
Supplement:
Varlociraptor: Enhancing sensitivity and controlling false discovery
rate in somatic indel discovery

S1 Why naive approaches to compute the likelihood function fail.

To understand why efficient computation of equation (1) is difficult, consider that each of the reads Zh
i , Z

t
j

could

(a) not stem from the particular variant locus,

(b) stem from the locus, but is not affected by the variant,

(c) stem from the locus, and is indeed affected by the variant.

We recall that it can be particularly difficult to be certain about (a), (b) or (c) when dealing with reads
being associated with midsize indel loci (30-250 bp; sometimes termed the ”NGS twilight zone”). Let
k = |Zt| and l = |Zh| be the read coverage of the locus in the tumor and the healthy sample. Since
there are 3 different possibilities—namely (a), (b) or (c)—for the overall k + l reads, we obtain that there
are 3k+l different scenarios that could reflect the truth, all of which apply with a particular probability.
For computing equation (1) following a fully Bayesian approach to inverse uncertainty quantification [1]—
which is the approved and canonical way to quantify uncertainties in our setting—one needs to integrate over
all the possible k+l choices. In a naive approach, this translates into computing a sum with 3k+l summands.
Because k+ l amounts to at least 60 to 70 in standard settings, naive approaches fail to compute the integral
in human feasible runtime. This is further aggravated because one usually needs to consider hundreds of
thousands of putative indel loci. So, methodical efforts are required for uncertainty quantification in our
setting.

S2 Uniqueness and computation of the maximum likelihood estimate

The likelihood function of θh, θc, and β given the data Zh and Zt as shown in equation (1) is a higher-
order polynomial, which makes it infeasible to derive its maximum analytically. We show in this section,
however, by proving Theorem 3.2 that under weak conditions the likelihood function attains a unique global
maximum on the unit interval for each value of θh and β. We, in addition, show that the loglikelihood
function is strictly concave, which simplifies the numerical maximization.

Proof. The likelihood function with θh and β fixed can be written in the form

L(θh, θc, β | Zh,Zc) = C ×
l∏

j=1

P
(
Zt
j | θh, θc, β

)
(1)

where C is the constant

C ≡
k∏

i=1

P (Zh
i | θh, β).

In the case that theorem condition 1 is not met, C = 0. The likelihood L(θh, θc, β | Zh,Zc) equals zero for
all θc and, therefore, does not attain a unique global maximum.
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Suppose theorem condition 1 is met (C > 0). Let us consider theorem condition 2. Note thatL(θh, θc, β |
Zh,Zc) = 0 when θc 6∈ I , since for those θc’s there exists an observation for which the P (Zt

j | θh, θcβ) = 0.
The likelihood L is by definition strictly larger than zero when θc ∈ I . Since the function in equation (41)
is an l-th order polynomial and, therefore, continuous, it must attain a global maximum on the interval I .

Suppose theorem condition 2 is met. The point θ̂c is a maximum of L(θh, ·, · | Zh,Zc) if and only if it
is a maximum of the loglikelihood function

`
(
θh, θc, β | Zh,Zc

)
≡ logL(θh, θc, β | Zh,Zc) = logC +

l∑
j=1

logP (Zt
j | θh, θc, β) (2)

(with θh, β fixed and θc ∈ I) since the logarithm is a monotonic transform. (Note that ` is only defined on
the subset I). The second order derivative of the loglikelihood with respect to θc is found to be

∂2`

∂θ2c
= −

l∑
j=1

[
∂P (Zt

j | θh, θc, β)/∂θc
P (Zt

j | θh, θc, β)

]2
≤ 0 (3)

indicating that the loglikelihood function is concave. Note that it is strictly concave, i.e., ∂2`/∂θ2c < 0, iff
there exists an observation ztj for which

∂P (Zt
j | θh, θc, β)
∂θc

= απtjτt
[
ptjs

t
j − atj

]
6= 0. (4)

This inequality holds only when α 6= 0, πtj 6= 0 and ptj 6= atj , which constitutes theorem conditions 3 and 4.
Suppose I is the non-empty closed set [a, b] on the unit interval. Since the loglikelihood is strictly

concave when theorem conditions 3 and 4 are met, it attains a unique global maximum θ̂c on I . Because the
logarithm is a monotonic transformation, θ̂c must be a unique global maximum of the likelihood function as
well.

A similar reasoning holds when I is open or half-open. The maximum must lie on the interior of I ,
since the likelihood function is zero for those endpoints not in I . For example, when I is the open interval
(a, b), then L(θh, a, β | Zh,Zc) = L(θh, b, β | Zh,Zc) = 0 while L(θh, θc, β | Zh,Zc) is strictly positive
on I . The loglikelihood function is under theorem conditions 3 and 4 strictly concave on I , therefore, the
likelihood function attains a unique global maximum.

S3 Supplementary Figures
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Fig. S1: Recall and precision for calling somatic insertions on simulated data. Results are grouped by
deletion length, denoted as interval at the top of the plot. For our approach (Varlociraptor+*) curves are
plotted by scanning over the posterior probability for having a somatic variant (for readability, each curve is
terminated by a square mark). For other callers that provide a score to scan over (e.g. p-value for Lancet) we
plot a dotted line. Ad-hoc results are shown as single dots. Results are shown if the prediction of the caller
did provide at least 10 calls. The sharp curves for our approach reflect the favorable property of having a
strong separation between the probabilities of true and false positives, see Figure ??.

Fig. S2: FDR control for somatic insertions. Results are grouped by deletion length, denoted as interval
at the top of the plot. The axes denote the desired FDR, provided by the user as input (x-axis), and the
true achieved FDR (y-axis). A perfect FDR control would keep the curve exactly on the dashed diagonal.
Below the diagonal, the control is conservative. Above the diagonal, the FDR would be underestimated.
Importantly, points below the diagonal mean that the true FDR is smaller than the threshold provided, which
means that FDR control is still established; in this sense, points below the diagonal are preferable over points
above the diagonal.
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Fig. S3: Allele frequency estimation for somatic insertions. Results are grouped by deletion length, denoted
as interval at the top of the plot. The horizontal axis shows the true allele frequency, the vertical axis shows
the error between predicted allele frequency and truth.

Fig. S4: Posterior probability distributions for somatic insertions. Results are grouped by deletion length,
denoted as interval at the top of the plot. The x-axis indicates the (PHRED-scaled) probability, and the y-
axis indicates relative amounts of calls with this probability. The distributions of posteriors for true positive
calls are shown as solid lines, the distributions of posteriors for false positive calls are shown as dotted lines.
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Fig. S5: Concordance of somatic insertions on real data. For Varlociraptor, the interval between all calls
with a posterior probability of at least 0.9 and at least 0.99 is shown as shaded area. Left: Concordance vs.
minimum allele frequency. Right: Number of calls vs. minimum allele frequency. Grey lines depict the
theoretical expectation according to Williams et al. [2]
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Fig. S6: Allele frequency estimation error for somatic deletions compared to sequencing depth. Each plot
shows the error (predicted - truth) for a particular true allele frequency (shown above the plot). Dots repre-
sent individual predictions, the blue shading shows a corresponding density estimate. The black line shows
the mean, the dashed lines depict the standard deviation. The grey area represents the theoretically expected
sampling error in an experiment with no further artifacts or biases (the theoretical optimum).
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Fig. S7: Allele frequency estimation error for somatic insertions compared to sequencing depth. Each
plot shows the error (predicted - truth) for a particular true allele frequency (shown above the plot). Dots
represent individual predictions, the blue shading shows a corresponding density estimate. The black line
shows the mean, the dashed lines depict the standard deviation. The grey area represents the theoretically
expected sampling error in an experiment with no further artifacts or biases (the theoretical optimum).
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Fig. S8: Recall and precision for calling somatic deletions on synthetic data (mixture rate 20%). Results are
grouped by deletion length, denoted as interval at the top of the plot. For our approach (Varlociraptor+*)
curves are plotted by scanning over the posterior probability for having a somatic variant (for readability,
each curve is terminated by a square mark). For other callers that provide a score to scan over (e.g. p-value
for Lancet) we plot a dotted line. Ad-hoc results are shown as single dots. Results are shown if the prediction
of the caller did provide at least 10 calls.
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Fig. S9: Recall and precision for calling somatic insertions on synthetic data (mixture rate 20%). Results
are grouped by deletion length, denoted as interval at the top of the plot. For our approach (Varlociraptor+*)
curves are plotted by scanning over the posterior probability for having a somatic variant (for readability,
each curve is terminated by a square mark). For other callers that provide a score to scan over (e.g. p-value
for Lancet) we plot a dotted line. Ad-hoc results are shown as single dots. Results are shown if the prediction
of the caller did provide at least 10 calls.
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Fig. S10: Recall and precision for calling somatic deletions on synthetic data (mixture rate 5%). Results are
grouped by deletion length, denoted as interval at the top of the plot. For our approach (Varlociraptor+*)
curves are plotted by scanning over the posterior probability for having a somatic variant (for readability,
each curve is terminated by a square mark). For other callers that provide a score to scan over (e.g. p-value
for Lancet) we plot a dotted line. Ad-hoc results are shown as single dots. Results are shown if the prediction
of the caller did provide at least 10 calls.
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Fig. S11: Recall and precision for calling somatic insertions on synthetic data (mixture rate 5%). Results
are grouped by deletion length, denoted as interval at the top of the plot. For our approach (Varlociraptor+*)
curves are plotted by scanning over the posterior probability for having a somatic variant (for readability,
each curve is terminated by a square mark). For other callers that provide a score to scan over (e.g. p-value
for Lancet) we plot a dotted line. Ad-hoc results are shown as single dots. Results are shown if the prediction
of the caller did provide at least 10 calls.
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Fig. S12: Example of a variant in a repetetive region that causes misplaced softclips, highlighting the need
for a realignment against the variant allele (taken from our simulated dataset (see section ??). The clipped
alignments (shown as mismatches at the read ends) should instead have a 20 bp deletion as the read at the
top. Visualization was performed with IGV [3].
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