Supplemental Information for

Comparison of *Alicyclobacillus acidocaldarius* OSBS to its promiscuous NSAR/OSBS relatives

Denis Odokonyero^{‡a}, Andrew W. McMillan^{‡†a}, Udupi A. Ramagopal^b, Rafael Toro^{†c}, Dat P. Truong^a, Mingzhao Zhu^f, Mariana S. Lopez^a, Belema Somiari^a, Meghann Herman^a, Asma Aziz^a, Jeffrey B. Bonanno^c, Kenneth G. Hull^f, Stephen K. Burley^e, Daniel Romo^f, Steven C. Almo^{c,d}, and Margaret E. Glasner^{*a}

^aDepartment of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, ^bPoornaprajna Institute, Bangalore India, ^cDepartment of Biochemistry and ^dDepartment of Physiology & Biophysics, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, ^eRCSB Protein Data Bank, Institute for Quantitative Biomedicine, Rutgers, The State University of New Jersey, and Rutgers, Cancer Institute of New Jersey, and ^fDepartment of Chemistry and Biochemistry, CPRIT Synthesis and Drug-Lead Discovery Lab,

Baylor University, One Bear Place, Waco, TX 76798-7348.

[#] D.O. and A.W.M contributed equally.

Supplemental Materials and methods

General procedure for synthesis of succinyl amino acids: A solution of amino acid (1.0 equiv) and succinic anhydride (1.0 equiv) in acetic acid (~1 mmol/mL) was heated at 50 °C under N₂ for 5 h. After concentration in vacuo to remove acetic acid, the crude product was purified by flash chromatography using gradient elution (CH₂Cl₂:MeOH from 20:1 to 15:1) with 60 Å silica gel (230-400 mesh) as stationary phase to provide the desired succinylated product. Purity was confirmed by HPLC analysis performed with a Gemini HPLC column (C18, 3 micron, 150 x 4.60 mm). Mobile phase A: 0.2% H₃PO₄ in H₂O; mobile phase B: 0.2% H₃PO₄ in CH₃CN/H₂O (4:1).

N-Succinyl-L-phenylalanine: Following the general procedure, *L*-phenylalanine (1.20 g, 7.26 mmol) and succinic anhydride (730 mg, 7.26 mmol) afforded *N*-succinyl-L-phenylalanine as colorless crystals (1.58 g, 82%). Characterization data matched that previously reported.¹

N-Succinyl-D-phenylalanine: Following the general procedure, *D*-phenylalanine (1.20 g, 7.26 mmol) and succinic anhydride (730 mg, 7.26 mmol) afforded *N*-succinyl-*D*-phenylalanine as colorless crystals (1.45 g, 75%). Characterization data matched that previously reported.¹

N-Succinyl-L-valine: Following the general procedure, *L*-valine (937 mg, 8.00 mmol) and succinic anhydride (801 mg, 8.00 mmol) afforded *N*-succinyl-*L*-valine as colorless crystals (1.49 g, 86%). Characterization data matched that previously reported.¹

N-Succinyl-L-methionine: Following the general procedure, *L*-methionine (1.19 g, 8.00 mmol) and succinic anhydride (801 mg, 8.00 mmol) afforded *N*-succinyl-*L*-methionine as a colorless oil (1.45 g, 73%). Characterization data matched that previously reported.¹

N-Succinyl-L-tryptophan: Following the general procedure, *L*-tryptophan (1.02 g, 5.00 mmol) and succinic anhydride (501 mg, 5.00 mmol) afforded *N*-succinyl-*L*-tryptophan as a colorless oil (1.22 g, 80%). Characterization data matched that previously reported.¹

Specific rotation of each substrate was determined by fitting three independent serial dilutions to a straight line. Specific rotations of each substrate at 405 nm are: 6.54 deg M⁻¹ cm⁻¹ (L- and D- NSPG)², 2.2 deg M⁻¹ cm⁻¹ (*N*-succinyl-L- and D- phenylalanine), 0.9 deg M⁻¹ cm⁻¹ (*N*-succinyl-L-valine), 1.0 deg M⁻¹ cm⁻¹ (*N*-succinyl-L-methionine), and 1.9 deg M⁻¹ cm⁻¹ (*N*-succinyl-L-tryptophan).

References

(1) Sakai, A., Xiang, D. F., Xu, C., Song, L., Yew, W. S., Raushel, F. M., and Gerlt, J. A. (2006) Evolution of enzymatic activities in the enolase superfamily: *N*-succinylamino acid racemase and a new pathway for the irreversible conversion of D- to L-Amino Acids, *Biochemistry* 45, 4455-4462.

(2) McMillan, A. W., Lopez, M. S., Zhu, M., Morse, B. C., Yeo, I. C., Amos, J., Hull, K., Romo, D., and Glasner, M. E. (2014) Role of an active site loop in the promiscuous activities of Amycolatopsis sp. T-1-60 NSAR/OSBS, *Biochemistry* 53, 4434-4444.

Table S1. Primers used for cloning NSAR/OSBS subfamily genes.		
Species	Primer sequence	
AmedNSAR/OSBS	FORWARD: <u>TACTTCCAATCCAATGCC</u> ATGAAACTCACCGGGGTGGAACTCC REVERSE:	
	TTATCCACTTCCAATGTTACTAGGCGAGCCAGGACTTCGCGG	
LvNSAR/OSBS	FORWARD: <u>TACTTCCAATCCAATGCCATG</u> AAAGTAGAAAAGATTACTTTAAGAC REVERSE: <u>TTATCCACTTCCAATGTTATTATTGATAGACCTCTTTGCTTATTGTCAGC</u>	
RcNSAR/OSBS	FORWARD: <u>TACTTCCAATCCAATGCCATG</u> AAGATCGAGTCGATCACATTG REVERSE: <u>TTATCCACTTCCAATGTTA</u> TCATCCTTTCCCAATGATCACCTCACG	
All DNA primers a vector sequence.	are shown in the 5' to 3' direction. The red, underlined bases are part of the	

 Table S2. Primers used for mutagenesis.

Mutation	Template	Primer sequence	
M18F	AaOSBS WT	Forward: GAAATTTCCG <u>ttc</u> CGTACGGCGCATG	
		Reverse: AGCGGCAGTGACAGACGA	
Y55A	AaOSBS WT	Forward: GGAACCGACCgcgACGGAAGAATGTACCG	
		Reverse: GCCAGAGCCACGCATTCC	
Y299I	AaOSBS WT	Forward: CGGTGGCATG <u>atc</u> GAAACCGGTG	
		Reverse: ACCCAAGCTGCCATGCCT	
M18F/Y299I	AaOSBS M18F	Forward: CGGTGGCATG <u>atc</u> GAAACCGGTG	
		Reverse: ACCCAAGCTGCCATGCCT	

All DNA primers are shown in the 5' to 3' direction. The underlined bases designate the codons where mutations were introduced.