, 1H), 1.84 (d, J = 11.4 Hz, 1H), 1.63 (dq, J = 13.4, 3.1 Hz, 1H), 1.45 (qt, J = 13.0, 3.9 Hz, 1H), 1.13 (qd, *J* = 10.6, 3.9 Hz, 1H);

¹³C NMR (101 MHz, CDCl₃) δ 173.7, 137.0, 128.6, 128.4, 127.4, 56.3, 51.8, 50.2, 46.6, 40.1, 30.2, 26.0;

IR (neat) 3320, 3062, 3028, 2929, 2850, 2735, 1731, 1558, 1439, 1454, 1424, 1338, 1272, 1242, 1217, 1197, 1135, 1018, 959, 892, 864, 779, 733, 700, 625, 614, 577 cm⁻¹;

HRMS (+p APCI) calcd for C₁₄H₂₀NO₂ (M+H)+ 234.1489 found 234.14904;

HPLC (obtained on its 2,2,2-trifluoroacetamide derivative) (ASH column, 3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 10.89 min (minor) and 15.22 min (major) 91% ee.

Methyl (R)-2-phenyl-2-((R)-1-(2,2,2-trifluoroacetyl)piperidin-3-yl)acetate

Following *General Procedure for Derivatizing the Secondary Amine to 2,2,2-Trifluoroacetamide* (methyl (R)-2-phenyl-2-((R)-piperidin-3-yl)acetate as starting material), the desired derivatized product was obtained for characterization and enantiomeric ratio determination.

Colorless oil

 $\mathbf{Rf} = 0.39$ (20% ethyl acetate in hexane);

¹**H** NMR (600 MHz, CDCl₃) δ *Rotamer1* : (*Rotamer2*) (1.11:1) δ 7.31 – 7.20 (m, 10H) (both rotamers), 4.45 (ddq, J = 13.1, 4.1, 2.0 Hz, 1H), (3.97 (ddt, J = 12.8, 3.7, 1.8 Hz, 1H)), (3.83 (d, J = 13.4 Hz, 1H)), 3.60 (s, 3H), (3.59 (s, 3H)), 3.53 – 3.41 (m, 1H), (3.28 (d, J = 10.3 Hz, 1H)), 3.21 (d, J = 10.6 Hz, 1H), (3.01 (ddd, J = 14.2, 11.9, 3.0 Hz, 1H)), 2.58 – 2.48 (m, 2H) (both rotamers), (2.38 – 2.30 (m, 1H)), 2.30 – 2.19 (m, 2H) (both rotamers), 1.81 – 1.72 (m, 2H) (both rotamers), 1.61 – 1.46 (m, 2H) (both rotamers), (1.36 – 1.27 (m, 1H)), 1.27 – 1.21 (m, 1H).;

¹³**C NMR** (151 MHz, CDCl₃) δ 172.9, (172.7), 155.4 (q, J = 35.6 Hz), (155.3 (q, J = 35.6 Hz)), 135.7, (135.4), 129.0, (128.9), 128.2, (128.2), 128.2, (128.1), 116.5 (q, J = 288.0 Hz), (116.3 (q, J = 288.0 Hz)), 55.8, (55.6), 52.2, (52.1), 49.4 (q, J = 3.6 Hz), 47.2, (46.4 (q, J = 3.5 Hz)), (44.3), 40.0, (38.7), 29.9, (29.4), 25.5, (24.7).;

¹⁹**F NMR** (282 MHz, CDCl₃) δ -69.01, (-69.20).;

IR (neat) 3031, 2951, 2860, 1733, 1685, 1497, 1466, 1456, 1436, 1345, 1291, 1274, 1236, 1183, 1134, 1044, 1005, 973, 956, 920, 882, 855, 827, 779, 754, 733, 699, 662, 622, 558, 531 cm⁻¹;

HRMS (+**p** NSI) calcd for C₁₆H₁₉F₃NO₃ (M+H)+ 330.1312 found 330.13131;

HPLC (ASH column, 3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 10.89 min (minor) and 15.22 min (major) 91% ee.

Methyl (R)-2-((R)-piperidin-3-yl)-2-(4-(trifluoromethyl)phenyl)acetate (9c)

Following *General Procedure for Ring-opening Reactions* (2-(*tert*-butyl) 7-(2,2,2-trichloroethyl) (1*R*,6*R*,7*S*)-7-(4-(trifluoromethyl)phenyl)-2-azabicyclo[4.1.0]heptane-2,7-dicarboxylate with 90% ee as starting material), the desired ring-opened product was obtained for characterization (90% ee).

White solid: m.p. 79-82 °C

Rf = 0.18 (100% ethyl acetate);

 $\mathbf{Rf} = 0.34$ (10% methanol in dichloromethane);

 $[\alpha]^{20}_{D}$: -31.8° (c = 1.00, MeOH, 90% ee);

¹**H NMR** (600 MHz, CD₃OD) δ 7.56 (d, *J* = 8.3 Hz, 2H), 7.46 (d, *J* = 8.2 Hz, 2H), 3.57 (s, 3H), 3.45 (d, *J* = 10.1 Hz, 1H), 2.99 (d, *J* = 12.5 Hz, 1H), 2.59 – 2.48 (m, 2H), 2.26 (qt, J = 11.1, 3.3 Hz, 1H), 2.23 (t, J = 11.3 Hz, 1H), 1.86 (d, *J* = 12.9 Hz, 1H), 1.72 (dp, J = 14.0, 3.2 Hz, 1H), 1.53 (qt, J = 13.9, 4.0 Hz, 1H), 1.22 (qd, *J* = 10.7, 3.4 Hz, 1H);

¹³**C NMR** (126 MHz, CD₃OD) δ 172.6, 140.9, 129.6 (q, *J* = 32.8 Hz), 128.8, 125.3 (q, *J* = 3.8 Hz), 124.1 (q, *J* = 271.1 Hz), 55.2, 51.3, 44.9, 38.3, 28.5, 23.8 (1 carbon not visible);

IR (neat) 2947, 2798, 2735, 1727, 1617, 1423, 1435, 1423, 1324, 1279, 1241, 1202, 1189, 1156, 1119, 1067, 1019, 961, 934, 901, 865, 852, 838, 816, 782, 756, 722, 647, 599, 582 cm⁻¹;

HRMS (+p APCI) calcd for C₁₅H₁₉F₃NO₂ (M+H)+ 302.1362 found 302.13656;

HPLC (obtained on its 2,2,2-trifluoroacetamide derivative) (ASH column, 3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 9.09 min (minor) and 13.86 min (major) 90% ee.

Methyl (R)-2-((R)-1-(2,2,2-trifluoroacetyl)piperidin-3-yl)-2-(4-(trifluoromethyl)phenyl)acetate

Following *General Procedure for Derivatizing the Secondary Amine to 2,2,2-Trifluoroacetamide* (methyl (R)-2-((R)-piperidin-3-yl)-2-(4-(trifluoromethyl)phenyl)acetate as starting material), the desired derivatized product was obtained for characterization and enantiomeric ratio determination.

Colorless oil

 $\mathbf{Rf} = 0.55$ (20% ethyl acetate in hexane);

¹**H** NMR (600 MHz, CDCl₃) δ *Rotamer1* : (*Rotamer2*) (1.20:1) δ 7.56 (d, J = 8.1 Hz, 2H), (7.53 (d, J = 8.0 Hz 2H)), 7.39 (d, J = 8.1 Hz, 2H), (7.37 (d, J = 8.0 Hz, 2H)), (4.44 (ddd, J = 13.0, 4.1, 2.1 Hz, 1H)), 3.91 (ddt, J = 13.0, 3.7, 1.7 Hz, 1H), 3.81 (d, J = 14.0 Hz, 1H), (3.61 (s, 3H)), 3.60 (s, 3H), (3.45 (ddd, J = 13.7, 3.7, 1.8 Hz, 1H)), 3.37 (d, J = 10.5 Hz, 1H), (3.31 (d, J = 10.5 Hz, 1H)), 3.06 (ddd, J = 14.2, 11.6, 3.0 Hz, 1H), 2.59 - 2.52 (m, 2H) (both rotamers), 2.40 (dd, J = 13.0, 10.6 Hz, 1H), 2.33 – 2.20 (m, 2H) (both rotamers), 2.04 – 1.89 (m, 2H) (both rotamers), 1.81 – 1.74 (m, 2H) (both rotamers), 1.60 – 1.47 (m, 2H) (both rotamers), 1.40 – 1.32 (m, 1H));

¹³**C NMR** (151 MHz, CDCl₃) δ 172.2, (172.0), 155.5 (q, *J* = 35.8 Hz), (155.2 (d, *J* = 35.5 Hz)), 139.8, (139.4), 130.5 (q, *J* = 32.6 Hz), (130.3 (q, *J* = 32.5 Hz)), 128.8, (128.7), 125.9 (q, *J* = 3.5 Hz), (125.8 (q, *J* = 3.4 Hz)), 124.0 (q, *J* = 272.1 Hz), (123.9 (q, *J* = 272.1 Hz)), 116.5 (q, *J* = 287.9 Hz), 116.2 (q, *J* = 288.1 Hz), 55.4, (55.2), 52.4, (52.3), 49.2 (q, *J* = 3.5 Hz), 46.9, (46.4 (q, *J* = 3.4 Hz)), (44.2), 40.0, (38.8), 29.7, (29.2), 25.3, (24.6).;

¹⁹**F NMR** (565 MHz, CDCl₃) δ 62.69, (-62.77), -69.09, (-69.24);

IR (neat) 2954, 1735, 1686, 1619, 1466, 1438, 1422, 1324, 1280, 1186, 1159, 1116, 1067, 1019, 975, 954, 936, 905, 883, 844, 784, 755, 723, 694, 660, 602, 530 cm⁻¹;

HRMS (+**p** NSI) calcd for C₁₇H₁₈F₆NO₃ (M+H)+ 398.1185 found 398.11859;

HPLC (ASH column, 3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 9.09 min (minor) and 13.86 min (major) 90% ee.

Methyl (R)-2-([1,1'-biphenyl]-4-yl)-2-((R)-piperidin-3-yl)acetate (9d)

Following *General Procedure for Ring-opening Reactions* (2-(*tert*-butyl) 7-(2,2,2-trichloroethyl) (1*R*,6*R*,7*S*)-7-([1,1'-biphenyl]-4-yl)-2-azabicyclo[4.1.0]heptane-2,7-dicarboxylate with 86% ee as starting material), the desired ring-opened product was obtained for characterization (87% ee).

White solid: m.p. 184-185 °C

Rf = 0.09 (100% ethyl acetate);

 $\mathbf{Rf} = 0.44$ (10% methanol in dichloromethane);

 $[\alpha]^{20}_{D}$: -54.6° (c = 1.00, MeOH, 87% ee);

¹**H NMR** (600 MHz, CD₃OD) δ 7.57 – 7.45 (m, 4H), 7.32 (dt, *J* = 7.8, 3.5 Hz, 4H), 7.23 (t, *J* = 7.4 Hz, 1H), 3.56 (s, 3H), 3.43 (d, *J* = 10.1 Hz, 1H), 3.17 (d, *J* = 12.3 Hz, 1H), 2.72 (qd, J = 13.0, 3.2 Hz, 2H), 2.46 (t, J = 11.9 Hz, 1H), 2.41 (qt, 11.8, 2.8 Hz, 1H), 1.90 (d, *J* = 12.9 Hz, 1H), 1.83 (dp, J = 14.5, 3.0 Hz, 1H), 1.65 (qt, J = 14.3, 4.0 Hz, 1H), 1.28 (qd, J = 12.9, 3.7 Hz, 1H);

¹³**C NMR** (126 MHz, CD₃OD) δ 175.2, 143.2, 142.6, 137.1, 130.9, 130.9, 129.5, 128.9, 57.1, 53.6, 49.2, 46.5, 39.3, 29.9, 24.8;

IR (neat) 3325, 3029, 2927, 2851, 2733, 1730, 1675, 1653, 1600, 1582, 1558, 1521, 1486, 1448, 1434, 1412, 1387, 1337, 1262, 1240, 1216, 1191, 1157, 1132, 1075, 1008, 959, 898, 863, 840, 759, 739, 697, 642, 620, 582, 558 cm⁻¹;

HRMS (+p APCI) calcd for C₂₀H₂₃NO₂ (M+H)+ 310.1802 found 310.18048;

HPLC (obtained on its 2,2,2-trifluoroacetamide derivative) (ASH column, 3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 14.78 min (minor) and 17.97 min (major) 87% ee.

Methyl (R)-2-([1,1'-biphenyl]-4-yl)-2-((R)-1-(2,2,2-trifluoroacetyl)piperidin-3-yl)acetate

Following *General Procedure for Derivatizing the Secondary Amine to 2,2,2-Trifluoroacetamide* (methyl (*R*)-2-([1,1'-biphenyl]-4-yl)-2-((*R*)-piperidin-3-yl)acetate as starting material), the desired derivatized product was obtained for characterization and enantiomeric ratio determination.

Colorless oil

 $\mathbf{Rf} = 0.33$ (20% ethyl acetate in hexane);

¹**H NMR** (600 MHz, CDCl₃) δ *Rotamer1* : *Rotamer2* (1:1) δ 7.53-7.48 (m, 8H) (both rotamers), 7.40 – 7.33 (m, 4H) (both rotamers), 7.33 – 7.24 (m, 6H) (both rotamers), 4.45 (ddt, *J* = 15.0, 4.0, 1.9 Hz, 1H), 4.05 (ddt, *J* = 12.9, 3.7, 1.8 Hz, 1H), 3.84 (d, *J* = 13.9 Hz, 1H), 3.62 (s, 3H), 3.61 (s, 3H), 3.58 – 3.54 (m, 1H), 3.33 (d, *J* = 10.3 Hz, 1H), 3.27 (d, *J* = 10.5 Hz, 1H), 3.03 (ddd, *J* = 14.2, 11.9, 2.9 Hz, 1H), 2.59 – 2.51 (m, 1H), 2.55 (dd, *J* = 13.9, 11.6 Hz, 1H), 2.38 (dd, *J* = 12.9, 10.9 Hz, 1H), 2.35 – 2.20 (m, 2H), 2.04 – 1.90 (m, 2H), 1.81 – 1.74 (m, 1H) (both rotamers), 1.60 – 1.49 (m, 2H), 1.38 – 1.23 (m, 2H);

¹³**C NMR** (151 MHz, CDCl₃) δ 172.9 , (172.7) , 155.4 (q, *J* = 35.5 Hz), (155.3 (q, *J* = 35.6 Hz)), 141.1, (141.0), 140.5, (140.4), 134.7, (134.3), 128.8, (128.8) , 128.7, (128.6), 127.7, (127.6), 127.5, (127.4), 127.1, (127.1), 116.5 (q, *J* = 288.0 Hz), (116.3 (q, *J* = 288.1 Hz)), 55.4, (55.3) , 52.3, (52.2) , 49.4 (q, *J* = 3.4 Hz), 47.2, (46.5 (q, *J* = 3.5 Hz)), (44.3), 39.9, (38.7), 29.9, (29.4), 25.4, (24.7);

¹⁹F NMR (282 MHz, CDCl₃) δ -68.98, (-69.11).;

IR (neat) 3031, 2950, 2857, 1735, 1691, 1487, 1466, 1448, 1413, 1345, 1279, 1267, 1235, 1188, 1158, 1142, 1009, 974, 845, 760, 740, 699 cm⁻¹;

HRMS (+p NSI) calcd for C₂₂H₂₃F₃NO₃ (M+H)+ 406.1625 found 406.16250;

HPLC (ASH column, 3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 14.78 min (minor) and 17.97 min (major) 87% ee.

Methyl (R)-2-(3,4-dibromophenyl)-2-((R)-piperidin-3-yl)acetate (9e)

Following *General Procedure for Ring-opening Reactions* (2-(*tert*-butyl) 7-(2,2,2-trichloroethyl) (1*R*,6*R*,7*S*)-7-(3,4-dibromophenyl)-2-azabicyclo[4.1.0]heptane-2,7-dicarboxylate with 81% ee as starting material), the desired ring-opened product was obtained for characterization (80% ee).

Colorless oil

Rf = 0.15 (100% ethyl acetate);

 $\mathbf{Rf} = 0.50 (10\% \text{ methanol in dichloromethane});$

 $[\alpha]^{20}_{D}$: -27.5° (c = 1.00, MeOH, 80% ee);

¹**H NMR** (600 MHz, CD₃OD) δ 7.60 (d, J = 2.1 Hz, 1H), 7.54 (d, J = 8.3 Hz, 1H), 7.15 (dd, J = 8.3, 2.1 Hz, 1H), 3.56 (s, 3H), 3.29 (d, J = 10.2 Hz, 1H), 2.88 (d, J = 12.3 Hz, 1H), 2.41 – 2.50 (m, 2H), 2.16 – 2.05 (m, 2H), 1.84 – 1.72 (m, 1H), 1.64 (dp, J = 13.4, 3.3 Hz, 1H), 1.45 (qt, J = 12.3, 4.0 Hz, 1H), 1.20 – 1.08 (m, 1H); ¹³**C NMR** (75 MHz, CD₃OD) δ 172.7, 138.2, 133.7, 133.3, 128.7, 124.4, 123.3, 54.6, 51.3, 48.5, 45.2, 39.0, 29.0, 24.6.;

IR (neat) 3325, 2928, 2851, 2806, 2733, 1730, 1653, 1582, 1553, 1459, 1434, 1395, 1337, 1298, 1260, 1238, 1193, 1158, 1131, 1111, 1076, 1013, 959, 940, 905, 865, 826, 777, 729, 698, 670, 595, 559 cm⁻¹;

HRMS (+p APCI) calcd for C₁₄H₁₈Br₂NO₂ (M+H)+ 389.9699 found 389.97030;

HPLC (obtained on its 2,2,2-trifluoroacetamide derivative) (ASH column, 3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 15.21 min (minor) and 24.16 min (major) 80% ee.

Methyl (R)-2-(3,4-dibromophenyl)-2-((R)-1-(2,2,2-trifluoroacetyl)piperidin-3-yl)acetate

Following *General Procedure for Derivatizing the Secondary Amine to 2,2,2-Trifluoroacetamide* (methyl (*R*)-2-(3,4-dibromophenyl)-2-((*R*)-piperidin-3-yl)acetate as starting material), the desired derivatized product was obtained for characterization and enantiomeric ratio determination.

Colorless oil

 $\mathbf{Rf} = 0.39$ (20% ethyl acetate in hexane);

¹**H** NMR (600 MHz, CDCl₃) δ *Rotamer1* : (*Rotamer2*) (1.18:1) δ 7.57 – 7.48 (m, 4H) (both rotamer), 7.09 (dd, J = 8.3, 2.2 Hz, 1H), (7.06 (dd, J = 8.3, 2.2 Hz, 1H)), (4.45 (ddd, J = 13.1, 4.2, 2.1 Hz, 1H)), 3.94 (ddt, J = 13.1, 3.7, 1.7 Hz, 1H), 3.82 (d, J = 14.1 Hz, 1H), (3.61 (s, 3H)), 3.61 (s, 3H), (3.52 (ddd, J = 13.7, 3.8, 1.9 Hz, 1H)), 3.23 (d, J = 10.5 Hz, 1H), (3.17 (d, J = 10.5 Hz, 1H)), 3.05 (ddd, J = 14.2, 11.6, 3.0 Hz, 1H), 2.65 – 2.48 (m, 2H) (both rotamers), 2.47 – 2.33 (m, 1H), 2.27 – 2.13 (m, 2H) (both rotamers), 1.98 – 1.87 (m, 2H) (both rotamers), 1.80 – 1.74 (m, 2H) (both rotamers), 1.61 – 1.46 (m, 2H) (both rotamers), 1.38 – 1.29 (m, 1H), (1.25 (m, 1H));

¹³**C NMR** (151 MHz, CDCl₃) δ 172.0, (171.8), 155.5 (q, *J* = 35.7 Hz), (155.2 (q, *J* = 35.7 Hz)), 136.7, (136.3), 134.2, (134.0), 133.6, (133.5), 128.3, (128.2), 125.4, (125.3), 124.6, (124.6), 116.5 (d, *J* = 288.0 Hz), (116.3 (d, *J* = 288.2 Hz)), 54.7, (54.4), 52.5, (52.4), 49.2 (q, *J* = 3.4 Hz), 46.9, (46.4 (q, *J* = 3.4 Hz)), (44.2), 39.8, (38.7), 29.7, (29.2), 25.2, (24.6);

¹⁹F NMR (282 MHz, CDCl₃) δ -69.01, (-69.06);

IR (neat) 2950, 2858, 1734, 1685, 1463, 1397, 1343, 1267, 1291, 1235, 1187, 1138, 1113, 1044, 1014, 975, 956, 909, 854, 832, 778, 754, 733, 699, 661 cm⁻¹;

HRMS (+p NSI) calcd for C₁₆H₁₇Br₂F₃NO₃ (M+H)+ 485.9522 found 485.95260;

HPLC (ASH column, 3% *i*-propanol in hexane, 1 mL min⁻¹, 1 mg mL⁻¹, 30 min, UV 230 nm) retention times of 15.21 min (minor) and 24.16 min (major) 80% ee.

6. Reference

1. Guptill, D. M.; Davies, H. M. L. J. Am. Chem. Soc. 2014, 136, 17718.

2. Briones, J. F.; Hansen, J.; Hardcastle, K. I.; Autschbach, J.; Davies, H. M. L. J. Am. Chem. Soc. 2010, 132, 17211.

3. Chepiga, K. M.; Qin, C.; Alford, J. S.; Chennamadhavuni, S.; Gregg, T. M.; Olson, J. P.; Davies, H. M. L.; *Tetrahedron* **2013**, *69*, 5765.

4. Pilsl, L. K. A.; Ertl, T.; Reiser, O. Org. Lett. 2017, 19, 2754.

- 5. Davies, H. M. L; Morton, D. Chem. Soc. Rev. 2011, 40, 1857.
- 6. Fu, L.; Hoang, K.; Tortoreto, C.; Liu, W.; Davies, H. M. L. Org. Lett. 2018, 20, 2399.
- 7. Davies, H. M. L.; Hansen, T.; Churchill, M. R. J. Am. Chem. Soc. 2000, 122, 3063.
- 8. Qu, Z.; Shi, W.; Wang, J. J. Org. Chem. 2001, 66, 8139.
- 9. Takasu, N.; Oisaki, K.; Kanai, M. Org. Lett. 2013, 15, 1918.
- 10. Du, F.-T.; Ji, J.-X. Chem. Sci. 2012, 3, 460.
- 11. Brodsky, B. H.; Du Bois, J. Org. Lett. 2004, 15, 2619.
- 12. Pour, M.; Špulák, M.; Balšánek, V.; Kuneš, J.; Kubanová, P.; Buchta, V. *Bioorg. Med. Chem.* **2003**, *11*, 2843.
- 13. Sundberg, R. J; Bloom, J. D. J. Org. Chem. 1981, 46, 4836.
- 14. Zhang, W.; Luo, M. Chem. Commun. 2016, 52, 2980.
- 15. Zhou, G.; Ting, P.; Aslanian, R.; Piwinski, J. J. Org. Lett. 2008, 10, 2517.

16. Kweon, D.-H.; Kim, H.-K.; Kim, J.-J.; Chung, H. A; Lee, W. S.; Kim, S.-K.; Yoon, Y.-J. *J. Heterocycl. Chem.* **2002**, *39*, 203.

7. Crude NMR for Diastereo- (and/or Regio-) Selectivity Determination:

(Table 1, entry 7) (Table S1, entry 13)

(Table 1, entry 6) (Table S1, entry 14)

C2 insertion

(Table 4, entry 6) (Table S5, entry 8)

(Table 4, entry 8) (Table S5, entry 11)

(Table 4, entry 9) (Table S5, entry 12)

.5 8.0 7.5 7.0 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 6.5 -C

(Scheme 4, 13f)

(Scheme 4, 13h)

8. Characterization NMR Spectra

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -:

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -:

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 --

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -:

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

	1
na af den vielen eus seinen an den fennen an den fernen ferhöfen ververnin och efter af feldelaft here of vorden	u an ballina da manan malama na mathadh dha an da dh'innais Barkingan) in da a' bhaile Bail in dha la bhaile an

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -

elini baaka jaada yaaliini ya kaang (nap). Anjini ja kan jaada Kening ng ng ng ng ng naping nabing ng ng ng na Ng ng	Terrenden her verheten sinder sinder erenden schliegen der verken die der der der der der verheten der der der die sicht aus der die sicht aus der die sicht aus der die sicht aus der die sicht auf der die sicht au Terrenden sicht auf der die sicht auf d

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -:

									1														
inipin	iniini	Holi Marina (Marina)	in an		u Haridal	Yanyi ku ya	u di kili ki ki	honua	hinki di	, Window Wine Wine Wine Wine Wine Wine Wine Wine	Wildelige	inik initia il	huki likinghi	Hililili	, International International	Minim	i i i i i i i i i i i i i i i i i i i		WİNNİ	Ni in the second second second second second second second second second second second second second second se		ni) (inin)	WINN
									· · ·			· · ·						· · ·	· · · · · · · · · · · · · · · · · · ·	····			
30	20	10	0	-10	-20	-30	-40	-50	-60	-70	-80 f1	-90 (ppm)	-100	-110	-120	-130	-140	-150	-160	-170	-180	-190	-200

0 20 10 0 -10 -20 -30 -40 -50 -60 -	-70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -2 fl (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 fi (nom)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 f1 (ppm)

9. HPLC Spectra for Enantioselectivity Determination

10.1. C2 Functionalization Products

(Table S1, entry 1)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
		-				
1	11.369	MF	0.4861	1.14078e4	391.15503	15.3240
2	12.364	FM	0.4783	6.30363e4	2196.41284	84.6760

Totals :

7.44441e4 2587.56787

 \rightarrow -69% ee (major diastereomer)

(Table S1, entry 1)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	15.407	MF	0.7243	3.69533e4	850.35370	72.2311	
2	17.333	FM	1.0738	1.42065e4	220.51192	27.7689	
Total	ls :			5.11598e4	1070.86562		

 \rightarrow -44% ee (minor diastereomer)

(Table 1, entry 1) (Table S1, entry 2)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Totals :

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	11.428	MF	0.4845	4746.93408	163.28975	29.3577
2	12.464	FM	0.5623	1.14224e4	338.57135	70.6423

1.61693e4

 \rightarrow -41% ee (major diastereomer)

501.86110

(Table 1, entry 1) (Table S1, entry 2)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Width	Area	Height	Area
[min]	[mAU*s]	[mAU]	8
0.8344	9173.73242	183.24197	64.5241
1.3486	5043.79541	62.33588	35.4759
	1.42175e4	245.57785	
	Width [min] 0.8344 1.3486	Width Area [min] [mAU*s] 	Width Area Height [min] [mAU*s] [mAU]

 \rightarrow -29% ee (minor diastereomer)

(Table S1, entry 3)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	용
1	11.710	MF	0.4549	9858.84961	361.19656	15.0729
2	12.700	FM	0.5069	5.55490e4	1826.51587	84.9271

Totals :

6.54079e4 2187.71243

 \rightarrow -70% ee (major diastereomer)

(Table S1, entry 3)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	15.907	MF	0.7638	1.68490e4	367.63730	56.9370	
2	17.709	FM	1.1443	1.27433e4	185.60614	43.0630	
Total	ls :			2.95924e4	553.24344		\rightarrow -14% ee (minor diastered

(Table 1, entry 2) (Table S1, entry 4)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.234	MF	0.5119	1.07734e4	350.74805	82.8248
2	12.698	FM	0.7135	2234.05225	52.18573	17.1752

Totals :

1.30074e4 402.93378

 \rightarrow 66% ee (major diastereomer)

(Table 1, entry 2) (Table S1, entry 4)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	16.095	MF	0.7273	1238.38721	28.37903	14.1008
2	17.406	FΜ	1.2465	7544.00244	100.86837	85.8992
Tota	ls :			8782.38965	129.24740	

(Table 1, entry 3) (Table S1, entry 5)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	-6
1	11.340	MF	0.4991	7170.69434	239.46901	63.5436
2	12.656	FM	0.6795	4113.98340	100.90635	36.4564

Totals :

1.12847e4 340.37536

 \rightarrow 27% ee (major diastereomer)

(Table 1, entry 3) (Table S1, entry 5)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.855	MF	0.7847	4293.22119	91.18973	64.8338
2	17.770	FM	1.0161	2328.66284	38.19611	35.1662
Tota	ls :			6621.88403	129.38584	

 \rightarrow -30% ee (minor diastereomer)

(Table S1, entry 6)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.575	MF	0.5285	5174.75732	163.20267	66.5130
2	12.841	FM	0.6917	2605.31250	62.77508	33.4870

Totals :

7780.06982 225.97775

 \rightarrow 33% ee (major diastereomer)

(Table S1, entry 6)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
		-			-	
1	16.235	MF	0.8545	2230.54614	43.50617	72.6221
2	18.295	FM	0.6483	840.89447	15.20243	27.3779
Total	ls :			3071.44061	58.70860	

 \rightarrow -45% ee (minor diastereomer)

(Table S1, entry 7)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime 7 [min]	Гуре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
	-	-				
1	11.513 N	MF	0.4633	1.52291e4	547.82129	71.8208
2	12.815 H	FM	0.6153	5975.18896	161.85378	28.1792
Total	ls :			2.12043e4	709.67506	

 \rightarrow 44% ee (major diastereomer)

(Table S1, entry 7)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	융
1	16.193	MF	0.8420	2971.83643	58.82652	39.9020
2	17.794	FM	1.0082	4476.00732	73.99231	60.0980
Total	ls :			7447.84375	132.81882	

 $\rightarrow 20\%$ ee (minor diastereomer)

(Table 1, entry 5) (Table S1, entry 8)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	11.172	MF	0.4202	5.53414e4	2195.25513	91.4721
2	12.585	FM	0.6839	5159.44531	125.74113	8.5279

Totals :

6.05009e4 2320.99625

 \rightarrow 83% ee (major diastereomer)

(Table 1, entry 5) (Table S1, entry 8)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	16.317	MF	0.6305	493.68134	13.04979	7.5924
2	17.444	FM	0.6887	6008.62402	102.47517	92.4076

Totals :

6502.30536 115.52495

 $\rightarrow 85\%$ ee (minor diastereomer)

(Table S1, entry 9)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	25
1	11.706	MF	0.4993	4177.66504	139.45123	77.1147
2	12.945	FM	0.7599	1239.80676	27.19378	22.8853

Totals :

5417.47180 166.64501

 \rightarrow 54% ee (major diastereomer)

(Table S1, entry 9)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	8
1 16.317 MF	1.2393	2056.05444	27.65072	65.9550
2 18.869 FM	1.7064	1061.30603	10.36617	34.0450
Totals :		3117.36047	38.01689	

 \rightarrow -32% ee (minor diastereomer)

(Table S1, entry 10)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	11.226	MF	0.4520	6852.39844	252.68811	15.5387
2	12.157	FM	0.4810	3.72465e4	1290.56372	84.4613

Totals :

4.40989e4 1543.25183

 \rightarrow -69% ee (major diastereomer)

(Table S1, entry 10)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.475	MF	0.6927	7730.19336	185.98138	54.8838
2	17.162	FM	0.8777	6354.45508	120.67137	45.1162
Total	ls :			1.40846e4	306.65276	

 \rightarrow -10% ee (minor diastereomer)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	26.235	MF	1.1408	1.83703e4	268.38867	47.5633
2	28.388	FM	0.9793	2.02525e4	344.68665	52.4367

3.86228e4

Totals :

Racemic standard

613.07532

(Table S1, entry 11)

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	25.104	MF	1.8405	1.46324e4	132.50249	57.0213	
2	28.312	FM	1.2775	1.10289e4	143.88950	42.9787	
Tota.	ls :			2.56613e4	276.39198		$\rightarrow 14\%$ ee

(Table S1, entry 12)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	28.068	BV E	0.4497	4465.76807	121.68364	9.8563
2	28.999	VB R	0.4661	4.08430e4	1301.45325	90.1437

Totals : 4.53087e4 1423.13689 → -80% ee

(Table 1, entry 7) (Table S1, entry 13)

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
		-					
1	26.840	BB	0.8340	4.23118e4	594.36523	96.4261	
2	28.925	BB	0.6203	1568.23633	29.63874	3.5739	
Total	ls :			4.38801e4	624.00398		$\rightarrow 93\%$ ee

(Table 1, entry 6) (Table S1, entry 14)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	23.535	MF	2.2210	3.73314e4	280.14163	82.3877
2	27.986	FM	2.0146	7980.47217	66.02348	17.6123
Total	s:			4.53119e4	346.16512	

 $\rightarrow 65\%$ ee

(Table 1, entry 8) (Table S1, entry 15)

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
		-		-			
1	25.061	MF	1.1910	3.81752e4	534.21667	84.3195	
2	28.686	FM	1.3590	7099.25146	87.06653	15.6805	
Tota.	ls :			4.52744e4	621.28320		→ 69% ee

(Table S1, entry 16)

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]		[min]	[mAU*s]	[mAU]	8	
1	27.239	BV E	0.4451	4183.92627	113.63413	7.8234	
2	28.457	VB R	0.5516	4.92957e4	1219.38342	92.1766	
Tota	ls :			5.34796e4	1333.01756		$\sim 940/22$
IULA.	1.5 .			J.J4/J024	10001/00		$\rightarrow -84\%$ ee

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	41.27	49.39	342.0	346.4	49.391
2	UNKNOWN	55.03	50.61	263.2	355.0	50.609
Total			100.00	605.3	701.4	100.000

(Table S2, entry 1)

WL-N9-99-f2329-ADH-0.5-5%-230nm-80min-93.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	41.14	78.46	1022.7	1099.6	78.463
2	UNKNOWN	55.76	21.54	216.3	301.8	21.537
Total			100.00	1238.9	1401.5	100.000

 $\rightarrow 57\%$ ee

(Table S2, entry 2)

WL-N9-80-2nd-f32-C2-ADH-0.5-5%-230nm-80min-96.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	41.40	92.24	334.8	328.1	92.237
2	UNKNOWN	56.11	7.76	23.4	27.6	7.763
Total			100.00	358.3	355.8	100.000

 $\rightarrow 84\%$ ee

(Table S2, entry 3)

WL-N9-93b-C2-f14-ADH-0.5-5%-230nm-80min-12.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	40.94	88.03	808.2	826.1	88.029
2	UNKNOWN	55.33	11.97	86.2	112.3	11.971
Total			100.00	894.4	938.4	100.000

 $\rightarrow 76\%$ ee

Poa	Ŀ	ro	C	ı ıl	te	
i ea	n	10	5	u	13	

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	45.44	50.39	772.7	947.2	50.386
2	UNKNOWN	66.68	49.61	470.6	932.7	49.614
Total			100.00	1243.3	1879.8	100.000

(Table S2, entry 4)

WL-N9-101a-C2(f1227)-ADH-0.5-5%-230nm-80min-5.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	44.79	83.71	1128.0	1476.6	83.711
2	UNKNOWN	66.86	16.29	173.2	287.3	16.289
Total			100.00	1301.2	1763.9	100.000

 $\rightarrow 67\%$ ee

(Table S2, entry 5)

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	45.84	87.91	1144.2	1586.9	87.910
2	UNKNOWN	69.15	12.09	133.8	218.2	12.090
Total			100.00	1278.0	1805.1	100.000

 $\rightarrow 76\%$ ee

(Table S2, entry 7)

WL-N9-101b-C2(f1326)-ADH-0.5-5%-230nm-80min-2.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Pea	ak	res	uli	ts	

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mĂU]	[mAU.Min]	[%]
1	UNKNOWN	45.73	14.01	261.2	343.9	14.011
2	UNKNOWN	65.27	85.99	931.2	2110.4	85.989
Total			100.00	1192.3	2454.3	100.000

 \rightarrow -72% ee

(Table S2, entry 8)

WL-N9-101c-C2(f3032)-ADH-0.5-5%-230nm-80min-32.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	44.54	98.50	650.9	776.8	98.498
2	UNKNOWN	66.29	1.50	8.4	11.8	1.502
Total			100.00	659.2	788.6	100.000

 $\rightarrow 97\%$ ee

(Table S2, entry 12)

WL-N9-82-C2(f1419)-ADH-0.5-5%-230nm-80min-11.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak	resu	ts	
------	------	----	--

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	44.79	83.22	724.6	893.8	83.217
2	UNKNOWN	66.46	16.78	115.0	180.3	16.783
Total			100.00	839.6	1074.1	100.000

 $\rightarrow 66\%$ ee

(Table 1, entry 9) (Table S2, entry 13)

WL-N9-93c-C2(f2232)-ADH-0.5-5%-230nm-80min-8.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mĂU]	[mAU.Min]	[%]
1	UNKNOWN	44.82	88.40	822.6	1054.3	88.399
2	UNKNOWN	66.73	11.60	90.8	138.4	11.601
Total			100.00	913.4	1192.7	100.000

 $\rightarrow 77\%$ ee

(Table S2, entry 14)

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	45.34	12.78	167.7	212.3	12.780
2	UNKNOWN	65.10	87.22	679.5	1448.6	87.220
Total			100.00	847.3	1660.9	100.000

 \rightarrow -74% ee

(Table 1, entry 10) (Table S2, entry 15)

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	%
1	UNKNOWN	45.62	88.17	1284.5	1947.8	88.166
2	UNKNOWN	68.90	11.83	148.4	261.4	11.834
Total			100.00	1432.9	2209.2	100.000

 $\rightarrow 76\%$ ee

(Table 1, entry 11) (Table S2, entry 16)

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	45.34	86.17	1716.9	2585.7	86.172
2	UNKNOWN	68.25	13.83	230.4	414.9	13.828
Total			100.00	1947.3	3000.6	100.000

 \rightarrow 72% ee

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	24.54	50.97	35.4	36.2	50.967
2	UNKNOWN	29.05	49.03	25.4	34.8	49.033
Total			100.00	60.8	71.0	100.000

Racemic standard

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	23.99	19.43	21.2	19.1	19.432
2	UNKNOWN	27.95	80.57	59.4	79.4	80.568
Total			100.00	80.6	98.5	100.000

 $\rightarrow 61\%$ ee

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	3.983	MM	0.2167	816.63812	62.82038	48.9619
2	4.705	MM	0.2280	851.26880	62.21785	51.0381

1667.90692 125.03823

Racemic standard

(Scheme 2, 5d)

Totals :

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak RetTime Type Width Area Height Area # [min] [min] [mAU*s] [mAU] 용 ----|-----|----|-----|------|-_____ ----| 1 3.837 MM 0.2216 3613.00537 271.69388 68.3923 0.2435 1669.76270 114.30554 31.6077 2 4.578 MM

Totals :

5282.76807 385.99942

 $\rightarrow 37\%$ ee

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	8
1	7.569	MM	0.1831	8717.88770	793.48718	51.5969
2	8.357	MM	0.3031	8178.25439	449.75534	48.4031

Totals :

Racemic standard

1.68961e4 1243.24252

(Scheme 2, **5e**)

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %	
1	7.691	BV	0.1630	4.04701e4	2978.64307	64.6349	
2	8.321	VB	0.2655	2.21433e4	1212.97864	35.3651	
Total	- ·			6 2613/0/	1191 62170		2004
IULAI				0.2013464	4101.02170		$\rightarrow 29\%$ ee

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	38.87	50.27	119.9	213.6	50.267
2	UNKNOWN	44.65	49.73	93.5	211.3	49.733
Total			100.00	213.3	424.9	100.000

(Scheme 2, **6b**)

WL-ELN-0009-09H-C2(f1118)-ODH-0.6-2%-230nm-60min-2.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	39.97	26.79	161.3	294.8	26.792
2	UNKNOWN	44.38	73.21	368.4	805.4	73.208
Total			100.00	529.7	1100.2	100.000

 $\rightarrow 46\%$ ee

(Scheme 2, **6b**)

WL-ELN-0009-21H-C2(f3032)-ODH-0.6-2%-230nm-60min-5.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mĂU]	[mAU.Min]	[%]
1	UNKNOWN	39.84	24.03	189.2	356.3	24.030
2	UNKNOWN	44.79	75.97	423.9	1126.5	75.970
Total			100.00	613.1	1482.9	100.000

 $\rightarrow 52\%$ ee

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mĂU]	[mAU.Min]	[%]
1	UNKNOWN	40.75	50.12	240.8	325.1	50.124
2	UNKNOWN	45.05	49.88	184.7	323.5	49.876
Total			100.00	425.5	648.5	100.000

(Scheme 2, 6c)

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	41.19	18.37	94.8	124.2	18.365
2	UNKNOWN	44.69	81.63	306.2	552.2	81.635
Total			100.00	401.0	676.4	100.000

 $\rightarrow 63\%$ ee

(Scheme 2, **6c**)

WL-ELN-0009-22-Ph-C2-newRRW-1-10%-230nm-60min-7.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	41.77	18.86	62.5	81.9	18.861
2	UNKNOWN	45.52	81.14	200.5	352.1	81.139
Total			100.00	263.0	434.0	100.000

 $\rightarrow 62\%$ ee

Index	Name	Time	Quantity	Height	Area	Area %
						70
1	UNKNOWN	25.66	51.41	1833.7	1411.2	51.406
2	UNKNOWN	28.36	48.59	1373.8	1334.0	48.594
Total			100.00	3207.4	2745.1	100.000

(Scheme 2, 6d)

WL-ELN-0009-13CF3-C2(f0713)-ADH-1-5%-230nm-40min-6.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	26.67	86.83	1421.3	1069.7	86.831
2	UNKNOWN	29.89	13.17	202.9	162.2	13.169
Total			100.00	1624.1	1232.0	100.000

 $\rightarrow 74\%$ ee

WL-ELN-0009-16diBr-C2-ADH-1-5%-230nm-60min-12.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	27.72	50.09	402.7	309.3	50.086
2	UNKNOWN	36.19	49.91	283.9	308.3	49.914
Total			100.00	686.6	617.6	100.000

(Scheme 2, **6e**)

WL-ELN-0009-15diBr-C2(f2128)-ADH-1-5%-230nm-60min-3.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	28.28	83.59	564.9	446.8	83.588
2	UNKNOWN	37.17	16.41	83.9	87.7	16.412
Total			100.00	648.9	534.5	100.000

 $\rightarrow 67\%$ ee

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	22.82	50.34	135.4	119.9	50.343
2	UNKNOWN	26.66	49.66	86.7	118.3	49.657
Total			100 00	222.0	238.2	100 000

(Table 2, entry 5) (Table S3, entry 1)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	26.31	96.14	251.2	398.9	96.136
2	UNKNOWN	32.95	3.86	4.9	16.0	3.864
Total			100.00	256.1	414.9	100.000

 $\rightarrow 92\%$ ee

(Table 2, entry 6) (Table S3, entry 2)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	22.90	97.37	250.2	389.4	97.371
2	UNKNOWN	28.27	2.63	4.9	10.5	2.629
Total			100.00	255.1	399.9	100.000

 $\rightarrow 95\%$ ee

(Table 2, entry 7) (Table S3, entry 3)

Peal	k res	ults :
------	-------	--------

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	27.02	97.49	339.1	571.7	97.485
2	UNKNOWN	34.38	2.51	5.0	14.7	2.515
Total			100.00	344.1	586.4	100.000

 $\rightarrow 95\%$ ee

(Table S3, entry 4)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	22.06	10.62	37.8	38.0	10.615
2	UNKNOWN	25.78	89.38	172.1	319.7	89.385
Total			100.00	209.9	357.6	100.000

→ -79% ee

(Table S3, entry 5)

Index	Name	Time [Min]	Quantity	Height [mAL]]	Area [mALLMin]	Area %
1	UNKNOWN	21 79	14.28	206.8	194.5	14 283
2	UNKNOWN	24.70	85.72	625.6	1167.4	85.717
Total			100.00	832.5	1362.0	100.000

 \rightarrow -71% ee

(Table S3, entry 6)

US84-ADH_45min_1.0mL_0.3%_210_230nm.METH7.DATA - Prostar 325 Absorbance Channel 1 LC1006M831 1,800

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	27.50	6.62	207.3	185.0	6.619
2	UNKNOWN	31.35	93.38	1726.9	2609.5	93.381
Total			100.00	1934.2	2794.5	100.000

 \rightarrow -87% ee

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	9.61	49.41	8.6	2.0	49.414
2	UNKNOWN	11.59	50.59	7.1	2.1	50.586
Total			100.00	15.6	4.1	100.000

(Table S3, entry 7)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	9.47	10.19	531.6	114.7	10.190
2	UNKNOWN	11.27	89.81	3256.4	1011.2	89.810
Total			100.00	3788.0	1125.9	100.000

 \rightarrow -80% ee

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	11.52	50.00	289.7	87.5	50.001
2	UNKNOWN	13.23	50.00	247.5	87.5	49.999
Total			100.00	537.2	175.0	100.000

(Table 2, entry 4) (Table S3, entry 8)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	11.58	5.30	59.9	17.0	5.305
2	UNKNOWN	13.24	94.70	916.1	303.9	94.695
Total			100.00	975.9	320.9	100.000

 \rightarrow -89% ee

(Table 2, entry 1) (Table S3, entry 9)

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	11.72	51.70	323.6	95.5	51.697
2	UNKNOWN	13.48	48.30	267.0	89.2	48.303
Total			100.00	590.6	184.7	100.000

 $\rightarrow 3\%$ ee

(Table 2, entry 2) (Table S3, entry 10)

Peak results :								
Index	Name	Time	Quantity	Height	Area	Area %		
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]		
1	UNKNOWN	11.71	27.21	200.5	59.4	27.208		
2	UNKNOWN	13.45	72.79	470.4	158.9	72.792		
Total			100.00	670.9	218.2	100.000		

 \rightarrow -46% ee

(Table S3, entry 11)

Peak results :									
Index	Name	Time	Quantity	Height	Area	Area %			
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]			
1	UNKNOWN	11.64	33.41	480.4	143.7	33.413			
2	UNKNOWN	13.40	66.59	852.6	286.4	66.587			
Total			100.00	1332.9	430.1	100.000			

 \rightarrow -33% ee

(Table S3, entry 12)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	11.61	78.91	856.0	258.2	78.915
2	UNKNOWN	13.42	21.09	207.2	69.0	21.085
Total			100.00	1063.2	327.2	100.000

 $\rightarrow 58\%$ ee

(Table S3, entry 13)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	11.67	28.69	220.6	65.5	28.691
2	UNKNOWN	13.43	71.31	483.0	162.7	71.309
Total			100.00	703.6	228.1	100.000

 \rightarrow -43% ee

(Table S3, entry 14)

	Pea	k res	sults :
--	-----	-------	---------

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	11.71	52.40	9.6	2.9	52.401
2	UNKNOWN	13.51	47.60	7.6	2.6	47.599
Total			100.00	17.2	5.5	100.000

 $\rightarrow 5\%$ ee

(Table S3, entry 15)

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	10.89	53.78	396.3	127.1	53.775
2	UNKNOWN	12.19	46.22	319.4	109.3	46.225
Total			100.00	715.7	236.4	100.000

 $\rightarrow 8\%$ ee

(Table S3, entry 16)

Peal	k res	ults :
------	-------	--------

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	11.52	34.78	301.8	89.8	34.782
2	UNKNOWN	13.06	65.22	501.4	168.4	65.218
Total			100.00	803.2	258.2	100.000

 \rightarrow -30% ee

(Table 2, entry 3) (Table S3, entry 17)

Peak results :

Index	Name	Time [Min]	Quantity	Height [mAU]	Area [mAU Min]	Area %
1		11.42	15.57	100.0	56.9	15 571
		10.07	15.57	100.9	000.0	10.071
2	UNKNOWN	12.97	84.43	899.6	308.2	84.429
Total			100.00	1080.5	365.0	100.000

 \rightarrow -69% ee

from reation with Rh₂OAc₄

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	olo
1	10.923	BB	0.2818	3382.68433	186.81001	49.9569
2	15.406	BB	0.4115	3388.52686	121.63947	50.0431
Total	ls :			6771.21118	308.44948	

from reaction with Rh₂(S-DOSP)₄

(Table 2, **9b**)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90 10
1	10.887	MM	0.2891	662.47327	38.18865	4.7499
2	15.216	MM	0.5055	1.32846e4	437.96808	95.2501
Total	ls :			1.39470e4	476.15673	

 $\rightarrow 91\%$ ee

(Table 2, 8a)

US18-chiral-ADH_60min_1mL_1%-230nm.METH5.DATA - Prostar 325 Absorbance Channel 1 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	11.83	96.05	1134.2	328.5	96.051
2	UNKNOWN	13.33	3.95	40.9	13.5	3.949
Total			100.00	1175.2	342.0	100.000

 $\rightarrow 92\%$ ee

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	90
		-				
1	13.207	BB	0.3819	3718.29077	144.41826	47.8783
2	19.458	BB	0.5071	4047.83301	98.36426	52.1217
Totals :			7766.12378	242.78252		

(Table 2, **9a**)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	13.217	BB	0.3150	683.13470	26.83323	3.6499
2	19.326	BB	0.6036	1.80335e4	426.23746	96.3501
Total	ls :			1.87166e4	453.07069	

→ 93% ee

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	15.75	50.19	635.7	246.4	50.190
2	UNKNOWN	17.50	49.81	602.1	244.5	49.810
Total			100.00	1237.8	490.9	100.000

(Table 2, 8c)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	15.73	95.12	2512.9	803.2	95.123
2	UNKNOWN	17.49	4.88	100.6	41.2	4.877
Total			100.00	2613.5	844.4	100.000

 $\rightarrow 90\%$ ee

2 14.171 BB 0.5100 1.04869e4 289.89407 50.3338

Totals: 2.08346e4 828.83481

(Table 2, 9c)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	9.084	BB	0.2710	983.66754	54.66121	5.0685
2	13.855	BB	0.5476	1.84237e4	493.40344	94.9315
Total	s :			1.94074e4	548.06465	

 $\rightarrow 90\%$ ee

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	11.26	50.46	339.0	134.2	50.460
2	UNKNOWN	13.53	49.54	232.7	131.8	49.540
Total			100.00	571.8	266.0	100.000

(Table 2, **8d**)

US23-chiral-S4900_30min_1mL_1%_230NM.METH18.DATA - Prostar 325 Absorbance Channel 1 LC1006M831

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	11.41	6.92	21.8	9.5	6.925
2	UNKNOWN	13.64	93.08	206.3	127.1	93.075
Total			100.00	228.1	136.6	100.000

 $\rightarrow 86\%$ ee

Totals : 3407.91223 78.65049

(Table 2, 9d)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	14.775	MM	0.6639	6783.49316	170.30302	6.6977
2	17.973	MM	0.9392	9.44969e4	1676.85071	93.3023
Total	ls :			1.01280e5	1847.15373	

 $\rightarrow 87\%$ ee

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	11.53	49.47	506.0	151.9	49.469
2	UNKNOWN	16.11	50.53	327.1	155.2	50.531
Total			100.00	833.1	307.1	100.000

(Table 2, 8e)

US22-chiral-ADH_60min_1mL_1%-230nm.METH6.DATA - Prostar 325 Absorbance Channel 1 LC1006M831

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	11.82	90.57	417.3	131.9	90.570
2	UNKNOWN	16.48	9.43	29.1	13.7	9.430
Total			100.00	446.4	145.6	100.000

 $\rightarrow 81\%$ ee

Totals: 4.26853e4 956.41431

(Table 2, 9e)

Signal 2: DAD1 B, Sig=230,4 Ref=off

Peak #	RetTime [min]	Туре	Width [min]	Area [mAU*s]	Height [mAU]	Area %
1	15.208	MM	0.5562	7781.52002	233.18750	10.0731
2	24.160	MM	1.1523	6.94688e4	1004.77606	89.9269
Total	ls :			7.72503e4	1237.96356	

→ 80% ee

10.3. C4 Functionalization Products

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	24.25	50.52	321.4	221.2	50.515
2	UNKNOWN	27.15	49.48	242.5	216.7	49.485
Total			100.00	563.9	437.9	100.000

(Table S4, entry 5)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	24.57	77.70	66.6	48.7	77.704
2	UNKNOWN	27.86	22.30	16.1	14.0	22.296
Total			100.00	82.7	62.7	100.000

 \rightarrow -55% ee

(Scheme 3) (Table S4, entry 6)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	24.65	19.72	143.3	105.2	19.719
2	UNKNOWN	27.08	80.28	365.6	428.4	80.281
Total			100.00	508.9	533.7	100.000

 $\rightarrow 61\%$ ee

(Table S4, entry 7)

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	24.77	68.58	105.1	78.7	68.577
2	UNKNOWN	28.13	31.42	37.9	36.0	31.423
Total			100.00	143.1	114.7	100.000

 \rightarrow -37% ee

(Table S4, entry 8)

Index	Name	Time	Quantity	Height	Area	Area %
	-	[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	24.48	46.92	259.6	204.8	46.918
2	UNKNOWN	27.36	53.08	216.7	231.7	53.082
Total			100.00	476.3	436.5	100.000

 $\rightarrow 6\%$ ee

(Table S4, entry 9)

Index	Name	Time	Quantity	Height	Area	Area %
	-	[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	24.62	33.79	101.7	74.0	33.794
2	UNKNOWN	27.44	66.21	144.4	145.1	66.206
Total			100.00	246.1	219.1	100.000

 $\rightarrow 32\%$ ee

(Table S4, entry 10)

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	24.73	35.09	155.3	114.7	35,085
2	UNKNOWN	27.56	64.91	205.2	212.2	64.915
Total			100.00	360.5	326.9	100.000

 $\rightarrow 30\%$ ee

(Table S4, entry 11)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	23.96	56.57	716.0	675.4	56.571
2	UNKNOWN	26.90	43.43	426.6	518.5	43.429
Total			100.00	1142.6	1193.9	100.000

 \rightarrow -13% ee

(Table S4, entry 13)

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	25.24	46.98	295.8	261.7	46.975
2	UNKNOWN	28.14	53.02	252.8	295.4	53.025
Total			100.00	548.6	557.1	100.000

 $\rightarrow 6\%$ ee

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	22.21	52.56	80.8	118.0	52.557
2	UNKNOWN	34.15	47.44	51.2	106.5	47.443
Total			100.00	132.0	224.5	100.000

(Table 4, entry 4) (Table S5, entry 5)

WL-N9-82-C4(f2030)-OD-1-15%-230nm-60min-14.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	21.66	95.12	501.8	791.9	95.123
2	UNKNOWN	34.30	4.88	22.4	40.6	4.877
Total			100.00	524.2	832.5	100.000

 $\rightarrow 90\%$ ee

NAU

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	21.64	52.44	357.0	558.3	52.437
2	UNKNOWN	36.61	47.56	217.3	506.4	47.563
Total			100.00	574.2	1064.7	100.000

(Table 4, entry 5) (Table S5, entry 6)

WL-N9-80-2nd-f37-C4-OD-1-10%-230nm-60min-87.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity	Height	Area	Area %
		The second secon	[/// 404]	[11// (0]	[n// (O.ivini)	1/0
1	UNKNOWN	21.61	98.15	302.2	486.7	98.149
2	UNKNOWN	37.29	1.85	5.7	9.2	1.851
Total			100.00	308.0	495.9	100.000

 $\rightarrow 96\%$ ee

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	31.73	51.86	263.1	367.2	51.857
2	UNKNOWN	47.04	48.14	136.1	340.9	48.143
Total			100.00	399.3	708.0	100.000

(Table 4, entry 6) (Table S5, entry 8)

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	31.20	97.94	524.9	780.3	97.938
2	UNKNOWN	50.10	2.06	8.1	16.4	2.062
Total			100.00	533.0	796.7	100.000

 $\rightarrow 96\%$ ee

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mĂU]	[mAU.Min]	[%]
1	UNKNOWN	42.24	52.23	119.7	182.1	52.227
2	UNKNOWN	51.59	47.77	82.7	166.5	47.773
Total			100.00	202.4	348.6	100.000

(Table 4, entry 7) (Table S5, entry 10)

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	41.56	98.41	333.7	556.1	98.413
2	UNKNOWN	53.30	1.59	5.6	9.0	1.587
Total			100.00	339.3	565.1	100.000

 $\rightarrow 97\%$ ee

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	50.31	53.96	299.2	1330.2	53.957
2	UNKNOWN	61.58	46.04	138.3	1135.1	46.043
Total			100.00	437.5	2465.3	100.000

(Table 4, entry 8) (Table S5, entry 11)

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	50.19	98.74	244.1	1051.0	98.743
2	UNKNOWN	64.18	1.26	2.4	13.4	1.257
Total			100.00	246.5	1064.4	100.000

 $\rightarrow 97\%$ ee

(Table 4, entry 9) (Table S5, entry 12)

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	50.11	98.02	272.6	1177.5	98.018
2	UNKNOWN	60.24	1.98	3.4	23.8	1.982
Total			100.00	276.0	1201.3	100.000

97% ee

 \rightarrow

(Table 4, entry 10) (Table S5, entry 13)

Peak results :

Index	Name	Time	Quantity	Height	Area	Area %
		[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
1	UNKNOWN	49.67	98.13	498.7	2090.5	98.134
2	UNKNOWN	60.07	1.87	5.9	39.8	1.866
Total			100.00	504.6	2130.3	100.000

 $\rightarrow 97\%$ ee

WL-ELN-0009-50rac-C4(f7475)-ODH-1-10%-230nm-45min-17.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	18.12	46.14	27.3	29.7	46.135
2	UNKNOWN	27.73	53.86	4.9	34.7	53.865
Total			100.00	32.2	64.4	100.000

(Scheme 4, 13f)

WL-ELN-0009-50chiral-C4(f3846)-ODH-1-10%-230nm-45min-20.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	18.09	2.04	5.2	6.3	2.039
2	UNKNOWN	28.06	97.96	41.2	304.7	97.961
Total			100.00	46.5	311.1	100.000

 $\rightarrow 96\%$ ee

h	ndex	Name	Time	Quantity	Height	Area	Area %
			[Min]	[% Area]	[mAU]	[mAU.Min]	[%]
	1	UNKNOWN	23.78	52.58	85.7	136.2	52.576
	2	UNKNOWN	46.05	47.42	10.4	122.8	47.424
	Fotal			100.00	96.1	259.0	100.000

(Scheme 4, 13g)

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	23.99	12.50	107.4	167.5	12.499
2	UNKNOWN	45.95	87.50	89.9	1172.7	87.501
Total			100.00	197.3	1340.2	100.000

 $\rightarrow 75\%$ ee

WL-ELN-0009-51rac-C4(f4445)-newRRW-1-20%-230nm-100min-23.DATA - Prostar 325 Absorbance Channel 2 LC1006M831

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	68.88	54.19	16.0	114.1	54.189
2	UNKNOWN	84.32	45.81	22.4	96.5	45.811
Total			100.00	38.5	210.6	100.000

Racemic standard

(Scheme 4, 13h)

Peak results :

Index	Name	Time [Min]	Quantity [% Area]	Height [mAU]	Area [mAU.Min]	Area % [%]
1	UNKNOWN	66.36	98.76	87.2	589.1	98.760
2	UNKNOWN	84.85	1.24	2.6	7.4	1.240
Total			100.00	89.8	596.5	100.000

 $\rightarrow 98\%$ ee

10. X-Ray Crystallographic Data of the Products for Absolute Stereochemistry

10.1. X-Ray Crystallographic Data for 6a

Crystal Data and Experimental

Experimental. Single colourless needle-shaped crystals of **WL-ELN09-38R-d1** were recrystallised from DCM by slow evaporation. A suitable crystal $0.49 \times 0.10 \times 0.05$ mm³ was selected and mounted on a loop with paratone oil on an XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at a steady *T* = 111.4(2) K during data collection. The structure was solved with the **ShelXT** (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using **Olex2** (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of **ShelXL** (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. $C_{21}H_{20}Br_2Cl_3NO_4S$, $M_r = 648.61$, orthorhombic, $P2_12_12_1$ (No. 19), a = 6.15074(9) Å, b = 26.3980(4) Å, c = 30.1139(5) Å, $a = b = g = 90^{\circ}$, V = 4889.51(13) Å³, T = 111.4(2) K, Z = 8, Z' = 2, $m(CuK_a) = 8.276$ mm⁻¹, 53908 reflections measured, 9424 unique ($R_{int} = 0.0555$) which were used in all calculations. The final wR_2 was 0.0645 (all data) and R_1 was 0.0262 (I > 2 σ (I)).

Compound	WL-ELN09-38R-d1
Formula	$C_{21}H_{20}Br_2Cl_3NO_4S$
$D_{calc.}$ / g cm ⁻³	1.762
<i>m</i> /mm ⁻¹	8.276
Formula Weight	648.61
Colour	colourless
Shape	needle
Size/mm ³	0.49×0.10×0.05
T/K	111.4(2)
Crystal System	orthorhombic
Flack Parameter	-0.003(6)
Hooft Parameter	-0.007(6)
Space Group	P212121
a/Å	6.15074(9)
<i>b</i> /Å	26.3980(4)
c/Å	30.1139(5)
$a/^{\circ}$	90
$b/^{\circ}$	90
$g/^{\circ}$	90
V/Å ³	4889.51(13)
Ζ	8
Z'	2
Wavelength/Å	1.54184
Radiation type	CuK _a
$Q_{min}/^{\circ}$	2.935
$Q_{max}/^{\circ}$	72.944
Measured Refl.	53908
Independent Refl.	9424
Reflections with I >	9037
2σ(I)	
R _{int}	0.0555
Parameters	577
Restraints	84
Largest Peak	0.650
Deepest Hole	-0.502
GooF	1.021
wR_2 (all data)	0.0645
wR_2	0.0633
R_1 (all data)	0.0281
R_1	0.0262

Structure Quality In	dicators			
Reflections:	d min (Cu)	0.81 ^{I/σ}	29.6 Rint	5.55% complete 100% (IUCr) 100%
Refinement:	^{Shift} 0.	001 Max Peak	0.7 ^{Min Peak} -0.5	Goof 1.021 Flack.003(6)

A colourless needle-shaped crystal with dimensions $0.49 \times 0.10 \times 0.05 \text{ mm}^3$ was mounted on a loop with paratone oil. Data were collected using an XtaLAB Synergy, Dualflex, HyPix diffractometer equipped with an Oxford Cryosystems low-temperature device operating at T = 111.4(2) K.

Data were measured using *w* scans using CuK_a radiation. The total number of runs and images was based on the strategy calculation from the program **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019). The maximum resolution that was achieved was $Q = 72.944^{\circ}$ (0.81 Å).

The diffraction pattern was indexed and the total number of runs and images was based on the strategy calculation from the program **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019) and the unit cell was refined using **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019) on 38372 reflections, 71% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019). The final completeness is 99.90 % out to 72.944° in *Q*. A numerical absorption correction based on a Gaussian integration over a multifaceted crystal model was performed using **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019). An empirical absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK was also applied. The absorption coefficient *m* of this material is 8.276 mm⁻¹ at this wavelength (l = 1.542Å) and the minimum and maximum transmissions are 0.687 and 1.000.

The structure was solved and the space group $P_{2_12_12_1}$ (# 19) determined by the **ShelXT** (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model.

The value of Z' is 2. This means that there are two independent molecules in the asymmetric unit.

The Flack parameter was refined to -0.003(6). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in -0.007(6). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Images of the Crystal on the Diffractometer

Figure 1: Plot of the asymmetric unit. There are two independent molecules in the asymmetric unit with the same chirality.

Figure 2: Plot of one of the two independent molecules in the asymmetric unit.

Data Plots: Diffraction Data

Data Plots: Refinement and Data

Reflection Statistics

Total reflections (after filtering)	54043	Unique reflections	9424
Completeness	0.963	Mean I/s	22.96
hklmax collected	(7, 32, 33)	hklmin collected	(-7, -32, -37)
hkl _{max} used	(7, 32, 37)	hkl _{min} used	(-7, 0, 0)
Lim d _{max} collected	100.0	Lim d _{min} collected	0.77
d _{max} used	15.06	d _{min} used	0.81
Friedel pairs	8951	Friedel pairs merged	0
Inconsistent equivalents	25	R _{int}	0.0555
R _{sigma}	0.0338	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	27
Multiplicity	(12250, 7439, 3904, 1560, 827, 450, 211, 78, 3)	Maximum multiplicity	18
Removed systematic absences	108	Filtered off (Shel/OMIT)	0

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **WL-ELN09-38R-d1**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	Ueq
Br1_1	9399.0(11)	6623.9(2)	5923.8(2)	57.82(16)
Br2_1	4129.0(9)	6237.7(2)	7147.5(2)	39.32(12)
Cl1_1	401.7(18)	2394.2(4)	6689.3(3)	34.1(2)
Cl2_1	4311.5(18)	2290.6(4)	7212.2(4)	38.4(2)
Cl3_1	103.5(19)	2097.7(4)	7609.6(4)	40.6(3)
S1_1	4544.3(13)	4550.5(3)	5437.5(2)	17.21(16)
O1_1	2811(4)	3340.6(9)	7132.6(8)	20.7(5)
O2_1	27(4)	3735.4(10)	6789.3(8)	22.9(5)
O3_1	2229(4)	4617.1(10)	5431.8(8)	22.3(5)
O4_1	5601(4)	4342.2(10)	5053.1(7)	24.0(5)
N1_1	5131(4)	4224.0(11)	5879.5(9)	16.4(5)
C2_1	7405(5)	4047.9(14)	5918.7(12)	19.4(7)
C3_1	7617(6)	3498.0(15)	5770.1(14)	26.3(7)
C4_1	6049(6)	3160.0(14)	6025.6(13)	25.0(7)

Atom	x	v	7.	Uea
$\frac{1}{C5}$ 1	3715(6)	$\frac{J}{33544(13)}$	5066 8(12)	20.0(6)
$C5_1$	3/13(0) 3/85(5)	3334.4(13) 2010 0(12)	5900.8(12)	20.0(0)
$C0_1$	3463(3)	3910.0(12) 2077.2(12)	6617.3(10)	15.0(5) 16.1(5)
$C10_1$	$\frac{5}{4}(0)$	3977.3(12) 3692.4(12)	68464(11)	10.1(3) 16.6(5)
$C11_1$	1944(0)	3082.4(13) 2026.0(14)	0040.4(11)	10.0(3)
$C15_1$	1559(0)	3020.9(14)	7377.8(12)	25.2(7)
C14_1 C10_1	1552(7)	2477.7(14) 4521.7(12)	7225.5(15)	20.8(8)
C19_1	5/30(0)	4551.7(12)	6/54.1(10)	10.1(0)
C20_1	5003(0)	4/20.2(14)	0955.7(11)	21.5(7)
C21_1	5702(7)	5234.4(14)	7075.1(11)	26.7(8)
C22_1	3928(7)	5540.5(14)	6994.7(11)	24.4(7)
C23_1	2042(7)	5356.2(14)	6802.3(12)	24.7(7)
C24_1	1961(6)	4845.9(13)	6681.9(11)	19.1(6)
C26_1	5811(6)	5138.4(13)	5545.0(10)	18.8(6)
C27_1	7877(6)	5230.1(14)	53/3.7(12)	22.4(7)
C28_1	8925(6)	5681.4(15)	5484.8(13)	27.9(7)
C29_1	7895(7)	6025.1(15)	5758.4(13)	29.9(7)
C30_1	5804(7)	5941.1(15)	5918.8(13)	30.8(8)
C31_1	4773(6)	5492.6(14)	5812.3(12)	25.0(7)
Br1_2	9323.2(10)	7516.7(2)	3726.4(2)	59.28(16)
Br2_2	3339.0(9)	7048.7(2)	4897.6(2)	42.07(13)
Cl1_2	-285.1(18)	3269.3(4)	3886.9(3)	32.9(2)
Cl2_2	3408.3(16)	3118.6(3)	4461.5(3)	31.4(2)
Cl3_2	-895.4(17)	2846.6(3)	4760.9(3)	29.6(2)
S1_2	4047.4(15)	5605.7(3)	2973.3(3)	21.13(18)
O1_2	1707(4)	4153.0(9)	4414.7(8)	19.5(5)
O2_2	-984(4)	4717.8(10)	4300.2(8)	24.8(5)
O3_2	1801(4)	5749.2(11)	2955.3(9)	29.2(6)
O4_2	5151(5)	5457.9(11)	2575.8(8)	29.5(6)
N1_2	4278(5)	5159.9(11)	3342.0(9)	19.2(6)
C2_2	6220(6)	4827.8(14)	3313.8(12)	22.8(7)
C3_2	5676(6)	4327.6(14)	3085.1(12)	25.2(8)
C4_2	3784(6)	4068.9(14)	3319.2(12)	22.7(7)
C5_2	1817(6)	4423.3(14)	3333.5(11)	20.2(7)
C6_2	2330(5)	4936.3(13)	3550.3(11)	17.1(7)
C10_2	2697(5)	4908.7(13)	4061.4(11)	15.2(7)
C11_2	894(6)	4597.2(13)	4270.5(10)	17.4(7)
C13_2	283(6)	3812.3(13)	4640.8(12)	23.0(8)
C14_2	621(6)	3289.5(13)	4443.8(11)	20.6(7)
C19_2	2784(6)	5435.2(13)	4269.0(11)	17.0(7)
C20_2	4696(6)	5591.2(14)	4477.1(11)	20.3(7)
C21_2	4859(7)	6069.0(14)	4668.6(12)	25.6(8)
C22 2	3080(7)	6388.1(14)	4650.0(12)	25.3(8)
C23_2	1162(6)	6244.7(14)	4447.2(12)	25.6(8)
C24_2	1020(6)	5767.0(14)	4256.6(11)	20.8(7)
C26 2	5503(6)	6128.7(14)	3189.2(12)	23.5(7)
C27 2	7523(7)	6241.6(17)	3015.7(17)	37.4(10)
C28 2	8624(7)	6660.9(19)	3173.0(19)	47.9(12)
C29 2	7724(8)	6954.8(16)	3503.2(16)	38.1(10)
C30 2	5690(9)	6848.9(15)	3673.2(14)	37.6(10)
C31_2	4585(8)	6429.7(16)	3514.1(13)	36.2(10)
		· · ·		

Table 2: Anisotropic Displacement Parameters (×10⁴) **WL-ELN09-38R-d1**. The anisotropic displacement factor exponent takes the form: $-2p^{2}[h^{2}a^{*2} \times U_{11} + ... + 2hka^{*} \times b^{*} \times U_{12}]$

Atom	U 11	U 22	U 33	U 23	U 13	U 12
Br1_1	64.3(4)	29.6(2)	79.5(4)	-9.2(2)	7.9(3)	-22.3(3)
Br2_1	62.3(3)	15.68(19)	40.0(2)	-10.61(16)	11.8(2)	-6.9(2)
Cl1_1	44.0(6)	24.1(5)	34.2(5)	-4.5(4)	1.5(4)	-6.9(4)

Atom	U 11	U_{22}	U 33	U_{23}	U 13	U_{12}
Cl2_1	34.3(5)	28.5(5)	52.3(6)	13.2(4)	7.0(5)	10.7(4)
Cl3_1	48.8(6)	26.2(5)	46.9(6)	14.7(4)	14.2(5)	-4.6(4)
S1_1	16.0(4)	20.5(4)	15.1(3)	-1.1(3)	-1.0(3)	0.8(3)
01_1	24.0(10)	16.5(10)	21.7(10)	3.9(8)	-0.1(8)	-0.9(8)
O2_1	22.2(8)	20.5(12)	25.9(12)	3.8(10)	0.3(7)	-0.5(7)
03_1	16.4(12)	27.2(13)	23.3(12)	2.0(10)	-3.6(10)	1.4(11)
O4_1	23.9(12)	32.2(14)	16.0(11)	-5.9(10)	2.0(10)	-0.3(12)
N1_1	13.0(10)	16.9(12)	19.3(12)	0.7(10)	-0.6(8)	1.2(8)
C2_1	13.7(11)	21.1(13)	23.5(16)	-2.0(11)	-2.1(10)	2.7(9)
C3_1	20.7(14)	22.6(13)	35.6(17)	-6.3(11)	-3.8(13)	4.2(10)
C4_1	22.9(12)	18.5(14)	33.4(17)	-9.7(12)	-2.8(11)	3.6(10)
C5_1	21.0(13)	15.7(11)	23.4(16)	-5.6(10)	-1.6(11)	-0.1(9)
C6_1	13.9(11)	14.7(11)	16.4(10)	-2.6(8)	-0.8(8)	-0.1(9)
C10_1	20.0(11)	12.3(10)	15.9(10)	-0.6(7)	-0.8(8)	0.1(9)
C11_1	22.3(8)	12.2(11)	15.4(11)	-1.6(9)	1.0(7)	-0.3(7)
CI3_I	27.8(14)	18.5(12)	23.2(14)	5.3(10)	3.2(12)	-0.4(10)
CI4_I	30.9(19)	18.4(12)	31.2(18)	4.6(12)	6.3(15)	0.0(12)
$C19_1$	22.4(13)	12.4(10)	13.6(13)	-0.3(9)	2.1(11)	-1.0(9)
$C20_1$	25.3(18)	20.7(17)	18.0(10) 20.2(17)	-1.0(13)	-0.8(14)	-2.1(15)
$C21_1$	33(2)	24.0(19)	20.2(17) 21.0(15)	-0.2(14)	-0.4(10)	-10.7(17)
$C22_1$	35.3(10) 35.0(16)	10.0(10) 14.2(11)	21.0(13) 24.8(16)	-4.1(12) 1.6(10)	9.1(12) 7.0(12)	-1.9(12)
C_{23}_{1}	23.7(13)	14.2(11) 14.2(11)	24.8(10) 19 5(15)	-1.0(10)	1.0(12)	-0.7(10)
C_{24}	18 A(12)	14.2(11) 20.6(14)	17.3(13)	-0.8(9)	-2.3(11)	23(11)
$C_{20}1$	18.4(12) 18.7(13)	20.0(14) 23 6(14)	24.9(17)	4.3(11) 6 1(12)	-2.3(11)	2.3(11) 2 4(11)
C_{27}^{-1}	242(16)	25.6(14)	24.9(17) 33.8(17)	7.9(12)	-1 3(13)	-2.4(11)
C_{20}_{1}	36 5(16)	23.6(11) 21.6(15)	31.5(18)	7.9(12) 7.0(13)	1.0(14)	-5.8(12)
C_{29}^{-1}	40.2(16)	21.5(12)	30.6(18)	0.3(12)	7.4(14)	-3.8(13)
C31 1	27.8(16)	20.9(13)	26.5(16)	1.4(12)	6.3(13)	0.1(11)
Br1 2	56.1(3)	25.8(2)	96.0(4)	-10.3(3)	-12.4(3)	-7.1(3)
$Br2_2$	59.3(3)	20.3(2)	46.6(3)	-13.33(19)	9.1(2)	-5.4(2)
Cl1_2	48.9(6)	26.6(5)	23.1(4)	-2.1(3)	-8.6(4)	-9.1(4)
Cl2_2	27.0(4)	20.0(4)	47.3(5)	3.4(4)	-0.4(4)	3.6(4)
Cl3_2	41.8(5)	15.7(4)	31.4(4)	-1.5(3)	13.3(4)	-5.2(4)
S1_2	22.2(4)	24.1(4)	17.2(4)	5.3(3)	-2.4(3)	0.9(4)
01_2	21.0(12)	13.6(11)	23.9(12)	2.0(9)	0.3(10)	-1.4(10)
02_2	19.3(13)	22.5(13)	32.6(13)	6.1(10)	4.4(11)	2.6(11)
03_2	23.9(13)	32.5(15)	31.2(14)	11.5(12)	-5.3(11)	5.4(12)
04_2	33.3(15)	41.0(16)	14.2(11)	3.0(11)	1.7(11)	-3.9(13)
N1_2	16.6(14)	20.8(14)	20.1(13)	3.7(11)	1.7(12)	4.8(13)
C2_2	15.4(17)	27.4(19)	25.7(17)	1.6(15)	1.0(14)	5.1(15)
C3_2	22.6(17)	27.6(19)	25.5(17)	-2.8(14)	1.3(15)	10.8(16)
C4_2	25.5(19)	18.3(17)	24.3(17)	-3.1(14)	0.0(14)	1.9(15)
$C5_2$	19.1(17)	22.8(18)	18.7(16)	-2.3(14)	-0.8(13)	-0.7(15)
C_{0_2}	14.0(15) 14.2(15)	18.9(17) 15.0(16)	1/./(10) 16 $4(15)$	-0.2(13)	0.0(13) 0.3(12)	1.9(14) 1.2(13)
$C10_2$	14.2(13) 21.8(17)	15.0(10) 15.2(16)	10.4(13) 15 3(15)	0.7(13)	-0.3(12)	1.2(13)
$C11_2$	21.0(17) 30(2)	13.2(10) 14.6(16)	243(17)	-0.9(12)	-1.8(13)	1.8(15)
$C13_2$ $C14_2$	260(17)	17.0(16)	18.8(17)	1.0(14)	0.8(14)	-3.2(15)
$C14_2$	20.0(17) 20.3(17)	13 9(16)	16.0(15)	24(13)	21(13)	0.7(14)
$C20_2$	23.3(18)	21.5(17)	16.1(15)	1.4(13)	0.2(14)	-0.1(15)
C21 2	31(2)	21.8(18)	24.2(18)	-1.4(14)	-3.3(15)	-3.8(16)
C22 2	38(2)	16.0(17)	21.5(17)	-1.5(14)	7.3(16)	-2.8(16)
C23 2	26.6(19)	19.9(18)	30.4(19)	3.1(15)	8.8(15)	3.0(15)
C24_2	19.9(17)	19.2(17)	23.3(16)	0.9(13)	2.7(14)	2.0(15)
C26_2	26.3(18)	19.9(18)	24.2(17)	8.1(14)	-2.7(15)	0.6(16)
C27_2	21.6(19)	30(2)	60(3)	-10(2)	1.1(19)	5.2(18)
C28_2	22(2)	38(3)	83(4)	-12(2)	6(2)	-2(2)
C29_2	40(2)	21(2)	53(3)	5.6(19)	-9(2)	0.4(18)

Atom	U 11	U_{22}	U 33	U 23	U 13	U 12
C30_2	61(3)	23.3(19)	28.8(19)	3.2(16)	9(2)	-5(2)
C31_2	50(3)	27(2)	31(2)	3.5(16)	13(2)	-9(2)

Atom	Atom	Length/Å	
Br1_1	C29_1	1.898(4)	
Br2_1	C22_1	1.901(4)	
Cl1_1	C14_1	1.777(4)	
Cl2_1	C14_1	1.768(4)	
Cl3_1	C14_1	1.771(4)	
S1_1	O3_1	1.435(3)	
S1_1	O4_1	1.437(2)	
S1_1	N1_1	1.626(3)	
S1_1	C26_1	1.766(4)	
01_1	C11_1	1.357(4)	
01_1	C13_1	1.432(4)	
O2_1	C11_1	1.200(4)	
N1_1	C2_1	1.478(4)	
N1_1	C6_1	1.478(4)	
C2_1	C3_1	1.525(5)	
C3_1	C4_1	1.522(6)	
C4_1	C5_1	1.535(5)	
C5_1	C6_1	1.533(5)	
C6_1	C10_1	1.555(4)	
C10_1	C11_1	1.520(5)	
C10_1	C19_1	1.520(4)	
C13_1	C14_1	1.526(5)	
C19_1	C20_1	1.394(5)	
C19_1	C24_1	1.388(5)	
C20_1	C21_1	1.392(5)	
C21_1	C22_1	1.379(6)	
C22_1	C23_1	1.385(6)	
C23_1	C24_1	1.396(5)	
C26_1	C27_1	1.393(5)	
C26_1	C31_1	1.389(5)	
C27_1	C28_1	1.395(5)	
C28_1	C29_1	1.379(6)	
C29_1	C30_1	1.392(6)	
C30_1	C31_1	1.381(6)	

 Table 3: Bond Lengths in Å for WL-ELN09-38R-d1.

. <u> </u>		?
Atom	Atom	Length/A
Br1_2	C29_2	1.903(5)
Br2_2	C22_2	1.903(4)
Cl1_2	C14_2	1.768(3)
Cl2_2	C14_2	1.774(4)
Cl3_2	C14_2	1.774(4)
S1_2	O3_2	1.434(3)
S1_2	O4_2	1.430(3)
S1_2	N1_2	1.624(3)
S1_2	C26_2	1.769(4)
01_2	C11_2	1.347(4)
01_2	C13_2	1.428(4)
O2_2	C11_2	1.202(5)
N1_2	C2_2	1.484(4)
N1_2	C6_2	1.475(4)
C2_2	C3_2	1.526(5)
C3_2	C4_2	1.522(5)
C4_2	C5_2	1.530(5)
C5_2	C6_2	1.536(5)
C6_2	C10_2	1.557(5)
C10_2	C11_2	1.517(5)
C10_2	C19_2	1.525(5)
C13_2	C14_2	1.517(5)
C19_2	C20_2	1.395(5)
C19_2	C24_2	1.395(5)
C20_2	C21_2	1.391(5)
C21_2	C22_2	1.382(6)
C22_2	C23_2	1.381(6)
C23_2	C24_2	1.388(5)
C26_2	C27_2	1.380(6)
C26_2	C31_2	1.381(6)
C27_2	C28_2	1.381(7)
C28_2	C29_2	1.378(7)
C29_2	C30_2	1.380(7)
C30_2	C31_2	1.384(6)

Table 4: Bond Angles in ° for WL-ELN09-38R-d1.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
03_1	S1_1	O4_1	119.08(15)	C4_1	C3_1	C2_1	110.8(3)
03_1	S1_1	N1_1	107.16(15)	C3_1	C4_1	C5_1	109.8(3)
03_1	S1_1	C26_1	109.40(17)	C6_1	C5_1	C4_1	112.0(3)
O4_1	S1_1	N1_1	110.87(15)	N1_1	C6_1	C5_1	110.2(3)
O4_1	S1_1	C26_1	106.53(16)	N1_1	C6_1	C10_1	108.9(3)
N1_1	S1_1	C26_1	102.57(15)	C5_1	C6_1	C10_1	111.9(3)
C11_1	O1_1	C13_1	117.6(3)	C11_1	C10_1	C6_1	108.3(3)
C2_1	N1_1	S1_1	116.2(2)	C11_1	C10_1	C19_1	111.6(3)
C6_1	N1_1	S1_1	121.7(2)	C19_1	C10_1	C6_1	112.1(3)
C6_1	N1_1	C2_1	115.8(3)	01_1	C11_1	C10_1	110.0(3)
N1 1	C2 1	C3 1	110.9(3)	O2_1	C11_1	O1_1	123.7(3)

Atom	Atom	Atom	Angle/°
02_1	C11_1	C10_1	126.3(3)
01_1	C13_1	C14_1	109.9(3)
Cl2_1	C14_1	Cl1_1	109.1(2)
Cl2_1	C14_1	Cl3_1	109.8(2)
Cl3_1	C14_1	Cl1_1	108.8(2)
C13_1	C14_1	Cl1_1	110.9(3)
C13_1	C14_1	Cl2_1	110.8(3)
C13_1	C14_1	Cl3_1	107.4(3)
C20_1	C19_1	C10_1	117.9(3)
C24_1	C19_1	C10_1	122.4(3)
C24_1	C19_1	C20_1	119.7(3)
C21_1	C20_1	C19_1	120.3(4)
C22_1	C21_1	C20_1	118.9(4)
C21_1	C22_1	Br2_1	118.2(3)
C21_1	C22_1	C23_1	122.0(3)
C23_1	C22_1	Br2_1	119.7(3)
C22_1	C23_1	C24_1	118.5(4)
C19_1	C24_1	C23_1	120.5(3)
C27_1	C26_1	S1_1	119.2(3)
C31_1	C26_1	S1_1	119.7(3)
C31_1	C26_1	C27_1	121.1(3)
C26_1	C27_1	C28_1	118.8(4)
C29_1	C28_1	C27_1	119.5(4)
C28_1	C29_1	Br1_1	118.7(3)
C28_1	C29_1	C30_1	121.8(4)
C30_1	C29_1	Br1_1	119.5(3)
C31_1	C30_1	C29_1	118.7(4)
C30_1	C31_1	C26_1	120.1(4)
03_2	S1_2	N1_2	107.54(16)
03_2	S1_2 S1_2	C26_2	10/.18(18)
04_2	S1_2 S1_2	05_2 N1_2	119.85(17)
04_2	S1_2 S1_2	$\frac{N1}{2}$	109.44(10) 106.20(18)
04_2 N1_2	$\frac{51_2}{51_2}$	C_{20}_{2}	100.29(16) 105.67(16)
C11 2	01_2	C_{20}_{2}	105.07(10) 118 3(3)
$C11_2$	N1 2	S1 2	1173(2)
C_{2}^{2}	N1_2	S1_2 S1_2	120.6(2)
$C6_2$	N1_2	$C^2 2$	120.0(2) 116 2(3)
N1 2	C^2_2	$C3_2$	110.2(3) 111.1(3)
C4 2	C3 2	C2 2	110.3(3)
C3 2	C4 2	C5 2	110.1(3)
C4 2	C5 ²	C6 2	112.9(3)
N1_2	C6_2	C5_2	109.8(3)
N1_2	C6_2	C10_2	108.7(3)
C5_2	C6_2	C10_2	114.1(3)
C11_2	C10_2	C6_2	109.3(3)
C11_2	C10_2	C19_2	110.5(3)
C19_2	C10_2	C6_2	111.6(3)
01_2	C11_2	C10_2	109.6(3)
O2_2	C11_2	O1_2	124.3(3)
02_2	C11_2	C10_2	126.2(3)
01_2	C13_2	C14_2	107.6(3)
CII_2	C14_2	Cl2_2	109.00(19)
CII_2	C14_2	CI3_2	108.98(19)
$C12_2$	C14_2	CI3_2	108.92(19)
$C13_2$	$C14_2$	$C12_2$	$110.\delta(2)$
$C13_2$	$C14_2$	$C12_2$	110.0(3)
C_{13}_{2}	$C14_2$	$C15_2$	118 9(3)
220_2	017_2	010_2	110.7(3)

Atom	Atom	Atom	Angle/°
C24_2	C19_2	C10_2	122.3(3)
C24_2	C19_2	C20_2	118.9(3)
C21_2	C20_2	C19_2	121.0(3)
C22_2	C21_2	C20_2	118.6(4)
C21_2	C22_2	Br2_2	118.4(3)
C23_2	C22_2	Br2_2	119.7(3)
C23_2	C22_2	C21_2	121.8(3)
C22_2	C23_2	C24_2	119.0(4)
C23_2	C24_2	C19_2	120.7(3)
C27_2	C26_2	S1_2	119.0(3)
C27_2	C26_2	C31_2	120.8(4)
C31_2	C26_2	S1_2	120.1(3)
C26_2	C27_2	C28_2	119.0(4)
C29_2	C28_2	C27_2	120.1(4)
C28_2	C29_2	Br1_2	119.1(4)
C28_2	C29_2	C30_2	121.2(4)
C30_2	C29_2	Br1_2	119.7(4)
C29_2	C30_2	C31_2	118.6(4)
C26_2	C31_2	C30_2	120.3(4)

Atom	X	У	Z	U_{eq}
H2A_1	7878.12	4078.71	6224.81	23
H2B_1	8337.85	4259.8	5737.18	23
H3A_1	7311.68	3473.79	5454.82	32
H3B_1	9095.49	3382.98	5819.17	32
H4A_1	6429.89	3160.13	6338.15	30
H4B_1	6154.56	2815	5916.72	30
H5A_1	3294.02	3320.28	5657.86	24
H5B_1	2737.01	3147.89	6143.19	24
H6_1	2037.43	4029.66	6021.31	18
H10_1	5143.27	3829.74	6706.03	19
H13A_1	-140.72	3142.74	7331.61	28
H13B_1	1661.75	3050.47	7692.42	28
H20_1	6786.92	4515.45	7005.93	26
H21_1	6944.63	5365.43	7208.35	32
H23_1	855.32	5567.72	6754.52	30
H24_1	708.01	4715.39	6552.3	23
H27_1	8545.69	4994.98	5188.66	27
H28_1	10307.19	5750	5375.22	33
H30_1	5113.99	6182.34	6094.33	37
H31_1	3383.33	5427.67	5919.62	30
H2A_2	6762.05	4760.48	3610.43	27
H2B_2	7355.69	4999.92	3148.97	27
H3A_2	5296.12	4390.63	2777.42	30
H3B_2	6938.15	4107.47	3090.44	30
H4A_2	4207.67	3978.7	3619.28	27
H4B_2	3403.32	3760.28	3162.62	27
H5A_2	654.73	4260.34	3497.75	24
H5B_2	1305.04	4480.6	3033	24
H6_2	1100.42	5163.79	3494.76	20
H10_2	4085.89	4738.38	4117.17	18
H13A_2	-1215.64	3917.89	4602.47	28
H13B_2	611.2	3808.61	4955.86	28
H20_2	5879.83	5372.31	4487.91	24
H21_2	6138.87	6171.71	4806.34	31
H23_2	-16.97	6465.06	4438.44	31
H24_2	-264.71	5667.18	4119.16	25
H27_2	8132.66	6038.44	2796.3	45
H28_2	9975.73	6744.83	3055.69	57
H30_2	5075.74	7054.71	3890.13	45
H31_2	3217.68	6350.45	3626.39	43

Table 5: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **WL-ELN09-38R-d1**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Citations

CrysAlisPro Software System, Rigaku Oxford Diffraction, (2019).

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C27, 3-8.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst., (2015), A71, 3-8.

Table 1 Crystal data and structure refinement for US8.

Identification code	US8
Empirical formula	$C_{19}H_{25}NO_4$
Formula weight	331.40
Temperature/K	106(7)
Crystal system	orthorhombic
Space group	P212121
a/Å	8.28903(12)
b/Å	11.79462(19)
c/Å	18.8010(3)
$\alpha/^{\circ}$	90
β/°	90
γ/°	90
Volume/Å ³	1838.10(5)
Z	4
$\rho_{calc}g/cm^3$	1.198
μ/mm^{-1}	0.678
F(000)	712.0

Crystal size/mm ³	$0.334 \times 0.227 \times 0.128$
Radiation	$CuK\alpha (\lambda = 1.54184)$
2Θ range for data collection/°	8.85 to 144.684
Index ranges	$-9 \le h \le 9, -14 \le k \le 14, -21 \le l \le 23$
Reflections collected	17416
Independent reflections	3508 [$R_{int} = 0.0424$, $R_{sigma} = 0.0275$]
Data/restraints/parameters	3508/65/307
Goodness-of-fit on F ²	1.064
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0264, wR_2 = 0.0654$
Final R indexes [all data]	$R_1 = 0.0272, wR_2 = 0.0660$
Largest diff. peak/hole / e Å ⁻³	0.19/-0.15
Flack parameter	-0.11(6)

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for US8. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_I tensor.

Atom	x	у	Z	U(eq)
09	6455.8(13)	8047.6(9)	1910.0(6)	22.3(2)
O21	2511.0(13)	8589.1(10)	3446.1(7)	30.2(3)
O22	9112.2(14)	8558.1(10)	1899.5(6)	28.3(3)
019	3039.0(13)	6722.3(9)	3432.8(7)	27.8(3)
N1	7493.2(15)	8896.1(10)	2857.0(6)	19.9(3)
C12	6212.5(17)	6927.2(12)	3763.2(8)	19.5(3)
C8	7805.6(18)	8504.4(12)	2191.4(8)	20.6(3)
C18	3458.8(18)	7811.0(13)	3491.3(8)	21.8(3)
C6	5881.3(17)	8940.1(12)	3126.8(8)	18.7(3)
C13	6777.9(18)	6219.7(12)	3222.4(8)	21.9(3)
C5	5662.0(18)	9127.7(12)	3905.4(9)	20.9(3)
C7	5230.2(18)	7964.7(12)	3600.3(8)	19.5(3)
C3	8726.1(19)	9061.5(14)	4032.0(9)	24.5(3)
C17	6514(2)	6630.3(13)	4465.8(9)	24.8(3)
C4	7108.6(19)	9357.7(13)	4374.9(8)	24.1(3)
C14	7670.2(19)	5255.8(13)	3384.6(9)	26.5(3)
C2	8776.0(18)	9454.9(13)	3266.2(9)	23.7(3)
C15	8000.4(19)	4984.3(13)	4085.5(10)	29.3(4)
C16	7410(2)	5663.7(14)	4625.7(9)	29.9(4)
C10	6413(2)	7686.0(14)	1162.3(8)	28.6(4)
C11	4692(2)	7259.3(16)	1089.0(10)	34.2(4)
C20	1331(2)	6526.8(15)	3307.9(12)	35.1(4)
C23	6692(3)	8713.8(17)	686.2(10)	43.2(5)
C24	7624(3)	6746.8(16)	1026.9(11)	40.5(4)

Table 3 Anisotropic Displacement Parameters (Å²×10³) for US8. The Anisotropic displacement factor exponent takes the form: $-2\pi^{2}[h^{2}a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+...]$.

Atom	U 11	U22	U33	U23	U 13	U12
09	25.3(5)	22.5(5)	19.1(5)	-0.4(4)	-0.6(4)	-5.0(4)

O21	18.9(5)	23.9(5)	47.8(7)	-1.9(5)	-1.7(5)	2.8(4)
O22	26.1(6)	29.6(6)	29.3(6)	-2.2(5)	7.6(5)	-5.1(5)
019	18.2(5)	20.3(5)	44.9(7)	-4.1(5)	1.2(5)	-1.0(4)
N1	17.3(6)	20.9(6)	21.6(6)	-1.2(5)	-1.2(5)	-1.4(5)
C12	16.3(7)	18.1(7)	24.2(7)	2.4(5)	0.8(6)	-1.9(5)
C8	22.1(7)	16.4(6)	23.3(7)	2.5(5)	-0.2(6)	-1.9(5)
C18	20.7(7)	22.0(7)	22.7(7)	-1.8(6)	1.9(6)	-0.2(6)
C6	16.6(7)	17.3(6)	22.3(7)	0.1(6)	-1.5(6)	0.6(5)
C13	21.5(7)	20.0(7)	24.2(7)	0.8(6)	2.2(6)	-0.8(6)
C5	19.1(7)	19.7(7)	23.9(7)	-3.0(6)	0.8(6)	2.3(6)
C7	19.1(7)	19.0(7)	20.5(7)	-1.5(5)	0.2(6)	0.9(5)
C3	21.5(8)	24.4(8)	27.7(8)	-2.8(6)	-6.2(6)	-0.3(6)
C17	25.9(7)	24.4(8)	24.3(8)	3.2(6)	0.8(6)	-1.9(6)
C4	27.4(8)	23.0(7)	21.9(7)	-3.7(6)	-3.0(7)	0.3(6)
C14	22.3(7)	20.5(7)	36.6(9)	1.4(6)	7.2(7)	1.1(6)
C2	18.8(7)	23.3(7)	29.1(8)	-2.1(6)	-3.7(6)	-3.1(6)
C15	20.0(7)	22.3(8)	45.5(10)	10.7(7)	-1.5(7)	1.0(6)
C16	29.6(8)	28.3(8)	31.9(8)	11.1(7)	-6.3(7)	-4.0(7)
C10	42.8(10)	24.1(7)	18.8(8)	-1.1(6)	-0.6(7)	-7.5(7)
C11	46.0(11)	29.0(9)	27.5(9)	-0.5(7)	-10.0(8)	-8.8(8)
C20	18.7(8)	28.3(8)	58.3(12)	-10.8(8)	0.5(7)	-2.6(6)
C23	66.8(13)	38.9(10)	24.0(9)	7.7(8)	-3.4(9)	-18.3(10)
C24	51.1(11)	33.1(9)	37.3(10)	-13.1(7)	8.5(9)	-5.8(8)

Table 4 Bond Lengths for US8.

Atom	Length/Å	Atom	Atom	Length/Å
C8	1.3498(18)	C6	C5	1.492(2)
C10	1.4694(19)	C6	C7	1.551(2)
C18	1.2110(19)	C13	C14	1.390(2)
C8	1.2158(19)	C5	C7	1.529(2)
C18	1.3350(18)	C5	C4	1.513(2)
C20	1.4532(19)	C3	C4	1.528(2)
C8	1.3589(19)	C3	C2	1.513(2)
C6	1.4302(19)	C17	C16	1.394(2)
C2	1.4686(19)	C14	C15	1.383(3)
C13	1.396(2)	C15	C16	1.383(3)
C7	1.501(2)	C10	C11	1.519(3)
C17	1.389(2)	C10	C23	1.524(2)
C7	1.494(2)	C10	C24	1.516(3)
	Atom C8 C10 C18 C8 C18 C20 C8 C6 C2 C13 C7 C17 C7	AtomLength/ÅC8 $1.3498(18)$ C10 $1.4694(19)$ C18 $1.2110(19)$ C8 $1.2158(19)$ C18 $1.3350(18)$ C20 $1.4532(19)$ C8 $1.3589(19)$ C6 $1.4302(19)$ C2 $1.4686(19)$ C13 $1.396(2)$ C7 $1.501(2)$ C17 $1.389(2)$ C7 $1.494(2)$	AtomLength/ÅAtomC8 $1.3498(18)$ C6C10 $1.4694(19)$ C6C18 $1.2110(19)$ C13C8 $1.2158(19)$ C5C18 $1.3350(18)$ C5C20 $1.4532(19)$ C3C8 $1.3589(19)$ C3C6 $1.4302(19)$ C17C2 $1.4686(19)$ C14C13 $1.396(2)$ C15C7 $1.501(2)$ C10C17 $1.389(2)$ C10C7 $1.494(2)$ C10	AtomLength/ÅAtomAtomC8 $1.3498(18)$ C6C5C10 $1.4694(19)$ C6C7C18 $1.2110(19)$ C13C14C8 $1.2158(19)$ C5C7C18 $1.3350(18)$ C5C4C20 $1.4532(19)$ C3C2C6 $1.4302(19)$ C17C16C2 $1.4686(19)$ C14C15C13 $1.396(2)$ C10C11C17 $1.389(2)$ C10C23C7 $1.494(2)$ C10C24

Table 5 Bond Angles for US8.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
C8	09	C10	120.71(12)	C4	C5	C7	124.40(13)
C18	019	C20	114.82(12)	C12	C7	C6	122.19(12)
C8	N1	C6	121.13(12)	C12	C7	C5	121.85(13)

C8	N1	C2	119.81(12)	C18	C7	C12	117.53(13)
C6	N1	C2	118.31(12)	C18	C7	C6	110.68(13)
C13	C12	C7	121.38(14)	C18	C7	C5	112.98(12)
C17	C12	C13	118.77(14)	C5	C7	C6	57.91(10)
C17	C12	C7	119.79(14)	C2	C3	C4	110.81(13)
09	C8	N1	109.80(12)	C12	C17	C16	120.48(15)
O22	C8	09	125.61(13)	C5	C4	C3	114.09(13)
O22	C8	N1	124.59(14)	C15	C14	C13	120.23(15)
O21	C18	019	123.65(14)	N1	C2	C3	109.94(13)
O21	C18	C7	123.74(14)	C16	C15	C14	119.69(14)
019	C18	C7	112.60(13)	C15	C16	C17	120.27(16)
N1	C6	C5	117.86(12)	O9	C10	C11	101.86(13)
N1	C6	C7	120.11(12)	O9	C10	C23	109.11(13)
C5	C6	C7	60.30(10)	O9	C10	C24	110.90(14)
C14	C13	C12	120.51(15)	C11	C10	C23	110.63(16)
C6	C5	C7	61.79(10)	C24	C10	C11	111.36(15)
C6	C5	C4	120.16(13)	C24	C10	C23	112.47(16)

Table 6 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters ($Å^2 \times 10^3$) for US8.

Atom	x	У	Z.	U(eq)
H17	6080(20)	7104(15)	4844(8)	30(5)
H15	8630(20)	4306(12)	4186(10)	33(5)
H14	8030(20)	4770(15)	2996(8)	34(5)
H4A	7130(20)	10172(18)	4474(10)	29(5)
H3A	9600(20)	9426(17)	4278(11)	26(5)
H13	6550(20)	6411(16)	2729(6)	26(5)
H23A	6000(20)	9349(14)	834(12)	45.4(17)
H16	7590(30)	5486(18)	5125(6)	34(5)
H23B	7808(12)	8989(19)	723(12)	45.4(17)
H11A	4520(30)	6980(20)	597(14)	45.4(17)
H5	4680(20)	9538(16)	4021(10)	19(4)
H11B	4520(30)	6620(20)	1423(13)	45.4(17)
H4B	7020(20)	9001(16)	4840(10)	25(5)
H2A	8600(20)	10278(6)	3229(10)	25(5)
H3B	8890(20)	8264(17)	4040(10)	25(5)
H24A	7450(30)	6456(19)	542(6)	45.4(17)
H20A	1250(30)	5702(7)	3240(13)	45.4(17)
H2B	9808(14)	9248(18)	3044(10)	34(5)
H6	5100(20)	9262(16)	2812(10)	20(4)
H24B	7470(30)	6115(13)	1361(9)	45.4(17)
H20B	750(30)	6801(19)	3730(8)	45.4(17)
H11C	3890(30)	7890(20)	1210(12)	45.4(17)
H24C	8735(13)	7020(19)	1090(13)	45.4(17)
H20C	920(30)	6941(17)	2891(8)	45.4(17)
11200	920(30)	0741(17)	2071(0)	43.4(1

H23C	6500(30)	8473(19)	192(6)	45.4(17)

Experimental

Single crystals of $C_{19}H_{25}NO_4$ [US8] were []. A suitable crystal was selected and [The crystal was mounted on a None] on a XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at 106(7) K during data collection. Using Olex2 [1], the structure was solved with the ShelXT [2] structure solution program using Intrinsic Phasing and refined with the ShelXL [3] refinement package using Least Squares minimisation.

- 1. Dolomanov, O.V., Bourhis, L.J., Gildea, R.J, Howard, J.A.K. & Puschmann, H. (2009), J. Appl. Cryst. 42, 339-341.
- 2. Sheldrick, G.M. (2015). Acta Cryst. A71, 3-8.
- 3. Sheldrick, G.M. (2015). Acta Cryst. C71, 3-8.

Crystal structure determination of [US8]

Crystal Data for C₁₉H₂₅NO₄ (M =331.40 g/mol): orthorhombic, space group P2₁2₁2₁ (no. 19), a = 8.28903(12) Å, b = 11.79462(19) Å, c = 18.8010(3) Å, V = 1838.10(5) Å³, Z = 4, T = 106(7) K, μ (CuK α) = 0.678 mm⁻¹, *Dcalc* = 1.198 g/cm³, 17416 reflections measured (8.85° ≤ 2 Θ ≤ 144.684°), 3508 unique (R_{int} = 0.0424, R_{sigma} = 0.0275) which were used in all calculations. The final R_1 was 0.0264 (I > 2 σ (I)) and wR_2 was 0.0660 (all data).

Refinement model description

Number of restraints - 65, number of constraints - unknown.

Details: 1. Restrained distances C2-H2A \approx C2-H2B \approx C23-H23A \approx C23-H23B \approx C23-H23C \approx C24-H24B \approx C24-H24A \approx C24-H24C \approx C20-H20A \approx C20-H20B \approx C20-H20C with sigma of 0.002 C16-H16 \approx C17-H17 \approx C15-H15 \approx C14-H14 \approx C13-H13 with sigma of 0.005 2. Uiso/Uaniso restraints and constraints Uiso(H24C) = Uiso(H24A) = Uiso(H24B) = Uiso(H11A) = Uiso(H11B) = Uiso(H11C) = Uiso(H23C) = Uiso(H23B) = Uiso(H22A) = Uiso(H20C) = Uiso(H20A) = Uiso(H20B)

This report has been created with Olex2, compiled on 2018.07.26 svn.r3523 for OlexSys. Please let us know if there are any errors or if you would like to have additional features.

Crystal Data and Experimental

Experimental. Single colourless needle-shaped crystals of US96 were was chosen from the sample as supplied.. A suitable crystal 0.39×0.12×0.10 mm³ was selected and mounted on a loop with paratone oil on an XtaLAB Synergy, Dualflex, HyPix diffractometer. The crystal was kept at a steady T = 100.01(10) K during data collection. The structure was solved with the ShelXT (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using Olex2 (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of ShelXL (Sheldrick, 2015) using Least Squares minimisation. Crystal Data. $C_{16}H_{17}BrF_3NO_3$, $M_r = 408.21$, monoclinic, $P2_1$ (No. 4), a = 8.8333(2) Å, b = 8.6844(2) Å, c = 11.4854(3) Å, $b = 107.078(3)^{\circ}, a = g = 90^{\circ}, V = 842.22(4) \text{ Å}^3, T =$ 100.01(10) K, Z = 2, Z' = 1, $m(MoK_a) = 2.485 \text{ mm}^{-1}$, 20214 reflections measured, 7976 unique ($R_{int} = 0.0321$) which were used in all calculations. The final wR_2 was 0.0993 (all data) and R_1 was 0.0406 (I > 2 σ (I)).

Compound	US96
Formula	C ₁₆ H ₁₇ BrF ₃ NO ₃
$D_{calc.}$ / g cm ⁻³	1.610
<i>m</i> /mm ⁻¹	2.485
Formula Weight	408.21
Colour	colourless
Shape	needle
Size/mm ³	0.39×0.12×0.10
T/K	100.01(10)
Crystal System	monoclinic
Flack Parameter	-0.003(3)
Hooft Parameter	0.017(2)
Space Group	$P2_{1}$
a/Å	8.8333(2)
b/Å	8.6844(2)
$c/\text{\AA}$	11.4854(3)
$a/^{\circ}$	90
$b/^{\circ}$	107.078(3)
$g/^{\circ}$	90
$V/Å^3$	842.22(4)
Ζ	2
Z'	1
Wavelength/Å	0.71073
Radiation type	MoK_a
$Q_{min}/^{\circ}$	2.412
$Q_{max}/^{\circ}$	36.317
Measured Refl.	20214
Independent Refl.	7976
Reflections with I $>$	6370
2σ(I)	
R _{int}	0.0321
Parameters	217
Restraints	60
Largest Peak	0.969
Deepest Hole	-0.675
GooF	1.019
wR_2 (all data)	0.0993
wR_2	0.0933
R_1 (all data)	0.0589
R_1	0.0406

Structure Quality Indicators							
Reflections:	d min (Mo)	0.60 ^{I/σ}	22.4	Rint	3.21%	complete 100% (IUCr)	99%
Refinement:	^{Shift} -0.0	07 Max Peak	1.0 ^{Min Peak}	-0.7 ^{Ge}	^{00F} 1.01	9 Flack.00)3(3)

A colourless needle-shaped crystal with dimensions $0.39 \times 0.12 \times 0.10 \text{ mm}^3$ was mounted on a loop with paratone oil. Data were collected using an XtaLAB Synergy, Dualflex, HyPix diffractometer equipped with an Oxford Cryosystems low-temperature device operating at T = 100.01(10) K.

Data were measured using *w* scans using MoK_{*a*} radiation. The total number of runs and images was based on the strategy calculation from the program **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019). The maximum resolution that was achieved was $Q = 36.317^{\circ}$ (0.60 Å).

The diffraction pattern was indexed using the program **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019) and the unit cell was refined using **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019) on 9810 reflections, 49% of the observed reflections. Data reduction, scaling and absorption corrections were performed using **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019). The final completeness is 99.80 % out to 36.317° in *Q*. A numerical absorption correction based on Gaussian integration over a multifaceted crystal model was performed using **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019). An empirical absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK (Rigaku, V1.171.40.37a, 2019) was also used. The absorption coefficient *m* of this material is 2.485 mm⁻¹ at this wavelength (l = 0.711Å) and the minimum and maximum transmissions are 0.448 and 1.000.

The structure was solved and the space group P_{2_1} (# 4) determined by the **ShelXT** (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were located from the difference maps and refined using restraints.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 2 and Z' is 1.

The Flack parameter was refined to -0.003(3). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in 0.017(2). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Images of the Crystal on the Diffractometer

Figure 1:

Data Plots: Diffraction Data

Data Plots: Refinement and Data

Reflection Statistics

Total reflections (after filtering)	20233	Unique reflections	7976
Completeness	0.977	Mean I/s	17.04
hklmax collected	(14, 14, 19)	hklmin collected	(-15, -15, -19)
hkl _{max} used	(14, 14, 19)	hkl _{min} used	(-14, -14, 0)
Lim d _{max} collected	20.0	Lim d _{min} collected	0.6
d _{max} used	8.44	d _{min} used	0.6
Friedel pairs	5055	Friedel pairs merged	0
Inconsistent equivalents	2	R _{int}	0.0321
R _{sigma}	0.0447	Intensity transformed	0
Omitted reflections	0	Omitted by user (OMIT hkl)	19
Multiplicity	(7523, 4412, 1122, 193, 42, 13, 2)	Maximum multiplicity	11
Removed systematic absences	0	Filtered off (Shel/OMIT)	554

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **US96**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	У	Z	Ueq
Br1	10202.9(4)	8500.9(3)	9945.2(3)	36.82(9)
F2	4231.7(17)	8488(2)	815.0(12)	27.3(3)

Atom	X	у	Z	Ueq
F3	6620(2)	7895(3)	864.7(17)	37.4(4)
F1	6086(3)	10149(2)	1427.8(17)	36.0(4)
01	6577(2)	9079(2)	3588.8(16)	23.4(4)
O2	7801(2)	1321(2)	6247.6(17)	20.2(3)
O3	9779(2)	2430(2)	5680.9(19)	24.3(4)
N1	5839(3)	6622(2)	2972.0(17)	19.1(4)
C13	7789(3)	6705(3)	8337(2)	19.5(4)
C8	8508(3)	2512(3)	5868(2)	16.6(4)
C6	6098(3)	8109(3)	2796(2)	18.2(4)
C15	10372.1(19)	6546(3)	8005(2)	19.3(4)
C14	9386(3)	7109(3)	8644(2)	19.5(4)
C12	7203(2)	5690(2)	7366.3(19)	16.7(4)
C10	5756(3)	8656(3)	1456(2)	23.7(5)
C4	6180(2)	4074(3)	2157.6(19)	21.9(4)
C2	7271(2)	4617(3)	4413.0(19)	15.5(4)
C11	8173(3)	5083(2)	6719.9(18)	13.8(3)
C16	9765(3)	5526(3)	7041.2(19)	17.7(4)
C7	7480(3)	3946(2)	5697.2(19)	15.2(4)
C3	6548.6(18)	3403(2)	3442.3(19)	21.6(4)
C1	6201(2)	6041(2)	4227.9(17)	18.5(4)
C5	5103(2)	5477(3)	2025.0(16)	22.9(4)
C9	8694(2)	-110(2)	6427.9(13)	24.9(5)
09	0094(2)	-110(2)	0427.9(13)	24.9(3)

Table 2: Anisotropic Displacement Parameters (×10⁴) **US96**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U 11	U 22	U 33	U 23	U 13	U 12
Br1	37.91(15)	42.39(17)	29.57(13)	-21.55(12)	8.97(10)	-11.12(14)
F2	25.9(6)	35.6(8)	16.6(6)	4.6(7)	0.3(5)	5.8(8)
F3	36.7(9)	55.5(12)	26.0(8)	0.5(7)	18.7(7)	9.9(8)
F1	46.8(11)	32.3(9)	28.0(9)	10.3(7)	9.8(8)	-6.4(8)
01	26.6(9)	20.4(8)	18.7(7)	-1.0(6)	-0.5(7)	3.8(7)
O2	19.8(8)	18.0(8)	24.0(8)	5.6(6)	8.1(6)	0.1(6)
03	20.6(8)	19.8(8)	36.3(10)	2.5(7)	14.2(8)	1.4(7)
N1	23.5(9)	19.7(9)	11.8(7)	-1.4(6)	1.5(7)	2.3(7)
C13	22.9(11)	20.1(10)	17.2(9)	-2.2(7)	8.3(8)	0.9(9)
C8	17.5(9)	15.7(9)	17.2(9)	-0.3(7)	6.2(7)	0.5(8)
C6	15.5(9)	21.6(11)	16.3(9)	1.2(7)	2.7(7)	3.5(7)
C15	18.1(10)	20.7(10)	18.5(9)	-1.0(7)	4.5(8)	-3.0(8)
C14	23.9(11)	18.7(10)	15.0(9)	-3.1(7)	4.4(8)	-1.8(8)
C12	16.8(10)	16.9(10)	16.6(8)	0.3(6)	5.5(8)	-2.2(7)
C10	23.3(10)	30.5(13)	17.7(9)	3.5(9)	6.7(8)	2.6(10)
C4	29.7(12)	18.7(10)	16.4(9)	-5.1(7)	5.3(8)	0.0(9)
C2	17.1(9)	15.6(9)	13.6(8)	-1.1(6)	4.4(7)	0.6(7)
C11	15.5(9)	13.5(8)	12.9(8)	2.4(6)	4.9(7)	0.2(7)
C16	16.8(10)	19.5(10)	17.4(9)	-0.8(7)	5.9(8)	-1.9(8)
C7	15.7(9)	15.5(9)	15.2(8)	-1.4(6)	5.5(7)	0.3(7)
C3	27.1(10)	20.0(10)	17.4(8)	-3.9(9)	6.2(8)	-0.9(11)
C1	22.6(11)	19.7(9)	12.5(8)	-0.4(7)	3.9(7)	3.7(9)
C5	24.4(11)	25.7(11)	14.2(9)	-4.9(8)	-1.2(8)	0.2(10)
C9	26.2(12)	19.3(11)	29.6(12)	6.8(9)	8.6(10)	3.0(9)

 Table 3: Bond Lengths in Å for US96.

Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C14	1.892(2)	F3	C10	1.336(3)
F2	C10	1.339(3)	F1	C10	1.332(3)

Atom	Length/Å
C6	1.221(3)
C8	1.346(3)
C9	1.454(3)
C8	1.205(3)
C6	1.337(3)
C1	1.472(3)
C5	1.476(3)
C14	1.394(3)
C12	1.396(3)
C7	1.520(3)
C10	1.554(3)
	Atom C6 C8 C9 C8 C6 C1 C5 C14 C12 C7 C10

Atom	Atom	Length/Å
C15	C14	1.383(3)
C15	C16	1.396(3)
C12	C11	1.392(3)
C4	C3	1.530(3)
C4	C5	1.526(3)
C2	C7	1.546(3)
C2	C3	1.531(3)
C2	C1	1.533(3)
C11	C16	1.399(3)
C11	C7	1.519(3)

Table 4: Bond Angles in ° for US96.

Atom	Atom	Atom	Angle/°
C8	O2	C9	114.76(17)
C6	N1	C1	118.77(18)
C6	N1	C5	126.67(19)
C1	N1	C5	114.41(16)
C14	C13	C12	118.15(15)
O2	C8	C7	110.78(19)
03	C8	O2	123.9(2)
03	C8	C7	125.3(2)
01	C6	N1	126.2(2)
01	C6	C10	116.9(2)
N1	C6	C10	116.9(2)
C14	C15	C16	119.36(16)
C13	C14	Br1	118.94(17)
C15	C14	Br1	119.41(18)
C15	C14	C13	121.6(2)
C11	C12	C13	121.51(16)
F2	C10	C6	112.5(2)
F3	C10	F2	107.4(2)
F3	C10	C6	112.2(2)
F1	C10	F2	106.5(2)
F1	C10	F3	107.9(2)
F1	C10	C6	110.0(2)
C5	C4	C3	110.50(13)
C3	C2	C7	110.01(17)
C3	C2	C1	110.24(15)
C1	C2	C7	109.42(16)
C12	C11	C16	118.95(19)
C12	C11	C7	119.15(19)
C16	C11	C7	121.90(18)
C15	C16	C11	120.38(16)
C8	C7	C2	109.35(17)
C11	C7	C8	110.08(18)
C11	C7	C2	113.61(17)
C4	C3	C2	111.42(16)
N1	C1	C2	111.10(16)
N1	C5	C4	109.74(15)

Atom	X	У	Z	$oldsymbol{U}_{eq}$
H13	7054.2	7109	8766.09	0
H15	11513.61	6793	8252.11	0
H16	10442.2	5138.61	6558.3	0
H12	6068.6	5417.5	7083.61	0
H7	6390.6	3577.2	5765.19	0
H1A	5180.3	5776.69	4382.2	0
H3A	5543.4	3001.5	3553.21	0
H5A	4849.4	5968.8	1206.01	0
H4A	7189.01	4295.2	1972.5	0
H4B	5614.2	3339.2	1509.81	0
H2	8319.3	4983.81	4363.79	0
H3B	7265.89	2493.7	3592.3	0
H9A	8091.9	-972.81	6655.61	0
H9B	9698.6	57.9	7095.09	0
H1B	6643.3	6889.21	4811.5	0
H5B	4051.2	5166.29	2103.3	0
H9C	8950.5	-379.1	5663	0

Table 5: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **US96**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Citations

CrysAlisPro Software System, Rigaku Oxford Diffraction, (2019).

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C27, 3-8.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst., (2015), A71, 3-8.

#==== # PLATON/CHECK-(70414) versus check.def version of 310314 for Entry: us96 # Data: US96.cif - Type: CIF Bond Precision C-C = 0.0031 A# Refl: US96.fcf - Type: LIST4 Temp = 100 KX-Ray Nref/Npar = 19.8# Cell 8.8333(2) 8.6844(2) 11.4854(3) 90 107.078(3) 90 # Wavelength 0.71073 Volume Reported 842.22(4) Calculated 842.22(4) # SpaceGroup from Symmetry P 21 Hall: P 2yb monoclinic Reported P 1 21 1 # P 2yb monoclinic # MoietyFormula C16 H17 Br F3 N O3 Reported C16 H17 Br F3 N O3 # SumFormula C16 H17 Br F3 N O3 # # Reported C16 H17 Br F3 N O3 = 408.21[Calc], 408.21[Rep] # Mr # Dx,gcm-3 = 1.610[Calc], 1.610[Rep] 2[Rep] #Z = 2[Calc], # Mu (mm-1) = 2.485[Calc], 2.485[Rep]# F000 = 412.0[Calc], 412.0[Rep] or F000' = 411.68[Calc] # Reported T Limits: Tmin=0.448 Tmax=1.000 AbsCorr=GAUSSIAN # Calculated T Limits: Tmin=0.715 Tmin'=0.378 Tmax=0.784 # Reported Hmax= 14, Kmax= 14, Lmax= 19, Nref= 7976 , Th(max) = 36.317# Obs in FCF Hmax= 14, Kmax= 14, Lmax= 19, Nref= 7976[4290], Th(max)= 36.317 # Calculated Hmax= 14, Kmax= 14, Lmax= 19, Nref= 8160[4292], Ratio=1.86/0.98 # Reported Rho(min) = -0.68, Rho(max) = 0.97 e/Ang**3 (From CIF) # Calculated Rho(min) = -0.57, Rho(max) = 0.88 e/Ang**3 (From CIF+FCF data) # w=1/[sigma**2(Fo**2)+(0.0578P)**2], P=(Fo**2+2*Fc**2)/3 # R= 0.0406(6369), wR2= 0.0993(7976), S = 1.019 (From CIF+FCF data) # R= 0.0406(6369), wR2= 0.0993(7976), S = 1.019 (From FCF data only) # R= 0.0406(6370), wR2= 0.0993(7976), S = 1.019, Npar= 217, Flack -0.003(3) # Number Bijvoet Pairs = 3686 (95%) (2523 Selected for: Parsons -0.001(2) # P2(tr) 1.000, P3(tr) 1.000, P3(tw) 0.000, Student-T Nu 18.85, Hooft -0.001(4) #:

For Documentation: http://http://www.platonsoft.nl/CIF-VALIDATION.pdf

>>> The Following Improvement and Query ALERTS were generated - (Acta-Mode) <<<<

#______

Format: alert-number_ALERT_alert-type_alert-level text

751_ALERT_4_C Bond Calc	0.99000, Rep 0.9877(15) Senseless su
C13 -H13 1.555 1.555	# 14
751_ALERT_4_C Bond Calc	0.99000, Rep 0.9875(15) Senseless su
C15 -H15 1.555 1.555	# 19
751_ALERT_4_C Bond Calc	0.99000, Rep 0.9867(18) Senseless su
C12 -H12 1.555 1.555	# 21
751_ALERT_4_C Bond Calc	0.99000, Rep 0.9940(17) Senseless su
C4 -H4A 1.555 1.555	# 24
751_ALERT_4_C Bond Calc	1.00000, Rep 0.9960(16) Senseless su
C4 -H4B 1.555 1.555	# 25
751_ALERT_4_C Bond Calc	1.00000, Rep 0.9959(16) Senseless su
С2 -H2 1.555 1.555	# 29
751_ALERT_4_C Bond Calc	0.99000, Rep 0.9865(17) Senseless su
C16 -H16 1.555 1.555	# 32
751_ALERT_4_C Bond Calc	1.04000, Rep 1.039(2) Senseless su
С7 -Н7 1.555 1.555	# 33
751_ALERT_4_C Bond Calc	1.00000, Rep 0.9964(16) Senseless su
C3 -H3A 1.555 1.555	# 34
751_ALERT_4_C Bond Calc	1.00000, Rep 0.9955(17) Senseless su
C3 -H3B 1.555 1.555	# 35
751_ALERT_4_C Bond Calc	1.00000, Rep 0.9952(16) Senseless su
C1 -H1A 1.555 1.555	# 36
751_ALERT_4_C Bond Calc	1.00000, Rep 0.9955(16) Senseless su
C1 -H1B 1.555 1.555	# 37
751_ALERT_4_C Bond Calc	1.00000, Rep 0.9968(16) Senseless su
C5 -H5A 1.555 1.555	# 38
751_ALERT_4_C Bond Calc	1.00000, Rep 0.9966(16) Senseless su
C5 -H5B 1.555 1.555	# 39
751_ALERT_4_C Bond Calc	1.00000, Rep 0.9973(14) Senseless su
С9 -Н9А 1.555 1.555	# 40
751_ALERT_4_C Bond Calc	1.00000, Rep 0.9980(17) Senseless su
С9 -Н9В 1.555 1.555	# 41

751_ALERT_4_C Bond Calc 1.00000, Rep 0.9971(17) Senseless su С9 - Н9С 1.555 1.555 # 42 123.00, Rep 123.2(2) Senseless su 752_ALERT_4_C Angle Calc C14 -C13 -H13 1.555 1.555 1.555 # 6 752_ALERT_4_C Angle Calc 119.00, Rep 118.6(2) Senseless su С12 -С13 -Н13 1.555 1.555 1.555 # 7 752_ALERT_4_C Angle Calc 121.00, Rep 121.4(2) Senseless su C14 -C15 -H15 1.555 1.555 1.555 # 15 752_ALERT_4_C Angle Calc 119.00, Rep 119.1(2) Senseless su C16 -C15 -H15 1.555 1.555 1.555 # 16 752_ALERT_4_C Angle Calc 121.00, Rep 121.12(19) Senseless su C13 -C12 -H12 1.555 1.555 1.555 # 20 752_ALERT_4_C Angle Calc 117.00, Rep 117.3(2) Senseless su C11 -C12 -H12 1.555 1.555 1.555 # 22 752_ALERT_4_C Angle Calc 109.00, Rep 109.25(18) Senseless su C3 -C4 -H4A 1.555 1.555 1.555 # 29 752_ALERT_4_C Angle Calc 113.00, Rep 113.2(2) Senseless su C3 -C4 -H4B 1.555 1.555 1.555 # 30 752_ALERT_4_C Angle Calc 113.00, Rep 113.35(19) Senseless su C5 -C4 -H4A 1.555 1.555 1.555 # 32 752_ALERT_4_C Angle Calc 106.00, Rep 106.01(19) Senseless su C5 -C4 -H4B 1.555 1.555 # 33 752_ALERT_4_C Angle Calc 104.00, Rep 104.41(17) Senseless su H4A -C4 -H4B 1.555 1.555 1.555 # 34 752_ALERT_4_C Angle Calc 109.00, Rep 108.81(18) Senseless su С7 -С2 -Н2 1.555 1.555 # 35 752_ALERT_4_C Angle Calc 112.00, Rep 112.00(17) Senseless su C3 -C2 -H2 1.555 1.555 # 38 752_ALERT_4_C Angle Calc 106.00, Rep 106.28(18) Senseless su С1 -С2 -Н2 1.555 1.555 # 40 120.00, Rep 120.5(2) Senseless su 752_ALERT_4_C Angle Calc C15 -C16 -H16 1.555 1.555 1.555 # 45 752_ALERT_4_C Angle Calc 119.00, Rep 119.1(2) Senseless su C11 -C16 -H16 1.555 1.555 1.555 # 46 752_ALERT_4_C Angle Calc 106.00, Rep 105.65(19) Senseless su C8 -C7 -H7 1.555 1.555 1.555 # 48 752_ALERT_4_C Angle Calc 110.00, Rep 109.54(18) Senseless su C2 -C7 -H7 1.555 1.555 1.555 # 49 752_ALERT_4_C Angle Calc 108.00, Rep 108.30(17) Senseless su С11 -С7 -Н7 1.555 1.555 1.555 # 52 752_ALERT_4_C Angle Calc 108.00, Rep 108.14(16) Senseless su C4 -C3 -H3A 1.555 1.555 1.555 # 54 752_ALERT_4_C Angle Calc 114.00, Rep 114.42(17) Senseless su C4 -C3 -H3B 1.555 1.555 1.555 # 55 752_ALERT_4_C Angle Calc 110.00, Rep 110.17(16) Senseless su C2 -C3 -H3A 1.555 1.555 1.555 # 56 752_ALERT_4_C Angle Calc 108.00, Rep 108.19(17) Senseless su C2 -C3 -H3B 1.555 1.555 1.555 # 57 752_ALERT_4_C Angle Calc 104.00, Rep 104.23(19) Senseless su H3A -C3 -H3B 1.555 1.555 1.555 # 58 752_ALERT_4_C Angle Calc 108.00, Rep 107.82(18) Senseless su N1 -C1 -H1A 1.555 1.555 1.555 # 60 752_ALERT_4_C Angle Calc 110.00, Rep 109.61(18) Senseless su N1 -C1 -H1B 1.555 1.555 1.555 # 61 752_ALERT_4_C Angle Calc 110.00, Rep 110.10(17) Senseless su C2 -C1 -H1A 1.555 1.555 1.555 # 62 752_ALERT_4_C Angle Calc 114.00, Rep 113.52(18) Senseless su C2 -C1 -H1B 1.555 1.555 1.555 # 63 752_ALERT_4_C Angle Calc 104.00, Rep 104.35(16) Senseless su H1A -C1 -H1B 1.555 1.555 1.555 # 64 752_ALERT_4_C Angle Calc 110.00, Rep 109.58(19) Senseless su N1 -C5 -H5A 1.555 1.555 1.555 # 66 752_ALERT_4_C Angle Calc 110.00, Rep 109.65(19) Senseless su N1 -C5 -H5B 1.555 1.555 1.555 # 67 752_ALERT_4_C Angle Calc 113.00, Rep 113.39(19) Senseless su C4 -C5 -H5A 1.555 1.555 1.555 # 68 752_ALERT_4_C Angle Calc 110.00, Rep 110.19(18) Senseless su C4 -C5 -H5B 1.555 1.555 # 69 752_ALERT_4_C Angle Calc 104.00, Rep 104.13(17) Senseless su H5A -C5 -H5B 1.555 1.555 1.555 # 70 752_ALERT_4_C Angle Calc 112.00, Rep 111.72(18) Senseless su O2 -C9 -H9A 1.555 1.555 1.555 # 71

752_ALERT_4_C Angle Calc 108.00, Rep 107.89(17) Senseless su
$752_ALERT_4_C$ Angle Calc 109.00, Rep 109.19(17) Senseless su
O2 -C9 -H9C 1.555 1.555 # 73
752_ALERT_4_C Angle Calc 109.00, Rep 109.33(17) Senseless su
HYA -C9 -HYB 1.555 1.555 1.555 # 74 752 ALERT / C Angle Calc 100.00 Rep 100.37(17) Senseless su
H9A -C9 -H9C 1.555 1.555 1.555 # 75
752_ALERT_4_C Angle Calc 109.00, Rep 109.29(18) Senseless su
H9B -C9 -H9C 1.555 1.555 1.555 # 76
911_ALERT_3_C Missing # FCF Refl Between THmin & amp; STh/L= 0.600 2 Why ?
#=====================================
760 ALERT 1 G CIF Contains no Torsion Angles
791_ALERT_4_G The Model has Chirality at C2 R Verify
791_ALERT_4_G The Model has Chirality at C7 R Verify
795_ALERT_4_G C-Atom in CIF Coordinate List out of Sequence C8 Note
860_ALERT_3_G Number of Least-Squares Restraints
910_ALERT_3_G Missing # of FCF Reflections Below Th(Min) 1 Why ?
#======================================
ALERT_Level and ALERT_Type Summary
58 ALERT Level C = Check. Ensure it is Not caused by an Omission or Oversight
7 ALERT_Level_G = General Info/Check that it is not Something Unexpected
ALERT_Type_1 CIF Construction/Syntax Error, Inconsistent or Missing Data.
ALERT_1ype_2 Indicator that the Structure Model may be wrong or Deficient.
60 ALERT Type 4 Improvement Methodology Ouery or Suggestion
#=====================================
0 Missing Experimental Info Issue(s) (Out of 54 Tests) - 100 % Satisfied
0 Experimental Data Related Issue(s) (Out of 28 Tests) - 100 % Satisfied
2 Structural Model Related Issue(s) (Out of 117 Tests) - 98 % Satisfied
63 Unresolved or to be Checked Issue(s) (Out of 223 Tests) - 72 % Satisfied

#_____

Crystal Data and Experimental

Experimental. Single colourless prism-shaped crystals of **WL-N9-80-f34** were chosen from the sample as supplied. A suitable crystal $0.35 \times 0.21 \times 0.11$ mm³ was selected and mounted on a loop with paratone oil on an XtaLAB Synergy-S diffractometer. The crystal was kept at a steady T = 100.01(10) K during data collection. The structure was solved with the **ShelXT** (Sheldrick, 2015) structure solution program using the Intrinsic Phasing solution method and by using **Olex2** (Dolomanov et al., 2009) as the graphical interface. The model was refined with version 2018/3 of **ShelXL** (Sheldrick, 2015) using Least Squares minimisation.

Crystal Data. C₂₂H₂₃BrCl₃NO₄S, $M_r = 583.73$, orthorhombic, $P2_12_12_1$ (No. 19), a = 5.60602(6) Å, b = 20.3318(2) Å, c = 21.4309(2) Å, $a = b = g = 90^{\circ}$, V = 2442.71(4) Å³, T = 100.01(10) K, Z = 4, Z' = 1, m(CuK_a) = 6.365 mm⁻¹, 24631 reflections measured, 4842 unique ($R_{int} = 0.0422$) which were used in all calculations. The final wR_2 was 0.0855 (all data) and R_1 was 0.0326 (I > 2 σ (I)).

Compound	WL-N9-80-f34
Formula	C ₂₂ H ₂₃ BrCl ₃ NO ₄ S
$D_{calc.}$ / g cm ⁻³	1.587
m/mm^{-1}	6.365
Formula Weight	583.73
Colour	colourless
Shape	prism
Size/mm ³	0.35×0.21×0.11
T/K	100.01(10)
Crystal System	orthorhombic
Flack Parameter	-0.001(8)
Hooft Parameter	-0.007(6)
Space Group	$P2_{1}2_{1}2_{1}$
a/Å	5.60602(6)
b/Å	20.3318(2)
c/Å	21.4309(2)
$a/^{\circ}$	90
$b/^{\circ}$	90
$g^{/^{\circ}}$	90
V/Å ³	2442.71(4)
Ζ	4
Z'	1
Wavelength/Å	1.54184
Radiation type	CuK _a
$Q_{min}/^{\circ}$	2.996
$Q_{max}/^{\circ}$	77.056
Measured Refl.	24631
Independent Refl.	4842
Reflections with I $>$	4758
2σ(I)	
R _{int}	0.0422
Parameters	290
Restraints	12
Largest Peak	0.675
Deepest Hole	-0.722
GooF	1.057
wR_2 (all data)	0.0855
wR_2	0.0851
R_1 (all data)	0.0335
R_1	0.0326

Structure Quality In	dicators						
Reflections:	d min (Cu)	0.79 ^{I/σ}	39.7	Rint	4.22	2 <mark>%</mark> com	$\%^{plete}_{(IUCr)} 100\%$
Refinement:	Shift -0.0)04 Max Peak	0.7 Min Pea	^k -0.7	GooF]	L.057	Flack.001(8)

A colourless prism-shaped crystal with dimensions $0.35 \times 0.21 \times 0.11 \text{ mm}^3$ was mounted on a loop with paratone oil. Data were collected using an XtaLAB Synergy, Dualflex, HyPix diffractometer equipped with an Oxford Cryosystems low-temperature device operating at T = 100.01(10) K.

Data were measured using *w* scans using CuK_a radiation. The total number of runs and images was based on the strategy calculation from the program **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019). The maximum resolution that was achieved was $Q = 77.056^{\circ}$ (0.79 Å).

The diffraction pattern was indexed and then the total number of runs and images was calculated from the program **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019). The unit cell was refined using **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019) on 20665 reflections, 84% of the observed reflections.

Data reduction, scaling and absorption corrections were performed using **CrysAlisPro** (Rigaku, V1.171.40.37a, 2019). The final completeness is 100.00 % out to 77.056° in Q. A numerical absorption correction based on Gaussian integration over a multifaceted crystal model was performed using (Rigaku Oxford Diffraction, 2019). An empirical absorption correction using spherical harmonics as implemented in SCALE3 ABSPACK was also performed. The absorption coefficient m of this material is 6.365 mm⁻¹ at this wavelength (l = 1.542Å) and the minimum and maximum transmissions are 0.158 and 0.975.

The structure was solved and the space group $P_{2_12_12_1}$ (# 19) determined by the **ShelXT** (Sheldrick, 2015) structure solution program using Intrinsic Phasing and refined by Least Squares using version 2018/3 of **ShelXL** (Sheldrick, 2015). All non-hydrogen atoms were refined anisotropically. Hydrogen atom positions were calculated geometrically and refined using the riding model. Hydrogen atom positions were calculated geometrically and refined using the riding model.

There is a single molecule in the asymmetric unit, which is represented by the reported sum formula. In other words: Z is 4 and Z' is 1.

The Flack parameter was refined to -0.001(8). Determination of absolute structure using Bayesian statistics on Bijvoet differences using the Olex2 results in -0.007(6). Note: The Flack parameter is used to determine chirality of the crystal studied, the value should be near 0, a value of 1 means that the stereochemistry is wrong and the model should be inverted. A value of 0.5 means that the crystal consists of a racemic mixture of the two enantiomers.

Reflection Statistics

Total reflections (after filtering)	24719	Unique reflections	4842
Completeness	0.94	Mean I/s	28.61
hklmax collected	(6, 22, 26)	hklmin collected	(-6, -25, -25)
hkl _{max} used	(6, 25, 26)	hkl _{min} used	(-6, 0, 0)
Lim d _{max} collected	100.0	Lim d _{min} collected	0.77
d _{max} used	14.75	d _{min} used	0.79
Friedel pairs	2903	Friedel pairs merged	0

Inconsistent equivalents	16	R _{int}
Rsigma	0.0252	Intensity transformed
Omitted reflections	0	Omitted by user (OMIT hkl)
Multiplicity	(4573, 3499, 1890, 963, 416, 172, 56, 13, 2)	Maximum multiplicity
Removed systematic absences	88	Filtered off (Shel/OMIT)

Images of the Crystal on the Diffractometer

0

Table 1: Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **WL-N9-80-f34**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Atom	X	у	Z	Ueq
Br1	2801.8(11)	1784.5(2)	4307.8(3)	49.52(16)
C1	6633(7)	6324.1(18)	4797.0(17)	24.8(7)
C2	6167(7)	5869.2(18)	4242.4(18)	25.2(7)
C3	5315(7)	5184.6(18)	4444.8(16)	22.5(7)
C4	7009(7)	4906.9(17)	4939.5(16)	24.8(8)
C5	7411(7)	5382.3(17)	5473.4(16)	25.3(7)
C6	5239(7)	4718.2(18)	3879.1(17)	22.6(7)
C7	3332(7)	4912.0(18)	3407.4(18)	24.8(8)
C8	2607(7)	4960.3(17)	2306.5(16)	23.9(7)
C9	3411(7)	5610.5(19)	2020.5(18)	25.9(8)
C10	4745(7)	3992.7(19)	4029.2(17)	24.2(7)
C11	2689(8)	3809(2)	4339(2)	38.7(10)
C12	2144(8)	3148(2)	4433(2)	40.3(10)
C13	3686(8)	2680.8(18)	4212(2)	31.1(9)
C14	5814(9)	2844(2)	3932(2)	36.6(10)
C15	6298(7)	3507(2)	3837.6(19)	29.3(8)
C16	7868(7)	6777.2(18)	6246.6(17)	25.3(7)
C17	6642(8)	7360(2)	6117.9(19)	31.8(9)
C18	4942(9)	7578(2)	6537(2)	37.0(10)
C19	4397(8)	7229(2)	7076(2)	34.5(9)
C20	5640(8)	6651(2)	7192.3(19)	34.2(10)
C21	7353(8)	6420.8(19)	6782.5(17)	27.7(8)
C22	2503(10)	7463(3)	7523(2)	54.5(14)
Cl1	6532.4(16)	5608.4(5)	1900.9(4)	31.8(2)
Cl3	1966.4(16)	5695.7(6)	1286.8(4)	35.6(2)
Cl2	2634.7(19)	6285.6(4)	2500.5(5)	35.7(2)
N1	8391(6)	6000.3(14)	5214.8(14)	22.0(6)
01	10817(5)	7001.9(14)	5336.0(14)	32.3(6)
O2	11531(5)	6036.9(14)	6019.9(13)	29.8(6)
03	4142(5)	4807.2(13)	2820.3(12)	24.3(5)
O4	1346(5)	5097.9(16)	3531.3(14)	33.8(7)
S 1	9909.2(16)	6464.1(4)	5693.8(4)	24.63(19)

Table 2: Anisotropic Displacement Parameters (×10⁴) **WL-N9-80-f34**. The anisotropic displacement factor exponent takes the form: $-2p^2[h^2a^{*2} \times U_{11} + ... + 2hka^* \times b^* \times U_{12}]$

Atom	U 11	U_{22}	<i>U</i> 33	U_{23}	U_{13}	<i>U</i> ₁₂	
Br1	59.0(3)	26.0(2)	63.6(3)	-7.0(2)	-3.3(3)	-13.6(2)	

Atom	U 11	U 22	U 33	U 23	U 13	U 12
C1	24.1(18)	23.4(14)	27.0(14)	4.0(12)	-1.1(13)	3.9(14)
C2	24.0(17)	24.9(12)	26.6(14)	3.6(11)	-0.4(12)	3.3(11)
C3	18.6(16)	23.9(13)	24.9(17)	1.9(12)	2.9(13)	5.4(11)
C4	28(2)	20.6(16)	25.9(17)	3.0(14)	-0.2(15)	3.5(16)
C5	27.2(18)	23.2(12)	25.3(16)	3.3(11)	-0.4(14)	0.4(12)
C6	15.3(16)	27.0(18)	25.6(17)	0.0(14)	1.6(14)	2.7(14)
C7	20.7(18)	26.0(18)	27.8(18)	0.8(15)	1.5(15)	-2.2(15)
C8	21.0(18)	25.0(17)	25.7(17)	-1.1(13)	-0.6(14)	1.2(15)
C9	14.2(16)	31.6(19)	31.8(18)	4.0(16)	-2.6(14)	0.3(15)
C10	17.1(14)	28.3(18)	27.2(16)	-4.6(14)	-0.3(12)	-0.4(13)
C11	25.7(15)	29.0(18)	62(2)	2.2(18)	17.1(17)	3.5(14)
C12	29(2)	30(2)	62(3)	5.3(19)	12(2)	-5.0(18)
C13	34(2)	19.7(17)	39(2)	-0.8(16)	-5.3(18)	-4.4(16)
C14	41(2)	29(2)	40(2)	-7.6(19)	6.0(19)	3.4(19)
C15	25(2)	29.2(19)	34(2)	-4.2(17)	5.6(16)	-0.1(16)
C16	21.4(18)	25.5(17)	28.9(17)	-6.1(14)	-5.1(15)	2.1(16)
C17	39(2)	26.1(19)	30.3(19)	-1.4(15)	-5.1(17)	4.5(17)
C18	38(2)	33(2)	41(2)	-12.6(18)	-11(2)	15(2)
C19	31(2)	40(2)	33(2)	-15.2(18)	-2.3(17)	-1.1(19)
C20	37(2)	39(2)	26.9(19)	-5.7(17)	-1.3(17)	-4.7(19)
C21	27(2)	28.8(18)	27.2(17)	-3.2(15)	-2.4(15)	2.0(17)
C22	47(3)	63(3)	54(3)	-26(3)	8(3)	4(3)
Cl1	14.4(4)	46.4(5)	34.6(5)	6.4(4)	-1.4(3)	-0.9(4)
C13	18.9(4)	54.6(6)	33.2(4)	12.0(4)	-6.5(4)	0.4(4)
Cl2	31.5(5)	24.6(4)	50.9(6)	-3.6(4)	1.8(5)	1.9(4)
N1	20.3(15)	21.5(12)	24.2(14)	1.9(10)	0.4(11)	3.2(11)
01	26.8(15)	33.1(15)	37.1(15)	2.7(12)	2.7(12)	-7.6(12)
O2	17.6(13)	35.1(14)	36.8(14)	0.4(12)	-4.6(11)	6.2(11)
03	20.0(12)	26.7(13)	26.3(13)	0.2(10)	-0.1(10)	4.5(11)
O4	18.2(14)	50.2(18)	32.8(15)	0.1(13)	3.8(11)	5.9(13)
S1	18.5(4)	26.3(4)	29.1(4)	0.6(4)	-0.2(4)	0.8(3)

Table 3: Bond Lengths in Å for WL-N9-80-f34.

		0			0
Atom	Atom	Length/Å	Atom	Atom	Length/Å
Br1	C13	1.900(4)	C10	C11	1.381(6)
C1	C2	1.528(5)	C10	C15	1.379(5)
C1	N1	1.486(5)	C11	C12	1.394(6)
C2	C3	1.534(5)	C12	C13	1.369(6)
C3	C4	1.531(5)	C13	C14	1.376(6)
C3	C6	1.540(5)	C14	C15	1.390(6)
C4	C5	1.515(5)	C16	C17	1.398(5)
C5	N1	1.479(5)	C16	C21	1.388(5)
C6	C7	1.523(5)	C16	S 1	1.766(4)
C6	C10	1.535(5)	C17	C18	1.382(6)
C7	O3	1.355(5)	C18	C19	1.391(7)
C7	O4	1.205(5)	C19	C20	1.389(7)
C8	C9	1.525(5)	C19	C22	1.507(6)
C8	O3	1.432(4)	C20	C21	1.383(6)
C9	Cl1	1.769(4)	N1	S 1	1.633(3)
C9	C13	1.777(4)	01	S 1	1.429(3)
C9	Cl2	1.770(4)	O2	S 1	1.438(3)

Table 4: Bond Angles in ° for WL-N9-80-f34.

AtomAtomAtomAngle/N1C1C2 $108.3(3)$ C12C13BiC1C2C3 $112.5(3)$ C12C13C1C2C3C6 $110.2(3)$ C14C13BiC4C3C2 $109.7(3)$ C13C14C1C4C3C6 $109.6(3)$ C10C15C1C5C4C3 $112.3(3)$ C17C16S1C7C6C3 $112.5(3)$ C21C16C16C7C6C3 $112.5(3)$ C17C16S1C7C6C3 $112.5(3)$ C17C16S1C7C6C3 $112.5(3)$ C17C16S1C7C6C3 $112.5(3)$ C17C18C1C10C6C3 $115.6(3)$ C17C18C1C10C6C3 $112.5(3)$ C18C19C1C10C6C3 $112.4(4)$ C20C19C1C10C6C3 $112.6(3)$ C21C20C1C28C9C11 $110.4(3)$ C20C21C1C11C9C12 $109.2(2)$ C7O3C3C11C9C13 $109.1(2)$ N1S1C1C11C10C6 $120.7(3)$ O1S1C1C11C10C6 $120.7(3)$ O1S1C1C11C10C6 120				
1C1C2 $108.3(3)$ C12C13Bit1C2C3 $112.5(3)$ C12C13C122C3C6 $110.2(3)$ C14C13Bit4C3C2 $109.7(3)$ C13C14C134C3C6 $109.6(3)$ C10C15C155C4C3 $112.3(3)$ C17C16S16C3 $112.5(3)$ C21C16C167C6C3 $112.5(3)$ C21C16S17C6C3 $112.5(3)$ C17C18C17C6C10 $105.1(3)$ C18C17C18C7C6 $109.9(3)$ C18C19C19C13 $110.4(3)$ C20C19C19C13 $107.8(3)$ C1N1S11C9C13 $109.1(2)$ N1S1C11C9C13 $109.1(2)$ N1S1C11C9C13 $109.1(2)$ N1S1C11C10C6 $120.7(3)$ O1S1N115C10C11 $118.8(4)$ O2S1N1	tom	Atom	Atom	Angle/°
1 $C2$ $C3$ $112.5(3)$ $C12$ $C13$ $C13$ 2 $C3$ $C6$ $110.2(3)$ $C14$ $C13$ Bi 4 $C3$ $C2$ $109.7(3)$ $C13$ $C14$ $C13$ 4 $C3$ $C6$ $109.6(3)$ $C10$ $C15$ $C15$ 5 $C4$ $C3$ $112.3(3)$ $C17$ $C16$ $S1$ 1 $C5$ $C4$ $108.3(3)$ $C21$ $C16$ $C17$ 7 $C6$ $C3$ $112.5(3)$ $C21$ $C16$ $S1$ 7 $C6$ $C10$ $105.1(3)$ $C18$ $C17$ $C1$ 10 $C6$ $C3$ $115.6(3)$ $C17$ $C18$ $C1$ 3 $C7$ $C6$ $109.9(3)$ $C18$ $C19$ $C1$ 4 $C7$ $C6$ $125.7(4)$ $C20$ $C19$ $C1$ 3 $C8$ $C9$ $C11$ $110.4(3)$ $C20$ $C19$ $C1$ 8 $C9$ $C13$ $107.8(3)$ $C1$ $N1$ $S1$ 8 $C9$ $C12$ $111.5(3)$ $C5$ $N1$ $S1$ 11 $C9$ $C13$ $109.1(2)$ $N1$ $S1$ $C1$ 11 $C9$ $C13$ $109.1(2)$ $N1$ $S1$ $C1$ 15 $C10$	1	C1	C2	108.3(3)
C2C3C6110.2(3)C14C13BiC4C3C2109.7(3)C13C14C1C4C3C6109.6(3)C10C15C1C5C4C3112.3(3)C17C16S1N1C5C4108.3(3)C21C16C1C7C6C3112.5(3)C17C16S1C7C6C3115.6(3)C18C17C1C10C6C3115.6(3)C18C19C1C3C7C6109.9(3)C18C19C1C4C7C6125.7(4)C20C19C1C4C7O3124.3(4)C20C19C1C6C9C13107.8(3)C1N1S1C8C9C13107.8(3)C1N1S1C11C9C12109.2(2)C7O3C5N1C11C9C13109.1(2)N1S1C1C11C10C6120.7(3)O1S1C1C15C10C6120.8(3)O1S1N1C11C10C6120.8(3)O1S1N1C15C10C11118.5(4)O1S1O1C10C11C12120.9(4)O2S1N1	C1	C2	C3	112.5(3)
C4C3C2 $109.7(3)$ C13C14C1C4C3C6 $109.6(3)$ C10C15C1C5C4C3 $112.3(3)$ C17C16S1N1C5C4 $108.3(3)$ C21C16C1C7C6C3 $112.5(3)$ C21C16S1C7C6C10 $105.1(3)$ C18C17C1C10C6C3 $115.6(3)$ C17C18C1C10C6C3 $115.6(3)$ C17C18C1C10C6C3 $115.6(3)$ C17C18C1C3C7C6 $109.9(3)$ C18C19C1C4C7C6 $125.7(4)$ C20C19C1C4C7O3 $124.3(4)$ C20C19C1C4C7O3 $124.3(4)$ C20C21C1C3C8C9C13 $107.8(3)$ C1N1S1C8C9C13 $107.8(3)$ C1N1S1C11C9C13 $109.1(2)$ N1S1C1C11C10C6 $120.7(3)$ O1S1C1C15C10C11 $118.5(4)$ O1S1O1C15C10C11 $118.8(4)$ O2S1N	C2	C3	C6	110.2(3)
C4C3C6109.6(3)C10C15C1C5C4C3112.3(3)C17C16S1N1C5C4108.3(3)C21C16C1C7C6C3112.5(3)C21C16S1C7C6C10105.1(3)C18C17C1C10C6C3115.6(3)C17C18C1O3C7C6109.9(3)C18C19C1O4C7C6125.7(4)C20C19C1O4C7O3124.3(4)C20C19C1O3C8C9108.7(3)C21C20C1C8C9C13107.8(3)C1N1S1C8C9C13108.8(2)C5N1C1C11C9C13109.1(2)N1S1C1C11C10C6120.7(3)O1S1C1C11C10C6120.8(3)O1S1O1C11C10C6120.8(3)O1S1C1C15C10C11118.5(4)O1S1O1C10C11C12120.9(4)O2S1N	C4	C3	C2	109.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C4	C3	C6	109.6(3)
N1C5C4 $108.3(3)$ C21C16C1C7C6C3 $112.5(3)$ C21C16SIC7C6C10 $105.1(3)$ C18C17C1C10C6C3 $115.6(3)$ C17C18C1O3C7C6 $109.9(3)$ C18C19C2O4C7C6 $125.7(4)$ C20C19C2O4C7O3 $124.3(4)$ C20C19C2O4C7O3 $124.3(4)$ C20C19C2O3C8C9 $108.7(3)$ C21C20C2C8C9C13 $107.8(3)$ C1N1S1C8C9C13 $107.8(3)$ C1N1S1C11C9C12 $111.5(3)$ C5N1C1C11C9C13 $109.1(2)$ N1S1C2C11C10C6 $120.7(3)$ O1S1NC15C10C1 $118.5(4)$ O1S1O1C10C11 $118.5(4)$ O1S1O1C13C12C11 $118.8(4)$ O2S1N	C5	C4	C3	112.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	N1	C5	C4	108.3(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	C6	C3	112.5(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C7	C6	C10	105.1(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C10	C6	C3	115.6(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03	C7	C6	109.9(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4	C7	C6	125.7(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	O4	C7	O3	124.3(4)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	03	C8	C9	108.7(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	C9	Cl1	110.4(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	C9	Cl3	107.8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C8	C9	Cl2	111.5(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1	C9	Cl3	108.8(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl1	C9	Cl2	109.2(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Cl2	C9	C13	109.1(2)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C11	C10	C6	120.7(3)
C15C10C11118.5(4)O1S1O2C10C11C12120.9(4)O2S1C1C13C12C11118.8(4)O2S1N	C15	C10	C6	120.8(3)
C10 C11 C12 120.9(4) O2 S1 C1 C13 C12 C11 118.8(4) O2 S1 N	C15	C10	C11	118.5(4)
C13 C12 C11 118.8(4) O2 S1 N	C10	C11	C12	120.9(4)
	C13	C12	C11	118.8(4)

Table 5: Torsion Angles in ° for WL-N9-80-f34.

Atom	Atom	Atom	Angle/°
C13	C14	C15	175.8(3)
C2	C3	C4	-50.8(4)
C2	C3	C6	-171.5(3)
N1	S 1	C16	67.6(3)
N1	S 1	01	-48.3(3)
N1	S 1	O2	-177.6(3)
C1	N1	C5	-63.4(4)
C1	N1	S 1	158.5(3)
C3	C4	C5	51.7(4)
C3	C6	C7	-67.2(4)
C3	C6	C10	172.0(3)
C4	C5	N1	-58.3(4)
C6	C7	O3	142.4(3)
C6	C7	O4	-41.3(5)
C6	C10	C11	58.2(5)
C6	C10	C15	-124.3(4)
C3	C6	C7	172.0(3)
C3	C6	C10	51.2(4)
C5	N1	C1	64.4(4)
C5	N1	S 1	-156.8(3)
N1	S 1	C16	-68.2(3)
N1	S 1	O1	175.9(3)
N1	S 1	O2	46.6(3)
C3	C4	C5	172.8(3)
C7	O3	C8	-179.9(3)
C10	C11	C12	175.0(4)
C10	C15	C14	-175.8(4)
	Atom C13 C2 C2 N1 N1 C1 C1 C1 C3 C3 C3 C4 C6 C6 C6 C6 C6 C6 C6 C6 C5 N1 N1 N1 C1 C1 C1 C3 C3 C3 C3 C4 C6 C6 C6 C5 C5 N1 N1 N1 N1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	AtomAtom $C13$ $C14$ $C2$ $C3$ $C2$ $C3$ $C1$ $S1$ $N1$ $S1$ $N1$ $S1$ $N1$ $S1$ $C1$ $N1$ $C1$ $N1$ $C1$ $N1$ $C1$ $N1$ $C3$ $C4$ $C3$ $C6$ $C3$ $C6$ $C4$ $C5$ $C6$ $C7$ $C6$ $C10$ $C3$ $C6$ $C3$ $C6$ $C3$ $C6$ $C5$ $N1$ $N1$ $S1$ $N1$ $S1$ $N1$ $S1$ $N1$ $S1$ $N1$ $S1$ $N1$ $S1$ $C3$ $C4$ $C7$ $O3$ $C10$ $C11$ $C10$ $C15$	AtomAtomAtom $C13$ $C14$ $C15$ $C2$ $C3$ $C4$ $C2$ $C3$ $C6$ $N1$ $S1$ $O1$ $N1$ $S1$ $O2$ $C1$ $N1$ $C5$ $C1$ $N1$ $C5$ $C1$ $N1$ $S1$ $C3$ $C4$ $C5$ $C3$ $C6$ $C7$ $C3$ $C6$ $C10$ $C4$ $C5$ $N1$ $C6$ $C7$ $O3$ $C6$ $C7$ $O3$ $C6$ $C10$ $C15$ $C3$ $C6$ $C7$ $C3$ $C6$ $C7$ $C3$ $C6$ $C7$ $C3$ $C6$ $C7$ $C3$ $C6$ $C10$ $C5$ $N1$ $C1$ $C5$ $N1$ $S1$ $N1$ $S1$ $O1$ $N1$ $S1$ $O2$ $C3$ $C4$ $C5$ $C7$ $O3$ $C8$ $C10$ $C11$ $C12$ $C10$ $C11$ $C12$ $C10$ $C15$ $C14$

Atom	Atom	Atom	Atom	Angle/°
C7	C6	C10	C11	-66.5(5)
C7	C6	C10	C15	111.0(4)
C9	C8	O3	C7	102.7(4)
C10	C6	C7	O3	-91.0(3)
C10	C6	C7	O4	85.3(5)
C10	C11	C12	C13	-0.1(8)
C11	C10	C15	C14	1.8(6)
C11	C12	C13	Br1	-176.5(4)
C11	C12	C13	C14	3.7(7)
C12	C13	C14	C15	-4.4(7)
C13	C14	C15	C10	1.6(7)
C15	C10	C11	C12	-2.6(7)
C16	C17	C18	C19	-0.9(7)
C17	C16	C21	C20	-0.8(6)
C17	C16	S1	N1	-87.6(3)
C17	C16	S1	01	27.3(4)
C17	C16	S1	O2	158.1(3)
C17	C18	C19	C20	0.8(7)
C17	C18	C19	C22	-178.6(4)
C18	C19	C20	C21	-0.7(6)
C19	C20	C21	C16	0.7(6)
C21	C16	C17	C18	0.9(6)
C21	C16	S1	N1	87.5(3)
C21	C16	S1	01	-157.6(3)
C21	C16	S1	O2	-26.7(4)
C22	C19	C20	C21	178.7(4)
N1	C1	C2	C3	56.4(4)
03	C8	C9	Cl1	47.9(3)
O3	C8	C9	C13	166.7(2)
O3	C8	C9	C12	-73.7(3)
O4	C7	O3	C8	3.7(6)
S 1	C16	C17	C18	176.0(3)
S 1	C16	C21	C20	-175.9(3)

Atom	X	У	Z	U_{eq}
H1A	7255.43	6742.14	4651.97	30
H1B	5158.82	6405.53	5021.04	30
H2A	7622	5824.44	4001.22	30
H2B	4968.63	6066.72	3974.96	30
H3	3710.53	5220.95	4622.86	27
H4A	6350.34	4500.53	5102.61	30
H4B	8529.19	4805.18	4746.22	30
H5A	5915.99	5469.06	5686.06	30
H5B	8519.72	5194.75	5771.77	30
H6	6789.61	4742.76	3669.28	27
H8A	970.9	4996.29	2449.79	29
H8B	2685.81	4613.49	1996.42	29
H11	1653.94	4131.43	4485.7	46
H12	759.22	3026.49	4642.13	48
H14	6892.78	2521.31	3810.52	44
H15	7708.63	3626.63	3639.39	35
H17	6965.32	7597.88	5756.69	38
H18	4139.21	7968.83	6455.13	44
H20	5312.28	6413.43	7553.11	41
H21	8155.34	6030.09	6865.49	33
H22A	2752.47	7263.5	7924.14	82
H22B	959.11	7340.46	7367.64	82
H22C	2589.51	7932.25	7562.54	82

Table 6: Hydrogen Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for **WL-N9-80-f34**. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{ij} .

Citations

CrysAlisPro Software System, Rigaku Oxford Diffraction, (2019).

O.V. Dolomanov and L.J. Bourhis and R.J. Gildea and J.A.K. Howard and H. Puschmann, Olex2: A complete structure solution, refinement and analysis program, *J. Appl. Cryst.*, (2009), **42**, 339-341.

Sheldrick, G.M., Crystal structure refinement with ShelXL, Acta Cryst., (2015), C27, 3-8.

Sheldrick, G.M., ShelXT-Integrated space-group and crystal-structure determination, Acta Cryst., (2015), A71, 3-8.
#---# PLATON/CHECK-(70414) versus check.def version of 310314 for Entry: wl-n9-80 # Data: WL-N9-80-f34.cif - Type: CIF Bond Precision C-C = 0.0057 A# Refl: WL-N9-80-f34.fcf - Type: LIST4 Temp = 100 KNref/Npar = 9.9X-Ray # Cell 5.60602(6) 20.3318(2) 21.4309(2) 90 90 90 # Wavelength 1.54184 Volume Reported 2442.71(4) Calculated 2442.70(4) # SpaceGroup from Symmetry P 21 21 21 Hall: P 2ac 2ab orthorhombic Reported P 21 21 21 # P 2ac 2ab orthorhombic # MoietyFormula C22 H23 Br Cl3 N O4 S # Reported C22 H23 Br Cl3 N O4 S SumFormula C22 H23 Br Cl3 N O4 S # # Reported C22 H23 Br Cl3 N O4 S # Mr = 583.73[Calc], 583.73[Rep] # Dx,gcm-3 = 1.587[Calc], 1.587[Rep] # Z _ 4[Calc], 4[Rep] # Mu (mm-1) = 6.365[Calc], 6.365[Rep]# F000 = 1184.0[Calc], 1184.0[Rep] or F000' = 1189.49[Calc] # Reported T Limits: Tmin=0.158 Tmax=0.975 AbsCorr=GAUSSIAN # Calculated T Limits: Tmin=0.257 Tmin'=0.086 Tmax=0.497 # Reported Hmax= 6, Kmax= 25, Lmax= 26, Nref= 4842 , Th(max) = 77.056# Obs in FCF Hmax= 6, Kmax= 25, Lmax= 26, Nref= 4842[2864], Th(max)= 77.055 # Calculated Hmax= 7, Kmax= 25, Lmax= 27, Nref= 5151[2982], Ratio=1.62/0.94 # Reported Rho(min) = -0.72, $Rho(max) = 0.68 e/Ang^{**3}$ (From CIF) # Calculated Rho(min) = -0.67, Rho(max) = 0.85 e/Ang**3 (From CIF+FCF data) # w=1/[sigma**2(Fo**2)+(0.0436P)**2+ 2.2178P], P=(Fo**2+2*Fc**2)/3 # R = 0.0326(4758), WR2 = 0.0856(4842), S = 1.057 (From CIF+FCF data) # R= 0.0326(4758), wR2= 0.0856(4842), S = 1.057 (From FCF data only) # R= 0.0326(4758), wR2= 0.0855(4842), S = 1.057, Npar=290, Flack -0.001(8) # Number Bijvoet Pairs = 1978 (91%) (1899 Selected for: Parsons 0.003(5) # P2(tr) 1.000, P3(tr) 1.000, P3(tw) 0.000, Student-T Nu 19.05, Hooft -0.012(6) _____ #== For Documentation: http://http://www.platonsoft.nl/CIF-VALIDATION.pdf #_____ >>> The Following Improvement and Query ALERTS were generated - (Acta-Mode) <<< #_____ _____ Format: alert-number_ALERT_alert-type_alert-level text 090_ALERT_3_C Poor Data / Parameter Ratio (Zmax > 18) 9.88 Note 761_ALERT_1_C CIF Contains no X-H Bonds Please Check 762_ALERT_1_C CIF Contains no X-Y-H or H-Y-H Angles Please Check 003_ALERT_2_G Number of Uiso or Uij Restrained non-H Atoms ... 7 Why ? 142_ALERT_4_G su on b - Axis Small or Missing 0.00020 Ang. 143_ALERT_4_G su on c - Axis Small or Missing 0.00020 Ang. 434_ALERT_2_G Short Inter HL..HL Contact Cl1 .. Cl3 . 3.32 Ang. 791_ALERT_4_G The Model has Chirality at C6 S Verify 860_ALERT_3_G Number of Least-Squares Restraints 12 Note 912_ALERT_4_G Missing # of FCF Reflections Above STh/L= 0.600 99 Note #-----

ALERT_Level and ALERT_Type Summary

3 ALERT_Level_C = Check. Ensure it is Not caused by an Omission or Oversight 7 ALERT_Level_G = General Info/Check that it is not Something Unexpected

2 ALERT_Type_1 CIF Construction/Syntax Error, Inconsistent or Missing Data.

2 ALERT_Type_2 Indicator that the Structure Model may be Wrong or Deficient.
2 ALERT_Type_3 Indicator that the Structure Quality may be Low.
4 ALERT_Type_4 Improvement, Methodology, Query or Suggestion.

2 Missing Experimental Info Issue(s) (Out of 54 Tests) - 96 % Satisfied

0 Experimental Data Related Issue(s) (Out of 28 Tests) - 100 % Satisfied

4 Structural Model Related Issue(s) (Out of 117 Tests) - 97 % Satisfied

4 Unresolved or to be Checked Issue(s) (Out of 223 Tests) - $\,$ 98 % Satisfied

#_____